A Novel Potentiometric PVC-membrane Cysteamine-Selective Electrode Based on Cysteamine-Phosphomolybdate Ion-Pair

Author(s): Merve Tumur, Gulsah Saydan Kanberoglu, Fatih Coldur*.

Journal Name: Current Pharmaceutical Analysis

Volume 16 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Cysteamine is used as an orphan drug in the treatment of cystinosis to prevent long-term cystine accumulation in lysosomes. Dosing in cysteamine treatment is extremely important and overdose may cause some side effects. Up to now, various analytical methods have been used for cysteamine determination. Many of these methods require sophisticated instruments, expert operators, time-consuming measurement procedures and manipulation steps, expensive supplies and long analysis time.

Aims and Objective: The present study deals with the development of a potentiometric PVC-membrane cysteamine-selective electrode based on an ion-pair of cysteamine and its application in a pharmaceutical formulation.

Methods: Cysteamine (Cys)-Phosphomolybdate (PM) ion-pair was synthesized by mixing the equal volumes of 10-2 M Cysteamine HCl and sodium phosphomolybdate aqueous solutions. The obtained precipitate was used as ionophore in the structure of PVC-membrane.

Results and Discussion: The electrode exhibited a linear response in the concentration range of 1.0×10- 1-1.0×10-5 M cysteamine with a slope of 51,7 mV per decade and detection limit of 1.0×10-5 M. The potentiometric response of the electrode was very rapid (5 s), adequately repeatable, stable and selective. pH working range and life-time of the electrode were also determined as 3.0-7.0 and 25 days, respectively.

Conclusion: A PVC-membrane cysteamine selective electrode was easily prepared. Cysteamine determination in a pharmaceutical formulation was performed. Analysis results indicated that it can be successfully used in drug quality control laboratories for routine analysis of cysteamine in pharmaceutical preparations alternative to more sophisticated, expensive and time-consuming analytical methods.

Keywords: Cysteamine, cysteamine determination, drug analysis, potentiometry, ion-selective electrode, electrochemical sensor.

