Role of Fatty Acid Binding Protein 4 (FABP4) in Kidney Disease

Author(s): Min Shi, Liang Ma*, Ping Fu

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 22 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Accumulating evidences indicated that obesity and metabolic syndrome were independent risk factors for the development and progression of kidney diseases. Apart from inflammation, lipotoxicity, and hemodynamic factors, adipokines have been proposed to play crucial roles in the relationship between kidney diseases and metabolic disorders. As one of the key adipokines, fatty acid binding protein 4 (FABP4), which is mainly expressed in adipocytes and macrophages, has recently been shown to be associated with renal dysfunction and kidney damage. Both clinical and experimental studies have proposed circulating FABP4 as a novel predictor for renal injuries, and it might also be a predictor for cardiovascular events in patients with end stage renal disease (ESRD). FABP4 has also been detected in the glomerular cells and epithelial tubular cells in mouse and human kidneys, and the expression of FABP4 in these cells has been involved in the pathogenesis of kidney diseases. In addition, experimental studies suggested that inhibition of FABP4 had protective effects on renal damage. Here, we reviewed current knowledge regarding the role of FABP4 in pathophysiological insights as well as its potential function as a predictor and therapeutic target for kidney diseases.

Keywords: FABP4, kidney disease, adipokine, drug target, predictor, ESRD.

[1]
Eckardt, K.U.; Coresh, J.; Devuyst, O.; Johnson, R.J.; Köttgen, A.; Levey, A.S.; Levin, A. Evolving importance of kidney disease: from subspecialty to global health burden. Lancet, 2013, 382(9887), 158-169.
[http://dx.doi.org/10.1016/S0140-6736(13)60439-0] [PMID: 23727165]
[2]
Jha, V.; Garcia-Garcia, G.; Iseki, K.; Li, Z.; Naicker, S.; Plattner, B.; Saran, R.; Wang, A.Y.; Yang, C.W. Chronic kidney disease: global dimension and perspectives. Lancet, 2013, 382(9888), 260-272.
[http://dx.doi.org/10.1016/S0140-6736(13)60687-X] [PMID: 23727169]
[3]
Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; Alvarado, M.; Anderson, H.R.; Anderson, L.M.; Andrews, K.G.; Atkinson, C.; Baddour, L.M.; Barker-Collo, S.; Bartels, D.H.; Bell, M.L.; Benjamin, E.J.; Bennett, D.; Bhalla, K.; Bikbov, B.; Bin Abdulhak, A.; Birbeck, G.; Blyth, F.; Bolliger, I.; Boufous, S.; Bucello, C.; Burch, M.; Burney, P.; Carapetis, J.; Chen, H.; Chou, D.; Chugh, S.S.; Coffeng, L.E.; Colan, S.D.; Colquhoun, S.; Colson, K.E.; Condon, J.; Connor, M.D.; Cooper, L.T.; Corriere, M.; Cortinovis, M.; de Vaccaro, K.C.; Couser, W.; Cowie, B.C.; Criqui, M.H.; Cross, M.; Dabhadkar, K.C.; Dahodwala, N.; De Leo, D.; Degenhardt, L.; Delossantos, A.; Denenberg, J.; Des Jarlais, D.C.; Dharmaratne, S.D.; Dorsey, E.R.; Driscoll, T.; Duber, H.; Ebel, B.; Erwin, P.J.; Espindola, P.; Ezzati, M.; Feigin, V.; Flaxman, A.D.; Forouzanfar, M.H.; Fowkes, F.G.; Franklin, R.; Fransen, M.; Freeman, M.K.; Gabriel, S.E.; Gakidou, E.; Gaspari, F.; Gillum, R.F.; Gonzalez-Medina, D.; Halasa, Y.A.; Haring, D.; Harrison, J.E.; Havmoeller, R.; Hay, R.J.; Hoen, B.; Hotez, P.J.; Hoy, D.; Jacobsen, K.H.; James, S.L.; Jasrasaria, R.; Jayaraman, S.; Johns, N.; Karthikeyan, G.; Kassebaum, N.; Keren, A.; Khoo, J.P.; Knowlton, L.M.; Kobusingye, O.; Koranteng, A.; Krishnamurthi, R.; Lipnick, M.; Lipshultz, S.E.; Ohno, S.L.; Mabweijano, J.; MacIntyre, M.F.; Mallinger, L.; March, L.; Marks, G.B.; Marks, R.; Matsumori, A.; Matzopoulos, R.; Mayosi, B.M.; McAnulty, J.H.; McDermott, M.M.; McGrath, J.; Mensah, G.A.; Merriman, T.R.; Michaud, C.; Miller, M.; Miller, T.R.; Mock, C.; Mocumbi, A.O.; Mokdad, A.A.; Moran, A.; Mulholland, K.; Nair, M.N.; Naldi, L.; Narayan, K.M.; Nasseri, K.; Norman, P.; O’Donnell, M.; Omer, S.B.; Ortblad, K.; Osborne, R.; Ozgediz, D.; Pahari, B.; Pandian, J.D.; Rivero, A.P.; Padilla, R.P.; Perez-Ruiz, F.; Perico, N.; Phillips, D.; Pierce, K.; Pope, C.A., III; Porrini, E.; Pourmalek, F.; Raju, M.; Ranganathan, D.; Rehm, J.T.; Rein, D.B.; Remuzzi, G.; Rivara, F.P.; Roberts, T.; De León, F.R.; Rosenfeld, L.C.; Rushton, L.; Sacco, R.L.; Salomon, J.A.; Sampson, U.; Sanman, E.; Schwebel, D.C.; Segui-Gomez, M.; Shepard, D.S.; Singh, D.; Singleton, J.; Sliwa, K.; Smith, E.; Steer, A.; Taylor, J.A.; Thomas, B.; Tleyjeh, I.M.; Towbin, J.A.; Truelsen, T.; Undurraga, E.A.; Venketasubramanian, N.; Vijayakumar, L.; Vos, T.; Wagner, G.R.; Wang, M.; Wang, W.; Watt, K.; Weinstock, M.A.; Weintraub, R.; Wilkinson, J.D.; Woolf, A.D.; Wulf, S.; Yeh, P.H.; Yip, P.; Zabetian, A.; Zheng, Z.J.; Lopez, A.D.; Murray, C.J.; AlMazroa, M.A.; Memish, Z.A. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 2012, 380(9859), 2095-2128.
[http://dx.doi.org/10.1016/S0140-6736(12)61728-0] [PMID: 23245604]
[4]
Wahba, I.M.; Mak, R.H. Obesity and obesity-initiated metabolic syndrome: mechanistic links to chronic kidney disease. Clin. J. Am. Soc. Nephrol., 2007, 2(3), 550-562.
[http://dx.doi.org/10.2215/CJN.04071206] [PMID: 17699463]
[5]
Gameiro, J.; Gonçalves, M.; Pereira, M.; Rodrigues, N.; Godinho, I.; Neves, M.; Gouveia, J.; Silva, Z.C.E.; Jorge, S.; Lopes, J.A. Obesity, acute kidney injury and mortality in patients with sepsis: a cohort analysis. Ren. Fail., 2018, 40(1), 120-126.
[http://dx.doi.org/10.1080/0886022X.2018.1430588] [PMID: 29388454]
[6]
Briffa, J.F.; McAinch, A.J.; Poronnik, P.; Hryciw, D.H. Adipokines as a link between obesity and chronic kidney disease. Am. J. Physiol. Renal Physiol., 2013, 305(12), F1629-F1636.
[http://dx.doi.org/10.1152/ajprenal.00263.2013] [PMID: 24107418]
[7]
Yao, F.; Li, Z.; Ehara, T.; Yang, L.; Wang, D.; Feng, L.; Zhang, Y.; Wang, K.; Shi, Y.; Duan, H.; Zhang, L. Fatty Acid-Binding Protein 4 mediates apoptosis via endoplasmic reticulum stress in mesangial cells of diabetic nephropathy. Mol. Cell. Endocrinol., 2015, 411, 232-242.
[http://dx.doi.org/10.1016/j.mce.2015.05.003] [PMID: 25958041]
[8]
Shi, M.; Huang, R.; Guo, F.; Li, L.; Feng, Y.; Wei, Z.; Zhou, L.; Ma, L.; Fu, P. Pharmacological inhibition of fatty acid-binding protein 4 (fabp4) protects against renal ischemia-reperfusion injury. RSC Advances, 2018, 8, 15207-15214.
[http://dx.doi.org/10.1039/C8RA00122G]
[9]
Huang, R.; Shi, M.; Guo, F.; Feng, Y.; Feng, Y.; Liu, J.; Li, L.; Liang, Y.; Xiang, J.; Lei, S.; Ma, L.; Fu, P. Pharmacological inhibition of fatty acid-binding protein 4 (fabp4) protects against rhabdomyolysis-induced acute kidney injury. Front. Pharmacol., 2018, 9, 917.
[http://dx.doi.org/10.3389/fphar.2018.00917] [PMID: 30135658]
[10]
Furuhashi, M.; Tuncman, G.; Görgün, C.Z.; Makowski, L.; Atsumi, G.; Vaillancourt, E.; Kono, K.; Babaev, V.R.; Fazio, S.; Linton, M.F.; Sulsky, R.; Robl, J.A.; Parker, R.A.; Hotamisligil, G.S. Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding protein aP2. Nature, 2007, 447(7147), 959-965.
[http://dx.doi.org/10.1038/nature05844] [PMID: 17554340]
[11]
Furuhashi, M.; Hotamisligil, G.S. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat. Rev. Drug Discov., 2008, 7(6), 489-503.
