The ERM Complex: A New Player Involved in Diabetes-induced Vascular Leakage

Author(s): Olga Simó-Servat, Cristina Hernández, Rafael Simó*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 18 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Background: Microvascular complications remain an important cause of morbidity in diabetic patients, and they are associated with a significant economic burden for healthcare systems. Vascular leakage is one of the earlier hallmarks in diabetic microvascular complications. Ezrin, Radixin and Moesin (ERM) proteins have recently been involved in vascular dysfunction under the effect of molecular mediators of diabetes complications. In this review, we will present the available evidence regarding the role of these proteins in vascular leakage and their putative implication in diabetic microvascular complications.

Methods and Results: A comprehensive literature search of the electronic MEDLINE database was performed between November 2017 and January 2018. As a result, 36 articles have been reviewed and discussed.

Discussion: ERM proteins are cytoskeleton-membrane linkers, and when activated in endothelial cells are able to induce cytoskeleton reorganization in stress fibers leading to the disassembly of focal adhesions and the formation of paracellular gaps which result in an increase of vascular permeability. The activation of these proteins is induced by mediators involved in diabetic complications such as PKC activation, TNF-α, AGEs and oxidative stress. In conclusion, ERMs play an essential role in endothelium homeostasis and can be envisaged as a new therapeutic molecular target for preventing or arresting diabetes-induced vascular leakage.

Keywords: ERM complex, ezrin, diabetes-induced vascular leakage, endothelium homeostasis, radixin and moesin (ERM) proteins, TNF-α.

[1]
IDF Diabetes Atlas. Available at: http://www.diabetesatlas. org/(Accessed Date: November, . 2017).
[2]
Kolluru, G.K.; Bir, S.C.; Kevil, C.G. Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. Int. J. Vasc. Med., 2012, 2012918267
[http://dx.doi.org/10.1155/2012/918267] [PMID: 22611498]
[3]
Antonetti, D.A.; Lieth, E.; Barber, A.J.; Gardner, T.W. Molecular mechanisms of vascular permeability in diabetic retinopathy. Semin. Ophthalmol., 1999, 14(4), 240-248.
[http://dx.doi.org/10.3109/08820539909069543] [PMID: 10758225]
[4]
Zhang, X.; Zeng, H.; Bao, S.; Wang, N.; Gillies, M.C. Diabetic macular edema: new concepts in patho-physiology and treatment. Cell Biosci., 2014, 4, 27.
[http://dx.doi.org/10.1186/2045-3701-4-27] [PMID: 24955234]
[5]
Cao, Z.; Cooper, M.E. Pathogenesis of diabetic nephropathy. J. Diabetes Investig., 2011, 2(4), 243-247.
[http://dx.doi.org/10.1111/j.2040-1124.2011.00131.x] [PMID: 24843491]
[6]
Raptis, A.E.; Viberti, G. Pathogenesis of diabetic nephropathy. Exp. Clin. Endocrinol. Diabetes, 2001, 109(Suppl. 2), S424-S437.
[http://dx.doi.org/10.1055/s-2001-18600] [PMID: 11460589]
[7]
Graham, A.R.; Johnson, P.C. Direct immunofluorescence findings in peripheral nerve from patients with diabetic neuropathy. Ann. Neurol., 1985, 17(5), 450-454.
[http://dx.doi.org/10.1002/ana.410170506] [PMID: 3890701]
[8]
Yagihashi, S.; Mizukami, H.; Sugimoto, K. Mechanism of diabetic neuropathy: Where are we now and where to go? J. Diabetes Investig., 2011, 2(1), 18-32.
[http://dx.doi.org/10.1111/j.2040-1124.2010.00070.x] [PMID: 24843457]
[9]
Orasanu, G.; Plutzky, J. The pathologic continuum of diabetic vascular disease. J. Am. Coll. Cardiol., 2009, 53(Suppl. 5), S35-S42.
[http://dx.doi.org/10.1016/j.jacc.2008.09.055] [PMID: 19179216]
[10]
Potenza, M.A.; Gagliardi, S.; Nacci, C.; Carratu’, M.R.; Montagnani, M. Endothelial dysfunction in diabetes: from mechanisms to therapeutic targets. Curr. Med. Chem., 2009, 16(1), 94-112.