[1]
Dominy, J.E.; Simmons, C.R.; Hirschberger, L.L.; Hwang, J.; Coloso, R.M.; Stipanuk, M.H. Discovery and characterization of a second mammalian thiol dioxygenase, cysteamine dioxygenase. J. Biol. Chem., 2007, 282(35), 25189-25198.
[2]
Soohoo, N.; Schneider, J.A.; Kaplan, R.M. A cost-effectiveness analysis of the orphan drug cysteamine in the treatment of infantile cystinosis. Med. Decis. Making, 1997, 17(2), 193-198.
[3]
Thoene, J.G. Cystinosis. J. Inherit. Metab. Dis., 1995, 18(18), 380-386.
[4]
Kuśmierek, K.; Głowacki, R.; Bald, E. Determination of total cysteamine in human plasma in the form of its 2-S-quinolinium derivative by high performance liquid chromatography. Anal. Bioanal. Chem., 2005, 382(1), 231-233.
[5]
Scriver, C.R.; Beaudet, A.L.; Sly, W.S.; Valle, D.; Childs, B.; Kinzler, K.W.; Volgestein, B. The metabolic and molecular bases of inherited disease; 8th ed.; McGraw-Hill, New-York;. , 2001.
[6]
Nesterova, G.; Galh, W.A. Cystinosis. GeneReviews; University of Washington: Seattle, 2017. Available from:. https://www.ncbi.nlm.nih.gov/books/NBK1400/
[7]
Hory, B.; Billerey, C.; Royer, J.; Saint, H.Y. Glomerular lesions in juvenile cystinosis: report of 2 cases. Clin. Nephrol., 1994, 42(5), 327-330.
[8]
Galh, W.A.; Thoene, J.G.; Schneider, J.A. Cystinosis. N. Engl. J. Med., 2002, 347(2), 111-121.
[9]
Besouw, M.; Levtchenko, E. mproving the prognosis of nephropathic cystinosis. Int. J. Nephrol. Renovasc. Dis., 2014, 7, 297-302.
[10]
European Medicines Agency (EMEA) (2007) Cystagon Product Information., EMEA, London
[11]
Siddiqui, M.R.; AlOthman, Z.A.; Rahman, N. Analytical techniques in pharmaceutical analysis: A review. Arab. J. Chem., 2017, 10, S1409-S1421.
[12]
AlOthman, Z.A.; Rahman, N.; Siddiqui, M.R. Review on pharmaceutical impurities, stability studies and degradation products: an analytical approach. Rev. Adv. Sci. Engg, 2013, 2(2), 155-166.
[13]
Rahman, N.; Azmi, S.N.H.; Wu, H-F. The importance of impurity analysis in pharmaceutical products: an integrated approach. Accredit. Qual. Assur., 2006, 11, 69-74.
[14]
Stachowicz, M.; Lehmann, B.; Tibi, A.; Prognon, P.; Daurat, V.; Pradeau, D. Determination of total cysteamine in human serum by a high-performance liquid chromatography with fluorescence detection. J. Pharm. Biomed. Anal., 1998, 17, 767-773.
[15]
Hsiung, M.; Yeo, Y.Y.; Itiaba, K.; Crawhall, J.C. Cysteamine, penicillamine, glutathione, and their derivatives analyzed by automated ion exchange column chromatography. Biochem. Med., 1978, 19, 305-317.
[16]
Kataoka, H.; Tanaka, H.; Makita, M. Determination of total cysteamine in urine and plasma samples by gas chromatography with flame photometric detection. J. Chromatogr. B., 1994, 657, 9-13.
[17]
Salmanpour, S.; Abbasghorbani, M.; Karimi, F.; Bavandpour, R.; Wen, Y. Electrocatalytic determination of cysteamine uses a nanostructure based electrochemical sensor in pharmaceutical samples. Curr. Anal. Chem., 2017, 13, 40-45.
[18]
Karimi-Maleh, H.; Salimi-Amiri, M.; Karimi, F. Khalilzadeh; M.A.; Baghayeri, M. A voltammetric sensor based on NiO nanoparticle-modified carbon-paste electrode for determination of cysteamine in the presence of high concentration of tryptophan. J. Chem., 2013, 2013, 1-7.
[19]
Arabali, V.; Karimi-Maleh, H. Electrochemical determination of cysteamine in the presence of guanine and adenine using a carbon paste electrode modified with N-(4-hydroxyphenyl)-3,5-dinitrobenzamide and magnesium oxide nanoparticles. Anal. Methods, 2016, 8, 5604-5610.
[20]
Ensafi, A.A.; Karimi-Maleh, H. A voltammetric sensor based on modified multiwall carbon nanotubes for cysteamine determination in the presence of tryptophan using p-aminophenol as a mediator. Electroanalysis, 2010, 22(21), 2558-2568.
[21]
Keyvanfard, M.; Ahmadi, M.; Karimi, F.; Alizad, K. Voltammetric determination of cysteamine at multiwalled carbon nanotubes paste electrode in the presence of isoproterenol as a mediator. Chin. Chem. Lett., 2014, 25, 1244-1246.
[22]
Taherkhani, A.; Karimi-Maleh, H.; Ensafi, A.A.; Beitollahi, H.; Hosseini, A.; Khalilzadeh, M.A.; Bagheri, H. Simultaneous determination of cysteamine and folic acid in pharmaceutical and biological samples using modified multiwall carbon nanotube paste electrode. Chin. Chem. Lett., 2012, 23(2), 237-240.
[23]
Apyari, V.V.; Dmitrienko, S.G.; Arkhipova, V.V.; Atnagulov, A.G.; Zolotov, Y.A. Determination of cysteamine using label-free gold nanoparticles. Anal. Methods, 2012, 4, 3193-3199.
[24]
A. J. , Jonas; J.A., Schneider A simple, rapid assay for cysteamine and other thiols. Anal. Biochem., 1981, 114, 429-432.
[25]
Kubalczyk, P.; Bald, E. Method for determination of total cysteamine in human plasma by high performance capillary electrophoresis with acetonitrile stacking. Electrophoresis, 2008, 29, 3636-3640.
[26]
