Polyaniline/Al Bismuthate Composite Nanorods Modified Glassy Carbon Electrode for the Detection of Benzoic Acid

Author(s): Lizhai Pei, Fanglv Qiu, Yue Ma, Feifei Lin, Chuangang Fan*, Xianzhang Ling*

Journal Name: Current Pharmaceutical Analysis

Volume 16 , Issue 2 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Context: Benzoic acid is a kind of extensively used preservative. It is of great significance to detect benzoic acid by a rapid method for quality assurance and protection in the fields of pharmaceutical, food and chemistry industry.

Objective: The present research is aimed to prepare polyaniline/Al bismuthate composite nanorods by an in-situ polymerizing process for effective detection of benzoic acid.

Methods: The polyaniline/Al bismuthate composite nanorods are prepared by an in-situ polymerizing process. The structure, morphology and electrochemical performance of the obtained polyaniline/Al bismuthate composite nanorods are analyzed by X-ray diffraction (XRD), transmission electron microscopy and electrochemical measurement.

Results: XRD and transmission electron microscopy observations show that the amorphous nanoscale polyaniline particles attach to the surface of the crystalline nanorods. The electrochemical measurement of 2 mM benzoic acid using the composite nanorods modified glassy carbon electrode (GCE) shows that a pair of semi-reversible CV peaks is located at -0.11 V (cvp1) and -0.48 V (cvp1′), respectively. The electrochemical responses of 2 mM benzoic acid at the composite nanorods modified GCE are enhanced with increasing the scan rate and benzoic acid concentration. The polyaniline/Al bismuthate composite nanorods modified GCE shows a linear range of 0.001-2 mM with the limit of detection (LOD) of 0.18 µM.

Conclusion: The composite nanorods may be used as the electrode materials with good reproducibility and stability for the detection of benzoic acid.

Keywords: Al bismuthate nanorods, polyaniline, composites, glassy carbon electrode, electrochemical detection, benzoic acid.