[http://dx.doi.org/10.2174/092986709787002853] [PMID: 19149564]
[11]
Yuan, S.Y.; Breslin, J.W.; Perrin, R.; Gaudreault, N.; Guo, M.; Kargozaran, H.; Wu, M.H. Microvascular permeability in diabetes and insulin resistance. Microcirculation, 2007, 14(4-5), 363-373.
[http://dx.doi.org/10.1080/10739680701283091] [PMID: 17613808]
[12]
van Hinsbergh, V.W.M. Endothelial permeability for macromolecules. Mechanistic aspects of pathophysiological modulation. Arterioscler. Thromb. Vasc. Biol., 1997, 17(6), 1018-1023.
[http://dx.doi.org/10.1161/01.ATV.17.6.1018] [PMID: 9194749]
[13]
Baluk, P.; Hirata, A.; Thurston, G.; Fujiwara, T.; Neal, C.R.; Michel, C.C.; McDonald, D.M. Endothelial gaps: time course of formation and closure in inflamed venules of rats. Am. J. Physiol., 1997, 272(1 Pt 1), L155-L170.
[http://dx.doi.org/10.1152/ajplung.1997.272.1.L155] [PMID: 9038915]
[14]
Simó-Servat, O.; Simó, R.; Hernández, C. Circulating biomarkers of diabetic retinopathy: an overview based on physiopathology. J. Diabetes Res., 2016, 20165263798
[http://dx.doi.org/10.1155/2016/5263798] [PMID: 27376090]
[15]
Esposito, C.; Gerlach, H.; Brett, J.; Stern, D.; Vlassara, H. Endothelial receptor-mediated binding of glucose-modified albumin is associated with increased monolayer permeability and modulation of cell surface coagulant properties. J. Exp. Med., 1989, 170(4), 1387-1407.
[http://dx.doi.org/10.1084/jem.170.4.1387] [PMID: 2551990]
[16]
Sheikpranbabu, S.; Kalishwaralal, K.; Lee, K.J.; Vaidyanathan, R.; Eom, S.H.; Gurunathan, S. The inhibition of advanced glycation end-products-induced retinal vascular permeability by silver nanoparticles. Biomaterials, 2010, 31(8), 2260-2271.
[http://dx.doi.org/10.1016/j.biomaterials.2009.11.076] [PMID: 19963272]
[17]
Moore, T.C.; Moore, J.E.; Kaji, Y.; Frizzell, N.; Usui, T.; Poulaki, V.; Campbell, I.L.; Stitt, A.W.; Gardiner, T.A.; Archer, D.B.; Adamis, A.P. The role of advanced glycation end products in retinal microvascular leukostasis. Invest. Ophthalmol. Vis. Sci., 2003, 44(10), 4457-4464.
[http://dx.doi.org/10.1167/iovs.02-1063] [PMID: 14507893]
[18]
Wautier, J.L.; Zoukourian, C.; Chappey, O.; Wautier, M.P.; Guillausseau, P.J.; Cao, R.; Hori, O.; Stern, D.; Schmidt, A.M. Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy. Soluble receptor for advanced glycation end products blocks hyperpermeability in diabetic rats. J. Clin. Invest., 1996, 97(1), 238-243.
[http://dx.doi.org/10.1172/JCI118397] [PMID: 8550841]
[19]
Forbes, J.M.; Cooper, M.E. Mechanisms of diabetic complications. Physiol. Rev., 2013, 93(1), 137-188.
[http://dx.doi.org/10.1152/physrev.00045.2011] [PMID: 23303908]
[20]
Semeraro, F.; Cancarini, A.; dell’Omo, R.; Rezzola, S.; Romano, M.R.; Costagliola, C. Diabetic retinopathy: vascular and inflammatory disease. J. Diabetes Res., 2015, 2015582060
[http://dx.doi.org/10.1155/2015/582060] [PMID: 26137497]
[21]
Navarro-González, J.F.; Mora-Fernández, C. The role of inflammatory cytokines in diabetic nephropathy. J. Am. Soc. Nephrol., 2008, 19(3), 433-442.