Sanghavi, B.J.; Srivastava, A.K. Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode. Electrochim. Acta, 2010, 55, 8638-8648.
[27]
Sanghavi, B.; Sitaula, J.S.; Griep, M.H.; Karna, S.P.; Ali, M.F.; Swami, N.S. Real-time electrochemical monitoring of adenosine triphosphate in the picomolar to micromolar range using graphene-modified electrodes. Anal. Chem., 2013, 85, 8158-8165.
[28]
Atta, N.F.; El-Kady, M.F.; Galal, A. Palladium nanoclusters-coated polyfuran as a novel sensor for catecholamine neurotransmitters and paracetamol. Sens. Actuators B., 2009, 141, 566-574.
[29]
Rahman, N.; Khan, S. Amitriptyline-molybdovanadate/-molybdotungstate based ion-selective membrane electrodes for determination of amitriptyline in pharmaceutical formulations and water samples. J. Electroanal. Chem. , 2016, 777, 92-100.
[30]
Abdel-Ghani, N.T.; Hussein, S.H. Determination of diphenylpyraline hydrochloride in pure solutions and pharmaceutical preparations using ion selective electrodes under batch and FIA conditions. Anal. Lett., 2010, 43(4), 582-602.
[31]
Mostafa, G.A. PVC matrix membrane sensor for potentiometric determination of metoclopramide hydrochloride in some pharmaceutical formulations. J. Pharm. Biomed. Anal., 2003, 31(3), 515-521.
[32]
Hassan, A.K.; Saad, B.; Ghani, S.A.; Adnan, R.; Rahim, A.A.; Ahmad, N.; Mokhtar, M.; Ameen, S.T.; Al-Araji, S.M. Ionophore-based potentiometric sensors for the flow-injection determination of promethazine hydrochloride in pharmaceutical formulations and human urine. Sensors , 2011, 11(1), 1028-1042.
[33]
Garcia, M.S.; Ortuno, J.A.; Albero, M.I.; Abuherba, M.S. Development of membrane selective electrode for determination of the antipsychotic sulpiride in pharmaceuticals and urine. Sensors , 2009, 9(6), 4309-4322.
[34]
Ensafi, A.A.; Allafchian, A.R. A new potentiometric sensor for the determination of desipramine based on N-(1-naphthyl)ethylenediamine dihydrochloride-tetraphenyl borate. IEEE Sens. J., 2011, 11(10), 2576-2582.
[35]
Erdem, A.; Ozsoz, M.; Kirilmaz, L.; Kilinc, E.; Dalbasti, T. Diphenhydramine‐selective plastic membrane sensor and its pharmaceutical applications. Electroanalysis, 1997, 9(12), 932-935.
[36]
Badawy, S.S.; Issa, Y.M.; Mutair, A.A. PVC membrane ion-selective electrodes for the determination of Hyoscyamine in pure solution and in pharmaceutical preparations under batch and flow modes. J. Pharm. Biomed. Anal., 2005, 39(1-2), 117-124.
[37]
Ensafi, A.A.; Allafchian, A.R. Novel and selective potentiometric membrane sensor for amiloride determination in pharmaceutical compounds and urine. J. Pharm. Biomed. Anal., 2008, 47, 802-806.
[38]
Liu, Z.H.; Wen, M.L.; Yao, Y.; Xiong, J. Plastic pethidine hydrochloride membrane sensor and its pharmaceutical applications. Sens. Actuators B., 2001, 72, 219-223.
[39]
Kanberoglu, G.S.; Coldur, F.; Topcu, C.; Cubuk, O. PVC-membrane potentiometric sensor for the determination of tamoxifen in pharmaceutical formulations. IEEE Sens. J., 2015, 15(11), 6199-6207.
[40]
Cosofret, V.V.; Thomas, J.D.R. Pharmaceutical Applications of Membrane Sensors, 1st ed; Pergamon Press: Newyork, 1982.
[41]
Cosofret, V.V. Membrane Electrodes in Drug-Substances Analysis; 1th ed.; Pergamon Press: Oxford, . , 1982.
[42]
Topcu, C.; Caglar, S.; Caglar, B.; Coldur, F.; Cubuk, O.; Sarp, G.; Gedik, K.; Cirak, B.B.; Tabak, A. Characterization of a hybridsmectite nanomaterial formed by immobilizing of N-pyridin-2- ylmethylsuccinamic acid onto (3- aminopropyl)triethoxysilane modified smectite and its potentiometric sensor application. Adv.Nat. Sci.: Nanosci. Nanotechnol.,, 2016, 7 11 pp.
[43]
Shamsipur, M.; Kazemi, S.Y.; Niknam, K.; Sharghi, H. A new PVC-membrane electrode based on a thia-substituted macrocyclic diamide in selective potentiometric determination of silver ion. Bull. Korean Chem. Soc., 2002, 23, 53-58.
[44]
Bakker, E.; Buhlmann, P.; Pretsch, E. Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chem. Rev., 1997, 97, 3083-3132.
[45]
Lindner, E.; Umezawa, Y. Performance evaluation criteria for preparation and measurement of macro- and microfabricated ion-selective electrodes (IUPAC Technical Report). Pure Appl. Chem., 2008, 80(1), 85-104.
[46]
Umezawa, Y.; Buhlmann, P.; Umezawa, K.; Tohda, K.; Amemiya, S. Potentiometric selectivity coefficients of ion-selective electrodes Part I. Inogranic cations. Pure Appl. Chem., 2000, 72(10), 1851-2082.
[47]
Macca, C. Response time of ion-selective electrodes: Current usage versus IUPAC recommendations. Anal. Chim. Acta, 2004, 512(2), 183-190.
[48]
Buck, R.P.; Lindner, E. Recommendations for nomenclature of ion-selective electrodes (IUPAC Recommendations1994). Pure Appl. Chem., 1994, 66(12), 2527-2536.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 2
Year: 2020
Page: [168 - 175]
Pages: 8
DOI: 10.2174/1573412914666181017150529
Price: $65

Article Metrics

PDF: 20
HTML: 3
EPUB: 1
PRC: 1