Evaluation of Antiplasmodial Potential of C2 and C8 Modified Quinolines: in vitro and in silico Study

Author(s): Rakesh Kumar, Ritika Sharma, Inder Kumar, Pooja Upadhyay, Ankit Kumar Dhiman, Rohit Kumar, Rakesh Kumar, Rituraj Purohit*, Dinkar Sahal*, Upendra Sharma*.

Journal Name: Medicinal Chemistry

Volume 15 , Issue 7 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Background: Malaria remains a common life-threatening infectious disease across the globe due to the development of resistance by Plasmodium parasite against most antimalarial drugs. The situation demands new and effective drug candidates against Plasmodium.

Objectives: The objective of this study is to design, synthesize and test novel quinoline based molecules against the malaria parasite.

Methods: C2 and C8 modified quinoline analogs obtained via C-H bond functionalization approach were synthesized and evaluated for inhibition of growth of P. falciparum grown in human red blood cells using SYBR Green microtiter plate based screening. Computational molecular docking studies were carried out with top fourteen molecules using Autodoc software.

Results: The biological evaluation results revealed good activity of quinoline-8-acrylate 3f (IC50 14.2 µM), and the 2-quinoline-α-hydroxypropionates 4b (IC50 6.5 µM), 4j (IC50 5.5 µM) and 4g (IC50 9.5 µM), against chloroquine sensitive Pf3D7 strain. Top fourteen molecules were screened also against chloroquine resistant Pf INDO strain and the observed resistant indices were found to lie between 1 and 7.58. Computational molecular docking studies indicated a unique mode of binding of these quinolines to Falcipain-2 and heme moiety, indicating these to be the probable targets of their antiplasmodial action.

Conclusion: An important finding of our work is the fact that unlike Chloroquine which shows a resistance Index of 15, the resistance indices for the most promising molecules studied by us were about one indicating equal potency against drug sensitive and resistant strains of the malaria parasite.

Keywords: Antimalarial drugs, quinolines, antiplasmodial activity, Plasmodium falciparum, resistance index, docking study.