[http://dx.doi.org/10.1681/ASN.2007091048] [PMID: 18256353]
[22]
Simó-Servat, O.; Hernández, C.; Simó, R. Usefulness of the vitreous fluid analysis in the translational research of diabetic retinopathy. Mediators Inflamm., 2012, 2012872978
[http://dx.doi.org/10.1155/2012/872978] [PMID: 23028204]
[23]
Kerkar, S.; Williams, M.; Blocksom, J.M.; Wilson, R.F.; Tyburski, J.G.; Steffes, C.P. TNF-alpha and IL-1beta increase pericyte/endothelial cell co-culture permeability. J. Surg. Res., 2006, 132(1), 40-45.
[http://dx.doi.org/10.1016/j.jss.2005.06.033] [PMID: 16140333]
[24]
Senger, D.R.; Van de Water, L.; Brown, L.F.; Nagy, J.A.; Yeo, K-T.; Yeo, T-K.; Berse, B.; Jackman, R.W.; Dvorak, A.M.; Dvorak, H.F. Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer Metastasis Rev., 1993, 12(3-4), 303-324.
[http://dx.doi.org/10.1007/BF00665960] [PMID: 8281615]
[25]
Simó, R.; Carrasco, E.; García-Ramírez, M.; Hernández, C. Angiogenic and antiangiogenic factors in proliferative diabetic retinopathy. Curr. Diabetes Rev., 2006, 2(1), 71-98.
[http://dx.doi.org/10.2174/157339906775473671] [PMID: 18220619]
[26]
Simó, R.; Sundstrom, J.M.; Antonetti, D.A. Ocular Anti-VEGF therapy for diabetic retinopathy: the role of VEGF in the pathogenesis of diabetic retinopathy. Diabetes Care, 2014, 37(4), 893-899.
[http://dx.doi.org/10.2337/dc13-2002] [PMID: 24652720]
[27]
Brosius, F.C.; Coward, R.J. Podocytes, signaling pathways, and vascular factors in diabetic kidney disease. Adv. Chronic Kidney Dis., 2014, 21(3), 304-310.
[http://dx.doi.org/10.1053/j.ackd.2014.03.011] [PMID: 24780459]
[28]
Bates, D.O. Vascular endothelial growth factors and vascular permeability. Cardiovasc. Res., 2010, 87(2), 262-271.
[http://dx.doi.org/10.1093/cvr/cvq105] [PMID: 20400620]
[29]
Geraldes, P.; King, G.L. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ. Res., 2010, 106(8), 1319-1331.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.217117] [PMID: 20431074]
[30]
Das Evcimen, N.; King, G.L. The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol. Res., 2007, 55(6), 498-510.
[http://dx.doi.org/10.1016/j.phrs.2007.04.016] [PMID: 17574431]
[31]
Williams, B.; Gallacher, B.; Patel, H.; Orme, C. Glucose-induced protein kinase C activation regulates vascular permeability factor mRNA expression and peptide production by human vascular smooth muscle cells in vitro. Diabetes, 1997, 46(9), 1497-1503.
[http://dx.doi.org/10.2337/diab.46.9.1497] [PMID: 9287052]
[32]
Pitocco, D.; Tesauro, M.; Alessandro, R.; Ghirlanda, G.; Cardillo, C. Oxidative stress in diabetes: implications for vascular and other complications. Int. J. Mol. Sci., 2013, 14(11), 21525-21550.
[http://dx.doi.org/10.3390/ijms141121525] [PMID: 24177571]
[33]
Lu, S.; Xiang, L.; Clemmer, J.S.; Mittwede, P.N.; Hester, R.L. Oxidative stress increases pulmonary vascular permeability in diabetic rats through activation of transient receptor potential melastatin 2 channels. Microcirculation, 2014, 21(8), 754-760.
[http://dx.doi.org/10.1111/micc.12158] [PMID: 25059284]
[34]
Schaffer, S.W.; Jong, C.J.; Mozaffari, M. Role of oxidative stress in diabetes-mediated vascular dysfunction: unifying hypothesis of diabetes revisited. Vascul. Pharmacol., 2012, 57(5-6), 139-149.
[http://dx.doi.org/10.1016/j.vph.2012.03.005] [PMID: 22480621]
[35]
Bretscher, A.; Edwards, K.; Fehon, R.G. ERM proteins and merlin: integrators at the cell cortex. Nat. Rev. Mol. Cell Biol., 2002, 3(8), 586-599.
