The Superior Antitumor Effect of Self-Assembled Paclitaxel Nanofilaments for Lung Cancer Cells

Author(s): Mengyu He, Jiali Zhu, Na Yu, Hui Kong, Xiaoning Zeng, Weiping Xie*, Huae Xu*

Journal Name: Current Drug Delivery

Volume 16 , Issue 2 , 2019

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Objectives: Paclitaxel (Ptx) has been regarded as one of the most effective chemotherapeutic drugs for lung cancers. Increasing studies focused on the nano-delivery system of Ptx due to its poor solubility and hypersensitivity. The aim of the recent study was to investigate the antitumor effects of self-assembled Ptx nano-filaments for lung cancer cells.

Methods: In the present study, we designed and synthesized novel Ptx-loaded nano-filaments through conjugation of Ptx and succinic acid (SA) (Ptx-SA, P-NFs). Non-small cell lung cancer (NSCLC) A549 and H460 cells were used for detecting the antitumor effects of P-NFs, including cytotoxicity, apoptosis, and migration. Western blotting was performed for analyzing mechanism.

Results: P-NFs nano-filaments exerted superior antitumor effects against NSCLC cells compared with free Ptx using cytotoxicity tests. Furthermore, P-NFs nano-filaments were much more effective in inducing NSCLC cells apoptosis and inhibiting A549 cells migration than free Ptx. To elucidate the underlying mechanisms, the expression of apoptotic and endoplasmic reticulum (ER) stress proteins was detected. The results indicated that P-NFs nano-filaments enhanced the expression of bax/bcl-2, protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), phospho- c-Jun N-terminal kinase (p-JNK), and C/EPB homologous protein (CHOP), which suggested that the strong antitumor effect of P-NFs nano-filaments may be partially attributed to the activation ER stress.

Conclusion: The current work demonstrated that P-NFs nano-filaments showed superior cytotoxicity of lung cancer cells, highlighting a novel profile of nano-filaments delivery systems as potential strategies for facilitating the therapeutic efficacy of Ptx in lung cancer treatment.

Keywords: Lung cancer, nano-filaments, paclitaxel, apoptosis, migration, Endoplasmic Reticulum (ER) stress.