World Malaria Report 2015. Geneva: World Health Organization.
Foley, M.; Tilley, L. Quinoline Antimalarials: Mechanisms of action and resistance and prospects for new agents. Pharmacol. Ther., 1998, 79, 55-87.
Flannery, E.L.; Chatterjee, A.K.; Winzeler, E.A. Antimalarial drug-discovery approaches and progress towards new medicines. Nat. Rev. Microbiol., 2013, 11, 849-862.
Vangapandu, S.; Jain, M.; Kaur, K.; Patil, P.; Patel, S.R.; Jain, R. Recent advances in antimalarial drug development. Med. Res. Rev., 2007, 27, 65-107.
Dondorp, A.M.; Yeung, S.; White, L.; Nguon, C.; Day, N.P.J.; Socheat, D.; von Seidlein, L. Artemisinin resistance: Current status and scenarios for containment. Nat. Rev. Microbiol., 2010, 8, 272-280.
White, N.J. Antimalarial drug resistance. J. Clin. Invest., 2004, 113, 1084-1092.
Sharma, N.; Mohanakrishnan, D.; Shard, A.; Sharma, A. Saima; Sinha, A.K.; Sahal, D. Stilbene-Chalcone hybrids: Design, synthesis, and evaluation as a new class of antimalarial scaffolds that trigger cell death through stage specific apoptosis. J. Med. Chem., 2012, 55, 297-311.
Birkett, A.J.; Moorthy, V.S.; Loucq, C.; Chitnis, C.E.; Kaslow, D.C. Malaria vaccine R&D in the decade of vaccines: Breakthroughs, challenges and opportunities. Vaccine, 2013, 31(Suppl. 2), B233-B243.
Lopez, A.E. Privileged scaffolds in medicinal chemistry: Design, synthesis, evaluation. Royal Soc. Chem. (London), 2015, November, 132-146.
Musiol, R.; Magdziarz, T.; Kurczyk, A. Quinoline scaffold as a privileged substructure in antimicrobial drugs. Science against microbial pathogens: Communicating current research and technological advances,2011, Méndez-Vilas, A. (Ed.), pp. 72-83.
Marella, A.; Tanwar, O.P.; Saha, R.; Ali, M.R.; Srivastava, S.; Akhter, M.; Shaquiquzzaman, M.; Alam, M.M. Quinoline: A versatile heterocyclic. Saudi Pharm. J., 2013, 21, 1-12.
Kaur, K.; Jain, M.; Reddy, R.P.; Jain, R. Quinolines and structurally related heterocycles as antimalarials. Eur. J. Med. Chem., 2010, 45, 3245-3264.
Vandekerckhove, S.; D’hooghe, M. Quinoline-based antimalarial hybrid compounds. Bioorg. Med. Chem., 2015, 23, 5098-5119.
Rosenthal, P.J. Antimalarial chemotherapy: Mechanisms of action, resistance, and new directions in drug discovery; Humana Press: Totowa, 2001.
Singh, S.K.; Singh, S. A brief history of quinoline as antimalarial agents. Int. J. Pharm. Sci. Rev. Res., 2014, 25, 295-302.
Achan, J.; Talisuna, A.O.; Erhart, A.; Yeka, A.; Tibenderana, J.K.; Baliraine, F.N.; Rosenthal, P.J.; D’Alessandro, U. Quinine, an old anti-malarial drug in a modern world: Role in the treatment of malaria. Malar. J., 2011, 10, 144-144.
Bawa, S.; Kumar, S.; Drabu, S.; Kumar, R. Structural modifications of quinoline-based antimalarial agents: Recent developments. J. Pharm. Bioallied Sci., 2010, 2, 64-71.
Baragana, B.; Hallyburton, I.; Lee, M.C.S.; Norcross, N.R.; Grimaldi, R.; Otto, T.D.; Proto, W.R.; Blagborough, A.M.; Meister, S.; Wirjanata, G.; Ruecker, A.; Upton, L.M.; Abraham, T.S.; Almeida, M.J.; Pradhan, A.; Porzelle, A.; Martinez, M.S.; Bolscher, J.M.; Woodland, A.; Norval, S.; Zuccotto, F.; Thomas, J.; Simeons, F.; Stojanovski, L.; Osuna-Cabello, M.; Brock, P.M.; Churcher, T.S.; Sala, K.A.; Zakutansky, S.E.; Jimenez-Diaz, M.B.; Sanz, L.M.; Riley, J.; Basak, R.; Campbell, M.; Avery, V.M.; Sauerwein, R.W.; Dechering, K.J.; Noviyanti, R.; Campo, B.; Frearson, J.A.; Angulo-Barturen, I.; Ferrer-Bazaga, S.; Gamo, F.J.; Wyatt, P.G.; Leroy, D.; Siegl, P.; Delves, M.J.; Kyle, D.E.; Wittlin, S.; Marfurt, J.; Price, R.N.; Sinden, R.E.; Winzeler, E.A.; Charman, S.A.; Bebrevska, L.; Gray, D.W.; Campbell, S.; Fairlamb, A.H.; Willis, P.A.; Rayner, J.C.; Fidock, D.A.; Read, K.D.; Gilbert, I.H. A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature, 2015, 522, 315-320.