[http://dx.doi.org/10.1038/nrm882] [PMID: 12154370]
[36]
Yonemura, S.; Matsui, T.; Tsukita, S.; Tsukita, S. Rho-dependent and -independent activation mechanisms of ezrin/radixin/moesin proteins: an essential role for polyphosphoinositides in vivo. J. Cell Sci., 2002, 115(Pt 12), 2569-2580.
[PMID: 12045227]
[37]
Louvet-Vallée, S. ERM proteins: from cellular architecture to cell signaling. Biol. Cell, 2000, 92(5), 305-316.
[http://dx.doi.org/10.1016/S0248-4900(00)01078-9] [PMID: 11071040]
[38]
Mehta, D.; Rahman, A.; Malik, A.B. Protein kinase C-alpha signals rho-guanine nucleotide dissociation inhibitor phosphorylation and rho activation and regulates the endothelial cell barrier function. J. Biol. Chem., 2001, 276(25), 22614-22620.
[http://dx.doi.org/10.1074/jbc.M101927200] [PMID: 11309397]
[39]
Hirao, M.; Sato, N.; Kondo, T.; Yonemura, S.; Monden, M.; Sasaki, T.; Takai, Y.; Tsukita, S.; Tsukita, S. Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway. J. Cell Biol., 1996, 135(1), 37-51.
[http://dx.doi.org/10.1083/jcb.135.1.37] [PMID: 8858161]
[40]
Claesson-Welsh, L. Vascular permeability--the essentials. Ups. J. Med. Sci., 2015, 120(3), 135-143.
[http://dx.doi.org/10.3109/03009734.2015.1064501] [PMID: 26220421]
[41]
Prasain, N.; Stevens, T. The actin cytoskeleton in endothelial cell phenotypes. Microvasc. Res., 2009, 77(1), 53-63.
[http://dx.doi.org/10.1016/j.mvr.2008.09.012] [PMID: 19028505]
[42]
Bogatcheva, N.V.; Verin, A.D. The role of cytoskeleton in the regulation of vascular endothelial barrier function. Microvasc. Res., 2008, 76(3), 202-207.
[http://dx.doi.org/10.1016/j.mvr.2008.06.003] [PMID: 18657550]
[43]
Mackay, D.J.C.; Esch, F.; Furthmayr, H.; Hall, A. Rho- and rac-dependent assembly of focal adhesion complexes and actin filaments in permeabilized fibroblasts: an essential role for ezrin/radixin/moesin proteins. J. Cell Biol., 1997, 138(4), 927-938.
[http://dx.doi.org/10.1083/jcb.138.4.927] [PMID: 9265657]
[44]
Ivetic, A.; Ridley, A.J. Ezrin/radixin/moesin proteins and Rho GTPase signalling in leucocytes. Immunology, 2004, 112(2), 165-176.
[http://dx.doi.org/10.1111/j.1365-2567.2004.01882.x] [PMID: 15147559]
[45]
Hu, G.; Place, A.T.; Minshall, R.D. Regulation of endothelial permeability by Src kinase signaling: vascular leakage versus transcellular transport of drugs and macromolecules. Chem. Biol. Interact., 2008, 171(2), 177-189.
[http://dx.doi.org/10.1016/j.cbi.2007.08.006] [PMID: 17897637]
[46]
Sadok, A.; Marshall, C.J. Rho GTPases: masters of cell migration. Small GTPases,, 2014. 5e29710
[http://dx.doi.org/10.4161/sgtp.29710] [PMID: 24978113]
[47]
Yao, Y.; Tsirka, S.E. Truncation of monocyte chemoattractant protein 1 by plasmin promotes blood-brain barrier disruption. J. Cell Sci., 2011, 124(Pt 9), 1486-1495.
[http://dx.doi.org/10.1242/jcs.082834] [PMID: 21486949]
[48]
Saharinen, P.; Ivaska, J. Blocking integrin inactivation as an anti-angiogenic therapy. EMBO J., 2015, 34(10), 1293-1295.