Chen, J.G.; Chen, H.Z.; Zhu, J.; Yang, Y.L.; Zhang, Y.H.; Huang, P.X.; Chen, Y.S.; Zhu, C.Y.; Yang, L.P.; Shen, K.; Qiang, F.L.; Wang, G.R. Cancer survival in patients from a hospital-based cancer registry, China. J. Cancer, 2018, 9(5), 851-860.
Sacco, P.C.; Casaluce, F.; Sgambato, A.; Rossi, A.; Maione, P.; Palazzolo, G.; Napolitano, A.; Gridelli, C. Current challenges of lung cancer care in an aging population. Expert Rev. Anticancer Ther., 2015, 15(12), 1419-1429.
Ettinger, D.S.; Wood, D.E.; Aisner, D.L.; Akerley, W.; Bauman, J.; Chirieac, L.R.; D’Amico, T.A.; DeCamp, M.M.; Dilling, T.J.; Dobelbower, M.; Doebele, R.C.; Govindan, R.; Gubens, M.A.; Hennon, M.; Horn, L.; Komaki, R.; Lackner, R.P.; Lanuti, M.; Leal, T.A.; Leisch, L.J.; Lilenbaum, R.; Lin, J.; Loo, B.W., Jr; Martins, R.; Otterson, G.A.; Reckamp, K.; Riely, G.J.; Schild, S.E.; Shapiro, T.A.; Stevenson, J.; Swanson, S.J.; Tauer, K.; Yang, S.C.; Gregory, K.; Hughes, M. Non-small cell lung cancer, Version 5.2017, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw., 2017, 15(4), 504-535.
Shi, X.; Sun, X. Regulation of paclitaxel activity by microtubule-associated proteins in cancer chemotherapy. Cancer Chemother. Pharmacol., 2017, 80(5), 909-917.
Liao, P.C.; Tan, S.K.; Lieu, C.H.; Jung, H.K. Involvement of endoplasmic reticulum in paclitaxel-induced apoptosis. J. Cell. Biochem., 2008, 104(4), 1509-1523.
Xu, L.; Liu, J.H.; Zhang, J.; Zhang, N.; Wang, Z.H. Blockade of autophagy aggravates endoplasmic reticulum stress and improves Paclitaxel cytotoxicity in human cervical cancer cells. Cancer Res. Treat., 2015, 47(2), 313-321.
Kubota, T.; Okano, Y.; Sakai, M.; Takaoka, M.; Tsukuda, T.; Anabuki, K.; Kawase, S.; Miyamoto, S.; Ohnishi, H.; Hatakeyama, N.; Machida, H.; Urata, T.; Yamamoto, A.; Ogushi, F.; Yokoyama, A. Carboplatin plus weekly paclitaxel with bevacizumab for first-line treatment of non-small cell lung cancer. Anticancer Res., 2016, 36(1), 307-312.
Gelderblom, H.; Verweij, J.; Nooter, K.; Sparreboom, A.; Cremophor, E.L. Tthe drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer, 2001, 37(13), 1590-1598.
Ingemarsdotter, C.K.; Tookman, L.A.; Browne, A.; Pirlo, K.; Cutts, R.; Chelela, C.; Khurrum, K.F.; Leung, E.Y.; Dowson, S.; Webber, L.; Khan, I.; Ennis, D.; Syed, N.; Crook, T.R.; Brenton, J.D.; Lockley, M.; McNeish, I.A. Paclitaxel resistance increases oncolytic adenovirus efficacy via upregulated CAR expression and dysfunctional cell cycle control. Mol. Oncol., 2015, 9(4), 791-805.
Ma, P.; Mumper, R.J. Paclitaxel nano-delivery systems: A comprehensive review. J. Nanomed. Nanotechnol., 2013, 4(2), 1000164.
Yi, Y.; Lin, G.; Chen, S.; Liu, J.; Zhang, H.; Mi, P. Polyester micelles for drug delivery and cancer theranostics: Current achievements, progresses and future perspectives. Mater. Sci. Eng. C Mater. Biol. Appl., 2018, 83, 218-232.
Zhu, Y.; Yang, B.; Chen, S. Du, J. Polymer vesicles: Mechanism, preparation, application, and responsive behavior. Prog. Polym. Sci., 2017, 64, 1-22.
Komiyama, M.; Yoshimoto, K.; Sisido, M.; Ariga, K. Chemistry can make strict and fuzzy controls for bio-systems: DNA nanoarchitectonics and cell-macromolecular nanoarchitectonics. Bull. Chem. Soc. Japan., 2017, 90(9), 967-1004.
Li, X.; Xu, H.; Dai, X.; Zhu, Z.; Liu, B.; Lu, X. Enhanced in vitro and in vivo therapeutic efficacy of codrug-loaded nanoparticles against liver cancer. Int. J. Nanomedicine, 2012, 7, 5183-5190.
Zhou, Y.; Dai, Z. New strategies in the design of nanomedicine to oppose uptake by the mononuclear phagocyte system for enhancing cancer therapeutic efficacy. Chem. Asian J., 2018.
Zhang, H.; Tian, Y.; Zhu, Z.; Xu, H.; Li, X.; Zheng, D.; Sun, W. Efficient antitumor effect of co-drug-loaded nanoparticles with gelatin hydrogel by local implantation. Sci. Rep., 2016, 6, 26546.
Zhang, L.; He, Y.; Yu, M.; Song, C. Paclitaxel-loaded polymeric nanoparticles based on PCL-PEG-PCL: Preparation, in vitro and in vivo evaluation. J. Control. Release, 2011, 152(Suppl. 1), e114-e116.
Greish, K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol., 2010, 624, 25-37.
Xu, H.; Lu, X.; Li, J.; Ding, D.; Wang, H.; Li, X.; Xie, W. Superior antitumor effect of extremely high drug loading self-assembled paclitaxel nanofibers. Int. J. Pharm., 2017, 526(1-2), 217-224.
Surman, M.; Janik, M.E. Stress and its molecular consequences in cancer progression. Postepy Hig. Med. Dosw.(Online), 2017, 71, 485-499.
Adams, J.M.; Cory, S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene, 2007, 26(9), 1324-1337.