Solanki, P.R.; Singh, J.; Rupavali, B.; Tiwari, S.; Malhotra, B.D. Bismuth oxide nanorods based immunosensor for mycotoxin detection. Mater. Sci. Eng. C, 2017, 70, 564-571.
Mahmoud, B.G.; Khairy, M.; Rashwan, F.A.; Banks, C.E. Simultaneous voltammetric determination of acetaminophen and isoniazid (hepatotoxicity-related drugs) utilizing bismuth oxide nanorod modified screen-printed electrochemical sensing platforms. Anal. Chem., 2017, 89, 2170-2178.
Liu, R.; Ma, L.N.; Niu, G.D.; Li, X.L.; Li, E.Y.; Bai, Y.; Yuan, G.H. Oxygen-deficient bismuth oxide/graphene of ultrahigh capacitance as advanced flexible anode for asymmetric supercapacitors. Adv. Funct. Mater., 2017, 271701635
Kwang-Hua, C.R. Non-equilibrium normal and critical transport of electrons in strontium-doped bismuthate cuprates. Superlattices Microstruct., 2014, 69, 144-148.
Sun, Y.Z.; Yang, M.; Pan, J.Q.; Wang, P.Y.; Li, W.; Wan, P.Y. Manganese dioxide-supported silver bismuthate as an efficient electrocatalyst for oxygen reduction reaction in zinc-oxygen batteries. Electrochim. Acta, 2016, 197, 68-76.
Zhang, Y.; Lin, F.F.; Wei, T.; Pei, L.Z. facile hydrothermal synthesis of Cu bismuthate nanosheets and sensitive electrochemical detection of tartaric acid. J. Alloys Compd., 2017, 723, 1062-1069.
Padmanaban, A.; Dhanasekaran, T.; Manigandan, R.; Kumar, S.P.; Gnanamoorthy, G.; Stephen, A.; Narayanan, V. Facile solvothermal decomposition synthesis of single phase ZnBi38O60 nanobundles for sensitive detection of 4-nitrophenol. New J. Chem., 2017, 41, 7020-7027.
Cabot, A.; Marsal, A.; Arbiol, J.; Morante, J.R. Bi2O3 as a selective sensing material for NO detection. Sens. Actuat. B, 2004, 99, 74-89.
Pauliukaite, R.; Metelka, R.; Svancara, I.; Krolicka, A.; Bobrowski, A.; Vytras, K.; Norkus, E.; Kalcher, K. Carbon paste electrodes modified with Bi2O3 as sensors for the determination of Cd and Pb. Anal. Bioanal. Chem., 2002, 374, 1155-1158.
Pei, L.Z.; Wei, T.; Lin, N.; Fan, C.G.; Yang, Z. aluminium bismuthate nanorods and electrochemical performance for the detection of tartaric acid. J. Alloys Compd., 2016, 679, 39-46.
Shabani-Nooshabadi, M.; Zahedi, F. Electrochemical reduced graphene oxide-polyaniline as effective nanocomposite film for high-performance supercapacitor applications. Electrochim. Acta, 2017, 245, 575-586.
Huang, J.X.; Virji, S.; Weiller, B.H.; Kaner, R.B. Polyaniline nanofibers: facile synthesis and chemical sensors. J. Am. Chem. Soc., 2003, 125, 314-315.
Zhang, L.L.; Huang, D.; Hu, N.T.; Yang, C.; Li, M.; Wei, H.; Yang, Z.; Su, Y.J.; Zhang, Y.F. Three-dimensional structures of graphene/polyaniline hybrid films constructed by steamed water for high-performance supercapacitors. J. Power Sources, 2017, 342, 1-8.
Deng, J.G.; Ding, X.B.; Zhang, W.C.; Peng, Y.X.; Wang, J.H.; Long, X.P.; Li, P.; Chan, A.S.C. Carbon nanotube-polyaniline hybrid materials. Eur. Polym. J., 2002, 38, 2497-2501.
Liao, Y.Z.; Zhang, C.; Zhang, Y.; Strong, V.; Tang, J.S.; Li, X.G.; Kalantar-zadeh, K.; Hoek, E.M.V.; Wang, K.L.; Kaner, R.B. Carbon nanotube/polyaniline composite nanofibers: facile synthesis and chemosensors. Nano Lett., 2011, 11, 954-959.
Im, S.J.; Park, Y.R.; Park, S.; Kim, H.J.; Doh, J.H.; Kwon, K.; Hong, W.G.; Kim, B.; Yang, W.S.; Kim, T.; Hong, Y.J. Nanoparticle intercalation-induced interlayer-gap-opened graphene–polyaniline nanocomposite for enhanced supercapacitive performances. Appl. Surf. Sci., 2017, 412, 160-169.
Louhichi, B.; Bensalash, N.; Gadri, A. Electrochemical oxidation of benzoic acid derivatives on boron doped diamond: voltammetric study and galvanostatic electrolyses. Chem. Eng. Technol., 2006, 29, 944-950.
Montilla, F.; Michaud, P.A.; Morallón, E.A.; Vázquez, J.L.; Comninellis, C. Electrochemical oxidation of benzoic acid at boron-doped diamond electrodes. Electrochim. Acta, 2002, 47, 3509-3513.
Bensalah, N.; Gadri, A. Electrochemical oxidation of 2,4,6-trinitrophenol on boron-doped diamond anodes. J. Electrochem. Soc., 2005, 152, D113-D116.
Cai, Z.Y.; Pei, L.Z.; Xie, Y.K.; Fan, C.G.; Fu, D.G. Electrochemical determination of benzoic acid using CuGeO3 nanowire modified glassy carbon electrode. Meas. Sci. Technol., 2013, 24095701
Dong, C.C.; Mei, Y.; Chen, L. Simultaneous determination of sorbic and benzoic acids in food dressing by headspace solid-phase microextraction and gas chromatography. J. Chromatogr. A, 2006, 1117, 109-114.
Liu, B.; Cui, L.Q.; Zhang, H.M. Voltammetric determination of ceftazidime using a carbon nanotube modified electrode with the enhancement effect of sodium dodecyl benzene sulphonate. Curr. Pharm. Anal., 2018, 14, 491-495.
Khoubnasabjafari, M.; Ansarin, K.; Jouyban, A. Critical review of malondialdehyde analysis in biological samples. Curr. Pharm. Anal., 2016, 12, 4-17.
Pan, Z.; Wang, L.; Mo, W.; Wang, C.; Hu, W.; Zhang, J. Determination of benzoic acid in soft drinks by gas chromatography with on-line pyrolytic methylation technique. Anal. Chim. Acta, 2005, 545, 218-223.
Marsili, N.B.; Lista, A.; Band, B.S.F.; Goicoechea, H.C.; Olivieri, A.C. New method for the determination of benzoic and sorbic acids in commercial orange juices based on second-order spectrophotometric data generated by a pH gradient flow injection technique. J. Agric. Food Chem., 2004, 52, 2479-2484.
Morales, M.D.; Morante, S.; Escarpa, A.; Gonzalez, M.C.; Reviejo, A.J.; Pingarron, J.M. Design of a composite amperometric enzyme electrode for the control of the benzoic acid content in food. Talanta, 2002, 57, 1189-1198.
Shan, D.; Shi, Q.F.; Zhu, D.B.; Xue, H.G. Inhibitive detection of benzoic acid using a novel phenols biosensor based on polyaniline-polyacrylonitrile composite matrix. Talanta, 2007, 72, 1167-1172.
Saab, B.; Bari, M.F.; Saleh, M.I.; Ahmad, K.; Talib, M.K.M. Simultaneous determination of preservatives (benzoic acid, sorbic acid, methylparaben and propylparaben) in foodstuffs using high-performance liquid chromatography. J. Chromatogr. A, 2005, 1073, 393-397.
Pei, L.Z.; Cai, Z.Y.; Xie, Y.K.; Fu, D.G. Electrochemical behaviors of benzoic acid at polyaniline/CuGeO3 nanowire modified glassy carbon electrode. Measurement, 2014, 53, 62-70.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 23 January, 2020
Page: [153 - 158]
Pages: 6
DOI: 10.2174/1573412914666181017145307
Price: $65

Article Metrics

PDF: 20
PRC: 1