Tu, Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat. Med., 2011, 17, 1217-1220.
Banek, K.; Lalani, M.; Staedke, S.G.; Chandramohan, D. Adherence to artemisinin-based combination therapy for the treatment of malaria: A systematic review of the evidence. Malar. J., 2014, 13, 7.
Sinclair, D.; Zani, B.; Donegan, S.; Olliaro, P.; Garner, P. Artemisinin-based combination therapy for treating uncomplicated malaria. Cochrane Database Syst. Rev., 2009.CD007483
Price, R.N. Artemisinin drugs: Novel antimalarial agents. Expert Opin. Investig. Drugs, 2000, 9, 1815-1827.
Noedl, H.; Se, Y.; Schaecher, K.; Smith, B.L.; Socheat, D.; Fukuda, M.M. Evidence of artemisinin-resistant malaria in Western Cambodia. N. Engl. J. Med., 2008, 359, 2619-2620.
Mita, T.; Tanabe, K. Evolution of Plasmodium falciparum drug resistance: Implications for the development and containment of artemisinin resistance. Jpn. J. Infect. Dis., 2012, 65, 465-475.
Dondorp, A.M.; Nosten, F.; Yi, P.; Das, D.; Phyo, A.P.; Tarning, J.; Lwin, K.M.; Ariey, F.; Hanpithakpong, W.; Lee, S.J.; Ringwald, P.; Silamut, K.; Imwong, M.; Chotivanich, K.; Lim, P.; Herdman, T.; An, S.S.; Yeung, S.; Singhasivanon, P.; Day, N.P.J.; Lindegardh, N.; Socheat, D.; White, N.J. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med., 2009, 361, 455-467.
Paloque, L.; Ramadani, A.P.; Mercereau-Puijalon, O.; Augereau, J-M.; Benoit-Vical, F. Plasmodium falciparum: Multifaceted resistance to artemisinins. Malar. J., 2016, 15, 1-12.
Wongsrichanalai, C.; Sibley, C.H. Fighting drug-resistant Plasmodium falciparum: The challenge of artemisinin resistance. Clin. Microbiol. Infect., 2013, 19, 908-916.
Kumar, R.; Kumar, I.; Sharma, R.; Sharma, U. Catalyst and solvent-free alkylation of quinoline N-oxides with olefins: A direct access to quinoline-substituted [small alpha]-hydroxy carboxylic derivatives. Org. Biomol. Chem., 2016, 14, 2613-2617.
Sharma, R.; Kumar, R.; Kumar, I.; Sharma, U. RhIII-catalyzed dehydrogenative coupling of quinoline N-oxides with alkenes: N-oxide as traceless directing group for remote C–H activation. Eur. J. Org. Chem., 2015, 2015, 7519-7528.
Pagola, S.; Stephens, P.W.; Bohle, D.S.; Kosar, A.D.; Madsen, S.K. The structure of malaria pigment [beta]-haematin. Nature, 2000, 404, 307-310.
Pandey, K.C.; Wang, S.X.; Sijwali, P.S.; Lau, A.L.; McKerrow, J.H.; Rosenthal, P.J. The Plasmodium falciparum cysteine protease falcipain-2 captures its substrate, hemoglobin, via a unique motif. Proc. Natl. Acad. Sci. USA, 2005, 102, 9138-9143.
Sijwali, P.S.; Rosenthal, P.J. Gene disruption confirms a critical role for the cysteine protease falcipain-2 in hemoglobin hydrolysis by Plasmodium falciparum. Proc. Natl. Acad. Sci. USA, 2004, 101, 4384-4389.
Francis, S.E.; Sullivan, D.J.; Goldberg, D.E. Hemoglobin metabolism in the malaria parasite Plasmodium Falciparum. Annu. Rev. Microbiol., 1997, 51, 97-123.
Trager, W.; Jensen, J.B. Human malaria parasites in continuous culture. Science, 1976, 193, 673-675.
Lambros, C.; Vanderberg, J.P. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J. Parasitol., 1979, 65, 418-420.
Smilkstein, M.; Sriwilaijaroen, N.; Kelly, J.X.; Wilairat, P.; Riscoe, M. Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob. Agents Chemother., 2004, 48, 1803-1806.
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30, 2785-2791.
Rajendran, V. Structural analysis of oncogenic mutation of isocitrate dehydrogenase 1. Mol. Biosyst., 2016, 12, 2276-2287.
Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput., 2008, 4, 435-447.
Van der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem., 2005, 26, 1701-1718.
Baran, M.; Mazerski, J. Molecular modelling of membrane sterols with the use of the GROMOS 96 force field. Chem. Phys. Lipids, 2002, 120, 21-31.