[http://dx.doi.org/10.15252/embj.201591504] [PMID: 25828097]
[49]
Vitorino, P.; Yeung, S.; Crow, A.; Bakke, J.; Smyczek, T.; West, K.; McNamara, E.; Eastham-Anderson, J.; Gould, S.; Harris, S.F.; Ndubaku, C.; Ye, W. MAP4K4 regulates integrin-FERM binding to control endothelial cell motility. Nature, 2015, 519(7544), 425-430.
[http://dx.doi.org/10.1038/nature14323] [PMID: 25799996]
[50]
Adyshev, D.M.; Dudek, S.M.; Moldobaeva, N.; Kim, K.M.; Ma, S.F.; Kasa, A.; Garcia, J.G.; Verin, A.D. Ezrin/radixin/moesin proteins differentially regulate endothelial hyperpermeability after thrombin. Am. J. Physiol. Lung Cell. Mol. Physiol., 2013, 305(3), L240-L255.
[http://dx.doi.org/10.1152/ajplung.00355.2012] [PMID: 23729486]
[51]
Adyshev, D.M.; Moldobaeva, N.K.; Elangovan, V.R.; Garcia, J.G.; Dudek, S.M. Differential involvement of ezrin/radixin/moesin proteins in sphingosine 1-phosphate-induced human pulmonary endothelial cell barrier enhancement. Cell. Signal., 2011, 23(12), 2086-2096.
[http://dx.doi.org/10.1016/j.cellsig.2011.08.003] [PMID: 21864676]
[52]
Berryman, M.; Franck, Z.; Bretscher, A. Ezrin is concentrated in the apical microvilli of a wide variety of epithelial cells whereas moesin is found primarily in endothelial cells. J. Cell Sci., 1993, 105(Pt 4), 1025-1043.
[PMID: 8227193]
[53]
Bonilha, V.L.; Finnemann, S.C.; Rodriguez-Boulan, E. Ezrin promotes morphogenesis of apical microvilli and basal infoldings in retinal pigment epithelium. J. Cell Biol., 1999, 147(7), 1533-1548.
[http://dx.doi.org/10.1083/jcb.147.7.1533] [PMID: 10613910]
[54]
Simó, R.; Villarroel, M.; Corraliza, L.; Hernández, C.; Garcia-Ramírez, M. The retinal pigment epithelium: something more than a constituent of the blood-retinal barrier--implications for the pathogenesis of diabetic retinopathy. J. Biomed. Biotechnol., 2010, 2010190724
[http://dx.doi.org/10.1155/2010/190724] [PMID: 20182540]
[55]
López-Colomé, A.M.; López, E.; Mendez-Flores, O.G.; Ortega, A. Glutamate receptor stimulation up-regulates glutamate uptake in human müller glia cells. Neurochem. Res., 2016, 41(7), 1797-1805.
[http://dx.doi.org/10.1007/s11064-016-1895-z] [PMID: 27017513]
[56]
Sullivan, S.M.; Lee, A.; Björkman, S.T.; Miller, S.M.; Sullivan, R.K.P.; Poronnik, P.; Colditz, P.B.; Pow, D.V. Cytoskeletal anchoring of GLAST determines susceptibility to brain damage: an identified role for GFAP. J. Biol. Chem., 2007, 282(40), 29414-29423.
[http://dx.doi.org/10.1074/jbc.M704152200] [PMID: 17684014]
[57]
Simó, R.; Hernández, C. Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol. Metab., 2014, 25(1), 23-33.
[http://dx.doi.org/10.1016/j.tem.2013.09.005] [PMID: 24183659]
[58]
Lee, W.; Kwon, O.K.; Han, M.S.; Lee, Y.M.; Kim, S.W.; Kim, K.M.; Lee, T.; Lee, S.; Bae, J.S. Role of moesin in HMGB1-stimulated severe inflammatory responses. Thromb. Haemost., 2015, 114(2), 350-363.
[PMID: 25947626]
[59]
Hien, T.T.; Turczyńska, K.M.; Dahan, D.; Ekman, M.; Grossi, M.; Sjögren, J.; Nilsson, J.; Braun, T.; Boettger, T.; Garcia-Vaz, E.; Stenkula, K.; Swärd, K.; Gomez, M.F.; Albinsson, S. Elevated glucose levels promote contractile and cytoskeletal gene expression in vascular smooth muscle via rho/protein kinase C and actin polymerization. J. Biol. Chem., 2016, 291(7), 3552-3568.
