Low-Cost Synthesis of Gold Nanoparticles from Reused Traditional Gold Leaf and its Application for Sensitive and Selective Colorimetric Sensing of Creatinine in Urine

Author(s): Arjnarong Mathaweesansurn, Nathawut Choengchan*, Putthiporn Khongkaew, Chutima M. Phechkrajang

Journal Name: Current Analytical Chemistry

Volume 16 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Background: Gold nanoparticles (Au NPs) are normally prepared using standard gold (III) trichloride which is much expensive and irritant. This work is aimed at demonstrating simple and low-cost synthesis of Au NPs from the reused traditional gold leaf which is cost-free and less toxic.

Methods: The reused gold leaf was donated by the local temple. It was digested and used as the precursor for the preparation of the Au NPs by Turkevich method. Poly (vinyl alcohol) (PVA) was employed as a stabilizer. The as-prepared Au NPs were applied for the colorimetric determination of creatinine in urine without any sample pretreatment.

Results: Long-term stability of the gold colloids was achieved for at least 3 months. Morphology and purity of the as-prepared Au NPs were the same as the ones prepared from standard gold (III) salt and standard gold foil. Colorimetric response of the Au NPs was linear to the standard creatinine up to 200 mg L-1. The limit of detection (0.16 mg L-1 or 1.41 μM) was enough sensitive for urinary creatinine detection in patients with kidney disease. Good recoveries (97-108%) and fast analysis time (3 min) were achieved. The developed method was successfully validated against the HPLC method.

Conclusion: Facile and cost-effective synthesis of the Au NPs from the reused traditional gold leaf, was accomplished. The as-prepared Au NPs were successfully applied for the determination of urinary creatinine with high sensitivity and selectivity.

Keywords: Colorimetric sensing, creatinine, gold nanoparticles, reused traditional gold leaf, urine, Poly Vinyl Alcohol (PVA).