Kerr, I.D.; Lee, J.H.; Pandey, K.C.; Harrison, A.; Sajid, M.; Rosenthal, P.J.; Brinen, L.S. Structures of falcipain-2 and falcipain-3 bound to small molecule inhibitors: Implications for substrate specificity. J. Med. Chem., 2009, 52, 852-857.
Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng., 1995, 8, 127-134.
Rajendran, V.; Sethumadhavan, R. Drug resistance mechanism of PncA in Mycobacterium tuberculosis. J. Biomol. Struct. Dyn., 2014, 32, 209-221.
Purohit, R.; Rajendran, V.; Sethumadhavan, R. Studies on adaptability of binding residues flap region of TMC-114 resistance HIV-1 protease mutants. J. Biomol. Struct. Dyn., 2011, 29, 137-152.
Kanyiva, K.S.; Nakao, Y.; Hiyama, T. Nickel-catalyzed addition of pyridine-N-oxides across alkynes. Angew. Chem. Int. Ed., 2007, 46, 8872-8874.
Cho, S.H.; Hwang, S.J.; Chang, S. Palladium-catalyzed C−H functionalization of pyridine N-oxides: Highly selective alkenylation and direct arylation with unactivated arenes. J. Am. Chem. Soc., 2008, 130, 9254-9256.
Campeau, L-C.; Stuart, D.R.; Leclerc, J-P.; Bertrand-Laperle, M.; Villemure, E.; Sun, H-Y.; Lasserre, S.; Guimond, N.; Lecavallier, M.; Fagnou, K. Palladium-catalyzed direct arylation of azine and azole N-oxides: Reaction development, scope and applications in synthesis. J. Am. Chem. Soc., 2009, 131, 3291-3306.
Araki, Y.; Kobayashi, K.; Yonemoto, M.; Kondo, Y. Functionalisation of heteroaromatic N-oxides using organic superbase catalyst. Org. Biomol. Chem., 2011, 9, 78-80.
Ryu, J.; Cho, S.H.; Chang, S. A Versatile rhodium(I) catalyst system for the addition of heteroarenes to both alkenes and alkynes by a C-H bond activation. Angew. Chem. Int. Ed., 2012, 51, 3677-3681.
Wu, Z.; Pi, C.; Cui, X.; Bai, J.; Wu, Y. Direct C-2 alkylation of quinoline N-oxides with ethers via palladium-catalyzed dehydrogenative cross-coupling reaction. Adv. Synth. Catal., 2013, 355, 1971-1976.
Wu, Z.; Song, H.; Cui, X.; Pi, C.; Du, W.; Wu, Y. Sulfonylation of quinoline N-oxides with aryl sulfonyl chlorides via copper-catalyzed C-H bonds activation. Org. Lett., 2013, 15, 1270-1273.
Chen, X.; Zhu, C.; Cui, X.; Wu, Y. Direct 2-acetoxylation of quinoline N-oxides via copper catalyzed C-H bond activation. Chem. Commun., 2013, 49, 6900-6902.
Zhu, C.; Yi, M.; Wei, D.; Chen, X.; Wu, Y.; Cui, X. Copper-catalyzed direct amination of quinoline N-oxides via C-H bond activation under mild conditions. Org. Lett., 2014, 16, 1840-1843.
Chen, X.; Li, X.; Qu, Z.; Ke, D.; Qu, L.; Duan, L.; Mai, W.; Yuan, J.; Chen, J.; Zhao, Y. H-phosphonate-mediated amination of quinoline N-oxides with tertiary amines: A mild and metal-free synthesis of 2-dialkylaminoquinolines. Adv. Synth. Catal., 2014, 356, 1979-1985.
Yan, G.; Borah, A.J.; Yang, M. Recent advances in catalytic functionalization of N-oxide compounds via C-H bond activation. Adv. Synth. Catal., 2014, 356, 2375-2394.
Sharma, R.; Thakur, K.; Kumar, R.; Kumar, I.; Sharma, U. Distant C-H activation/functionalization: A new horizon of selectivity beyond proximity. Catal. Rev., 2015, 57, 345-405.
Kaushik, N.K.; Bagavan, A.; Rahuman, A.A.; Zahir, A.A.; Kamaraj, C.; Elango, G.; Jayaseelan, C.; Kirthi, A.V.; Santhoshkumar, T.; Marimuthu, S.; Rajakumar, G.; Tiwari, S.K.; Sahal, D. Evaluation of antiplasmodial activity of medicinal plants from North Indian Buchpora and South Indian Eastern Ghats. Malar. J., 2015, 14, 1-8.
Valdés, A.F-C. Acridine and acridinones: Old and new structures with antimalarial activity. Open Med. Chem. J., 2011, 5, 11-20.
Chugh, M.; Sundararaman, V.; Kumar, S.; Reddy, V.S.; Siddiqui, W.A.; Stuart, K.D.; Malhotra, P. Protein complex directs hemoglobin-to-hemozoin formation in Plasmodium falciparum. Proc. Natl. Acad. Sci. USA, 2013, 110, 5392-5397.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [790 - 800]
Pages: 11
DOI: 10.2174/1573406414666181015144413
Price: $65

Article Metrics

PDF: 26