Joseph, B.; Lewensohn, R.; Zhivotovsky, B. Role of apoptosis in the response of lung carcinomas to anti-cancer treatment. Ann. N. Y. Acad. Sci., 2000, 926, 204-216.
Deng, J. How to unleash mitochondrial apoptotic blockades to kill cancers? Acta Pharm. Sin. B, 2017, 7(1), 18-26.
Park, J.S.; Kim, I.K.; Han, S.; Park, I.; Kim, C.; Bae, J.; Oh, S.J.; Lee, S.; Kim, J.H.; Woo, D.C.; He, Y.; Augustin, H.G.; Kim, I.; Lee, D.; Koh, G.Y. Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer Cell, 2016, 30(6), 953-967.
Minami, T.; Jiang, S.; Schadler, K.; Suehiro, J.; Osawa, T.; Oike, Y.; Miura, M.; Naito, M.; Kodama, T.; Ryeom, S. The calcineurin-NFAT-angiopoietin-2 signaling axis in lung endothelium is critical for the establishment of lung metastases. Cell Rep., 2013, 4(4), 709-723.
Koontongkaew, S. The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck squamous cell carcinomas. J. Cancer, 2013, 4(1), 66-83.
Bergers, G.; Hanahan, D. Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer, 2008, 8(8), 592-603.
Stuelten, C.H.; Parent, C.A.; Montell, D.J. Cell motility in cancer invasion and metastasis: Insights from simple model organisms. Nat. Rev. Cancer, 2018, 18(5), 296-312.
Li, Y.; Sun, B.; Zhao, X.; Wang, X.; Zhang, D.; Gu, Q.; Liu, T. MMP-2 and MMP-13 affect vasculogenic mimicry formation in large cell lung cancer. J. Cell. Mol. Med., 2017, 21(12), 3741-3751.
Maryam, A.; Mehmood, T.; Yan, Q.; Li, Y.; Khan, M.; Ma, T. Proscillaridin a promotes oxidative stress and ER stress, inhibits STAT3 activation, and induces apoptosis in A549 lung adenocarcinoma cells. Oxid. Med. Cell. Longev., 2018, 2018, 3853409.
Lin, C.L.; Lee, C.H.; Chen, C.M.; Cheng, C.W.; Chen, P.N.; Ying, T.H.; Hsieh, Y.H. Protodioscin induces apoptosis through ROS-mediated endoplasmic reticulum stress via the JNK/p38 activation pathways in human cervical cancer cells. Cell. Physiol. Biochem., 2018, 46(1), 322-334.
Tsai, T.C.; Lai, K.H.; Su, J.H.; Wu, Y.J.; Sheu, J.H. 7-Acetylsinumaximol B induces apoptosis and autophagy in human gastric carcinoma cells through mitochondria dysfunction and activation of the PERK/eIF2alpha/ATF4/CHOP signaling pathway. Mar. Drugs, 2018, 16(4), E104.
Corazzari, M.; Gagliardi, M.; Fimia, G.M.; Piacentini, M. Endoplasmic reticulum stress, unfolded protein response, and cancer cell fate. Front. Oncol., 2017, 7, 78.
Puthalakath, H.; O’Reilly, L.A.; Gunn, P.; Lee, L.; Kelly, P.N.; Huntington, N.D.; Hughes, P.D.; Michalak, E.M.; McKimm-Breschkin, J.; Motoyama, N.; Gotoh, T.; Akira, S.; Bouillet, P.; Strasser, A. ER stress triggers apoptosis by activating BH3-only protein Bim. Cell, 2007, 129(7), 1337-1349.
Rosati, E.; Sabatini, R.; Rampino, G.; De Falco, F.; Di Ianni, M.; Falzetti, F.; Fettucciari, K.; Bartoli, A.; Screpanti, I.; Marconi, P. Novel targets for endoplasmic reticulum stress-induced apoptosis in B-CLL. Blood, 2010, 116(15), 2713-2723.
Shore, G.C.; Papa, F.R.; Oakes, S.A. Signaling cell death from the endoplasmic reticulum stress response. Curr. Opin. Cell Biol., 2011, 23(2), 143-149.
Merksamer, P.I.; Papa, F.R. The UPR and cell fate at a glance. J. Cell Sci., 2010, 123(Pt 7), 1003-1006.
Kim, H.; Shin, E.A.; Kim, C.G.; Lee, D.Y.; Kim, B.; Baek, N.I.; Kim, S.H. Obovatol induces apoptosis in non-small cell lung cancer cells via C/EBP homologous protein activation. Phytother. Res., 2016, 30(11), 1841-1847.
Marciniak, S.J.; Yun, C.Y.; Oyadomari, S.; Novoa, I.; Zhang, Y.; Jungreis, R.; Nagata, K.; Harding, H.P.; Ron, D. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev., 2004, 18(24), 3066-3077.
Han, J.; Back, S.H.; Hur, J.; Lin, Y.H.; Gildersleeve, R.; Shan, J.; Yuan, C.L.; Krokowski, D.; Wang, S.; Hatzoglou, M.; Kilberg, M.S.; Sartor, M.A.; Kaufman, R.J. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat. Cell Biol., 2013, 15(5), 481-490.
Rozpedek, W.; Pytel, D.; Mucha, B.; Leszczynska, H.; Diehl, J.A.; Majsterek, I. The role of the PERK/eIF2alpha/ATF4/CHOP signaling pathway in tumor progression during endoplasmic reticulum stress. Curr. Mol. Med., 2016, 16(6), 533-544.
Urano, F.; Wang, X.; Bertolotti, A.; Zhang, Y.; Chung, P.; Harding, H.P.; Ron, D. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science, 2000, 287(5453), 664-666.
Dhanasekaran, D.N.; Reddy, E.P. JNK signaling in apoptosis. Oncogene, 2008, 27(48), 6245-6251.

open access plus

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 14 December, 2018
Page: [171 - 178]
Pages: 8
DOI: 10.2174/1567201815666181017094003

Article Metrics

PDF: 43
PRC: 1