[http://dx.doi.org/10.1074/jbc.M115.654384] [PMID: 26683376]
[60]
Guo, X.; Wang, L.; Chen, B.; Li, Q.; Wang, J.; Zhao, M.; Wu, W.; Zhu, P.; Huang, X.; Huang, Q. ERM protein moesin is phosphorylated by advanced glycation end products and modulates endothelial permeability. Am. J. Physiol. Heart Circ. Physiol., 2009, 297(1), H238-H246.
[http://dx.doi.org/10.1152/ajpheart.00196.2009] [PMID: 19395553]
[61]
Wang, Q.; Fan, A.; Yuan, Y.; Chen, L.; Guo, X.; Huang, X.; Huang, Q. Role of moesin in advanced glycation end products-induced angiogenesis of human umbilical vein endothelial cells. Sci. Rep., 2016, 6, 22749.
[http://dx.doi.org/10.1038/srep22749] [PMID: 26956714]
[62]
Li, Q.; Liu, H.; Du, J.; Chen, B.; Li, Q.; Guo, X.; Huang, X.; Huang, Q. Advanced glycation end products induce moesin phosphorylation in murine brain endothelium. Brain Res., 2011, 1373, 1-10.
[http://dx.doi.org/10.1016/j.brainres.2010.12.032] [PMID: 21167822]
[63]
Wang, L.; Li, Q.; Du, J.; Chen, B.; Li, Q.; Huang, X.; Guo, X.; Huang, Q. Advanced glycation end products induce moesin phosphorylation in murine retinal endothelium. Acta Diabetol., 2012, 49(1), 47-55.
[http://dx.doi.org/10.1007/s00592-011-0267-z] [PMID: 21327982]
[64]
Marinissen, M.J.; Chiariello, M.; Gutkind, J.S. Regulation of gene expression by the small GTPase Rho through the ERK6 (p38 γ) MAP kinase pathway. Genes Dev., 2001, 15(5), 535-553.
[http://dx.doi.org/10.1101/gad.855801] [PMID: 11238375]
[65]
Biscetti, F.; Rando, M.M.; Nardella, E.; Cecchini, A.L.; Pecorini, G.; Landolfi, R.; Flex, A. High Mobility group box-1 and diabetes mellitus complications: state of the art and future perspectives. Int. J. Mol. Sci., 2019, 20(24), 6258.
[http://dx.doi.org/10.3390/ijms20246258] [PMID: 31835864]
[66]
Skrha, J., Jr; Kalousová, M.; Svarcová, J.; Muravská, A.; Kvasnička, J.; Landová, L.; Zima, T.; Skrha, J. Relationship of soluble RAGE and RAGE ligands HMGB1 and EN-RAGE to endothelial dysfunction in type 1 and type 2 diabetes mellitus. Exp. Clin. Endocrinol. Diabetes, 2012, 120(5), 277-281.
[http://dx.doi.org/10.1055/s-0031-1283161] [PMID: 22549347]
[67]
Penfold, S.A.; Coughlan, M.T.; Patel, S.K.; Srivastava, P.M.; Sourris, K.C.; Steer, D.; Webster, D.E.; Thomas, M.C.; MacIsaac, R.J.; Jerums, G.; Burrell, L.M.; Cooper, M.E.; Forbes, J.M. Circulating high-molecular-weight RAGE ligands activate pathways implicated in the development of diabetic nephropathy. Kidney Int., 2010, 78(3), 287-295.
[http://dx.doi.org/10.1038/ki.2010.134] [PMID: 20463655]
[68]
Kim, J.; Sohn, E.; Kim, C.S.; Jo, K.; Kim, J.S. The role of high-mobility group box-1 protein in the development of diabetic nephropathy. Am. J. Nephrol., 2011, 33(6), 524-529.
[http://dx.doi.org/10.1159/000327992] [PMID: 21606643]
[69]
El-Asrar, A.M.A.; Nawaz, M.I.; Kangave, D.; Geboes, K.; Ola, M.S.; Ahmad, S.; Al-Shabrawey, M. High-mobility group box-1 and biomarkers of inflammation in the vitreous from patients with proliferative diabetic retinopathy. Mol. Vis., 2011, 17, 1829-1838.