Ng, S.M.; Koneswaran, M.; Narayanaswamy, R. A review on fluorescent inorganic nanoparticles for optical sensing applications. RSC Advances, 2016, 6, 21624-21661.
Zhang, F.X.; Han, L.; Israel, L.B.; Daras, J.G.; Maye, M.M.; Ly, N.K.; Zhong, C.J. Colorimetric detection of thiol-containing amino acids using gold nanoparticles. Analyst (Lond.), 2002, 127(4), 462-465.
[http://dx.doi.org/10.1039/b200007e] [PMID: 12022641]
Wei, X.; Qi, L.; Tan, J.; Liu, R.; Wang, F. A colorimetric sensor for determination of cysteine by carboxymethyl cellulose-functionalized gold nanoparticles. Anal. Chim. Acta, 2010, 671(1-2), 80-84.
[http://dx.doi.org/10.1016/j.aca.2010.05.006] [PMID: 20541646]
Li, L.; Li, B. Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes. Analyst (Lond.), 2009, 134(7), 1361-1365.
[http://dx.doi.org/10.1039/b819842j] [PMID: 19562202]
Apyari, V.V.; Arkhipova, V.V.; Dmitrienko, S.G.; Zolotov, Y.A. Using gold nanoparticles in spectrophotometry. J. Anal. Chem., 2014, 69, 1-11.
He, Y.; Zhang, X.; Yu, H. Gold nanoparticles-based colorimetric and visual creatinine assay. Mikrochim. Acta, 2015, 182, 2037-2043.
Huang, X.P.; Li, Y.J.; Pan, J.H.; Lu, F.S.; Chen, Y.W.; Gao, W.H. Glutathione-protected hierarchical colorimetric response of gold nanoparticles: a simple assay for creatinine rapid detection by resonance light scattering technique. Plasmonics, 2015, 10, 1107-1114.
Sittiwong, J.; Unob, F. Detection of urinary creatinine using gold nanoparticles after solid phase extraction. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 138, 381-386.
[http://dx.doi.org/10.1016/j.saa.2014.11.080] [PMID: 25546357]
Du, J.; Zhu, B.; Leow, W.R.; Chen, S.; Sum, T.C.; Peng, X.; Chen, X. Colorimetric detection of creatinine based on plasmonic nanoparticles via synergistic coordination chemistry. Small, 2015, 11(33), 4104-4110.
[http://dx.doi.org/10.1002/smll.201403369] [PMID: 26037022]
Sutariya, P.G.; Pandya, A.; Lodha, A.; Menon, S.K. A simple and rapid creatinine sensing via DLS selectivity, using calix[4]arene thiol functionalized gold nanoparticles. Talanta, 2016, 147, 590-597.
[http://dx.doi.org/10.1016/j.talanta.2015.10.029] [PMID: 26592650]
Rasouli, Z.; Ghavami, R. Colorimetric sensing of iodide by the competitive interactions in the surface of gold nanoparticles with the simultaneous aggregation/anti-aggregation mechanisms in edible salts. Curr. Anal. Chem., 2018, 14, 1-9.
Ballerini, D.R.; Ngo, Y.H.; Jarujamrus, P.; Garnier, G.; Ladewig, B.P.; Shen, W. Gold nanoparticle-functionalized thread as a substrate for SERS study of analytes both bound and unbound to gold. AlChE, 2014, 60, 1598-1605.
Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc., 1951, 11, 55-75.
Wender, H.; Andreazza, M.L.; Correia, R.R.B.; Teixeira, S.R.; Dupont, J. Synthesis of gold nanoparticles by laser ablation of an Au foil inside and outside ionic liquids. Nanoscale, 2011, 3(3), 1240-1245.
[http://dx.doi.org/10.1039/c0nr00786b] [PMID: 21267499]
Jaffe, M. Ueber den Niederschlag, welchen Pikrinsäure in normalem Harn erzeugt und über eine neue Reaction des Kreatinins. Z. Phys. Chem., 1886, 10, 391-400.
Vasiliades, J.; Andreazza, M.L.; Correia, R.R.B.; Teixeira, S.R.; Dupont, J. Reaction of alkaline sodium picrate with creatinine: I. Kinetics and mechanism of formation of the mono-creatinine picric acid complex. Clin. Chem., 1976, 22(10), 1664-1671.
[http://dx.doi.org/10.1093/clinchem/22.10.1664] [PMID: 10095]
Campins Falcó, P.; Tortajada Genaro, L.A.; Meseger Lloret, S.; Blasco Gomez, F.; Sevillano Cabeza, A.; Molins Legua, C. Creatinine determination in urine samples by batchwise kinetic procedure and flow injection analysis using the Jaffé reaction: chemometric study. Talanta, 2001, 55(6), 1079-1089.
[http://dx.doi.org/10.1016/S0039-9140(01)00522-7] [PMID: 18968460]
Wei, F.; Cheng, S.; Korin, Y.; Reed, E.F.; Gjertson, D.; Ho, C.M.; Gritsch, H.A.; Veale, J. Serum creatinine detection by a conducting-polymer-based electrochemical sensor to identify allograft dysfunction. Anal. Chem., 2012, 84(18), 7933-7937.
[http://dx.doi.org/10.1021/ac3016888] [PMID: 22881369]
Ambrose, R.T.; Ketchum, D.F.; Smith, J.W. Creatinine determined by “high-performance” liquid chromatography. Clin. Chem., 1983, 29(2), 256-259.
[http://dx.doi.org/10.1093/clinchem/29.2.256] [PMID: 6821927]
Liotta, E.; Gottardo, R.; Bonizzato, L.; Pascali, J.P.; Bertaso, A.; Tagliaro, F. Rapid and direct determination of creatinine in urine using capillary zone electrophoresis. Clin. Chim. Acta, 2009, 409(1-2), 52-55.
[http://dx.doi.org/10.1016/j.cca.2009.08.015] [PMID: 19720057]
Elomaa, H.; Seisko, S.; Junnila, T.; Sirviö, T.; Wilson, P.B.; Aromaa, J.; Lundström, M. The effect of the redox potential of aqua regia and temperature on the Au, Cu, and Fe dissolution from WPCBs. Recycling, 2017, 2, 1-9.
Pupanthong, P. Gold Refining with Aqua regia and Sulfite Compound, 2nd ed.; Department of primary industries and mines: Bangkok, Thailand. , 2011. (written in Thai).
Pimpang, P.; Choopun, S. Monodispersity and stability of gold nanoparticles stabilized by using polyvinyl alcohol. Warasan Khana Witthayasat Maha Witthayalai Chiang Mai, 2011, 38, 31-38.
Ojea-Jiménez, I.; Campanera, J.M. Molecular modeling of the reduction mechanism in the citrate-mediated synthesis of gold nanoparticles. J. Phys. Chem. C, 2012, 116, 23682-23691.
Schulz, F.; Homolka, T.; Bastús, N.G.; Puntes, V.; Weller, H.; Vossmeyer, T. Little adjustments significantly improve the Turkevich synthesis of gold nanoparticles. Langmuir, 2014, 30(35), 10779-10784.
[http://dx.doi.org/10.1021/la503209b] [PMID: 25127436]
Polyakov, A.Y.; Lebedev, V.A.; Shirshin, E.A.; Rumyantsev, A.M.; Volikov, A.B.; Zherebker, A.; Garshev, A.V.; Goodilin, E.A.; Perminova, I.V. Non-classical growth of water-redispersible spheroidal gold nanoparticles assisted by leonardite humate. CrystEngComm, 2017, 19, 876-886.
Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B, 2006, 110(32), 15700-15707.
[http://dx.doi.org/10.1021/jp061667w] [PMID: 16898714]
Kumar, S.; Gandhi, K.S.; Kumar, R. Modeling of formation of gold nanoparticles by citrate method. Ind. Eng. Chem. Res., 2007, 46, 3128-3136.
Shan, J.; Tenhu, H. Recent advances in polymer protected gold nanoparticles: synthesis, properties and applications. Chem. Commun. (Camb.), 2007, (44), 4580-4598.
[http://dx.doi.org/10.1039/b707740h] [PMID: 17989803]
Baygazieva, E.K.; Yesmurzayeva, N.N.; Tatykhanova, G.S.; Mun, G.A.; Khutoryanskiy, V.V.; Kudaibergenov, S.E. Polymer protected gold nanoparticles: Synthesis, characterization and application in catalysis. Int. J Biol. Chem., 2014, 7, 14-23.
Thorat, A.A.; Dalvi, S.V. Liquid antisolvent precipitation and stabilization of nanoparticles of poorly water-soluble drugs in aqueous suspensions: Recent developments and future perspective. Chem. Eng. J., 2012, 182, 1-34.
Rahman, S. Size and Concentration Analysis of Gold Nanoparticles with Ultraviolet-Visible Spectroscopy. UJMM: One + Two, 2016, 7
Glantz, S.A. Primer of biostatistics, 5th ed; McGraw-Hill: USA, 2002.
Miller, J.; Miller, J.C. Statistics and Chemometrics for Analytical Chemistry, 6th ed; Pearson Education Limited: Harlow, England, 2010.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [287 - 297]
Pages: 11
DOI: 10.2174/1573411014666181010130631
Price: $65

Article Metrics

PDF: 15