[PMID: 21850157]
[70]
Abu El-Asrar, A.M.; Alam, K.; Garcia-Ramirez, M.; Ahmad, A.; Siddiquei, M.M.; Mohammad, G.; Mousa, A.; De Hertogh, G.; Opdenakker, G.; Simó, R. Association of HMGB1 with oxidative stress markers and regulators in PDR. Mol. Vis., 2017, 23, 853-871.
[PMID: 29259392]
[71]
Hotamisligil, G.S.; Spiegelman, B.M. Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes, 1994, 43(11), 1271-1278.
[http://dx.doi.org/10.2337/diab.43.11.1271] [PMID: 7926300]
[72]
Nguyen, D.V.; Shaw, L.C.; Grant, M.B. Inflammation in the pathogenesis of microvascular complications in diabetes. Front. Endocrinol. (Lausanne), 2012, 3, 170.
[http://dx.doi.org/10.3389/fendo.2012.00170] [PMID: 23267348]
[73]
Zoppini, G.; Faccini, G.; Muggeo, M.; Zenari, L.; Falezza, G.; Targher, G. Elevated plasma levels of soluble receptors of TNF-alpha and their association with smoking and microvascular complications in young adults with type 1 diabetes. J. Clin. Endocrinol. Metab., 2001, 86(8), 3805-3808.
[PMID: 11502815]
[74]
Doganay, S.; Evereklioglu, C.; Er, H.; Türköz, Y.; Sevinç, A.; Mehmet, N.; Savli, H. Comparison of serum NO, TNF-α, IL-1β, sIL-2R, IL-6 and IL-8 levels with grades of retinopathy in patients with diabetes mellitus. Eye (Lond.), 2002, 16(2), 163-170.
[http://dx.doi.org/10.1038/sj/eye/6700095] [PMID: 11988817]
[75]
Navarro, J.; Milena, F.; Mora, C.; Leon, C.; Claverie, F.; Flores, C.Tumor necrosis factor-a gene expression in diabetic nephropathy: relationship with urinary albumin excretion and effect of angiotensin-converting enzyme inhibition. Kidney Int., 2005, 68(Suppl. 99), S98-S102.
[http://dx.doi.org/10.1111/j.1523-1755.2005.09918.x]
[76]
Navarro, J.F.; Mora-Fernández, C. The role of TNF-alpha in diabetic nephropathy: pathogenic and therapeutic implications. Cytokine Growth Factor Rev., 2006, 17(6), 441-450.
[http://dx.doi.org/10.1016/j.cytogfr.2006.09.011] [PMID: 17113815]
[77]
Aveleira, C.A.; Lin, C.M.; Abcouwer, S.F.; Ambrósio, A.F.; Antonetti, D.A. TNF-α signals through PKCζ/NF-κB to alter the tight junction complex and increase retinal endothelial cell permeability. Diabetes, 2010, 59(11), 2872-2882.
[http://dx.doi.org/10.2337/db09-1606] [PMID: 20693346]
[78]
Koss, M.; Pfeiffer, G.R., II; Wang, Y.; Thomas, S.T.; Yerukhimovich, M.; Gaarde, W.A.; Doerschuk, C.M.; Wang, Q. Ezrin/radixin/moesin proteins are phosphorylated by TNF-α and modulate permeability increases in human pulmonary microvascular endothelial cells. J. Immunol., 2006, 176(2), 1218-1227.
[http://dx.doi.org/10.4049/jimmunol.176.2.1218] [PMID: 16394012]
[79]
Mangialardi, G.; Katare, R.; Oikawa, A.; Meloni, M.; Reni, C.; Emanueli, C.; Madeddu, P. Diabetes causes bone marrow endothelial barrier dysfunction by activation of the RhoA-Rho-associated kinase signaling pathway. Arterioscler. Thromb. Vasc. Biol., 2013, 33(3), 555-564.
[http://dx.doi.org/10.1161/ATVBAHA.112.300424] [PMID: 23307872]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 18
Year: 2020
Page: [3012 - 3022]
Pages: 11
DOI: 10.2174/0929867325666181016162327
Price: $65

Article Metrics

PDF: 21
HTML: 3