[http://dx.doi.org/10.1038/nrd2589] [PMID: 18511927]
[12]
Spiegelman, B.M.; Frank, M.; Green, H. Molecular cloning of mRNA from 3T3 adipocytes. Regulation of mRNA content for glycerophosphate dehydrogenase and other differentiation-dependent proteins during adipocyte development. J. Biol. Chem., 1983, 258(16), 10083-10089.
[PMID: 6411703]
[13]
Hunt, C.R.; Ro, J.H.; Dobson, D.E.; Min, H.Y.; Spiegelman, B.M. Adipocyte P2 gene: developmental expression and homology of 5′-flanking sequences among fat cell-specific genes. Proc. Natl. Acad. Sci. USA, 1986, 83(11), 3786-3790.
[http://dx.doi.org/10.1073/pnas.83.11.3786] [PMID: 3520554]
[14]
Hertzel, A.V.; Bernlohr, D.A. The mammalian fatty acid-binding protein multigene family: molecular and genetic insights into function. Trends Endocrinol. Metab., 2000, 11(5), 175-180.
[http://dx.doi.org/10.1016/S1043-2760(00)00257-5] [PMID: 10856918]
[15]
Melki, S.A.; Abumrad, N.A. Expression of the adipocyte fatty acid-binding protein in streptozotocin-diabetes: effects of insulin deficiency and supplementation. J. Lipid Res., 1993, 34(9), 1527-1534.
[PMID: 7693843]
[16]
Distel, R.J.; Robinson, G.S.; Spiegelman, B.M. Fatty acid regulation of gene expression. Transcriptional and post-transcriptional mechanisms. J. Biol. Chem., 1992, 267(9), 5937-5941.
[PMID: 1372897]
[17]
Makowski, L.; Boord, J.B.; Maeda, K.; Babaev, V.R.; Uysal, K.T.; Morgan, M.A.; Parker, R.A.; Suttles, J.; Fazio, S.; Hotamisligil, G.S.; Linton, M.F. Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis. Nat. Med., 2001, 7(6), 699-705.
[http://dx.doi.org/10.1038/89076] [PMID: 11385507]
[18]
Furuhashi, M.; Saitoh, S.; Shimamoto, K.; Miura, T. Fatty acid-binding protein 4 (fabp4): Pathophysiological insights and potent clinical biomarker of metabolic and cardiovascular diseases. Clin. Med. Insights Cardiol., 2015, 8(Suppl. 3), 23-33.
[http://dx.doi.org/10.4137/CMC.S17067] [PMID: 25674026]
[19]
Pelton, P.D.; Zhou, L.; Demarest, K.T.; Burris, T.P. PPARgamma activation induces the expression of the adipocyte fatty acid binding protein gene in human monocytes. Biochem. Biophys. Res. Commun., 1999, 261(2), 456-458.
[http://dx.doi.org/10.1006/bbrc.1999.1071] [PMID: 10425206]
[20]
Fu, Y.; Luo, N.; Lopes-Virella, M.F. Oxidized LDL induces the expression of ALBP/aP2 mRNA and protein in human THP-1 macrophages. J. Lipid Res., 2000, 41(12), 2017-2023.
[PMID: 11108735]
[21]
Fu, Y.; Luo, N.; Lopes-Virella, M.F.; Garvey, W.T. The adipocyte lipid binding protein (ALBP/aP2) gene facilitates foam cell formation in human THP-1 macrophages. Atherosclerosis, 2002, 165(2), 259-269.
[http://dx.doi.org/10.1016/S0021-9150(02)00305-2] [PMID: 12417276]
[22]
Kazemi, M.R.; McDonald, C.M.; Shigenaga, J.K.; Grunfeld, C.; Feingold, K.R. Adipocyte fatty acid-binding protein expression and lipid accumulation are increased during activation of murine macrophages by toll-like receptor agonists. Arterioscler. Thromb. Vasc. Biol., 2005, 25(6), 1220-1224.
[http://dx.doi.org/10.1161/01.ATV.0000159163.52632.1b] [PMID: 15705927]
[23]
Wang, X.Q.; Yang, K.; He, Y.S.; Lu, L.; Shen, W.F. Receptor mediated elevation in FABP4 levels by advanced glycation end products induces cholesterol and triacylglycerol accumulation in THP-1 macrophages. Lipids, 2011, 46(6), 479-486.
[http://dx.doi.org/10.1007/s11745-011-3542-4] [PMID: 21336983]
[24]
Makowski, L.; Brittingham, K.C.; Reynolds, J.M.; Suttles, J.; Hotamisligil, G.S. The fatty acid-binding protein, aP2, coordinates macrophage cholesterol trafficking and inflammatory activity. Macrophage expression of aP2 impacts peroxisome proliferator-activated receptor gamma and IkappaB kinase activities. J. Biol. Chem., 2005, 280(13), 12888-12895.
[http://dx.doi.org/10.1074/jbc.M413788200] [PMID: 15684432]
[25]
Diakov, T.T.; Kane, P.M. Regulation of vacuolar proton-translocating ATPase activity and assembly by extracellular pH. J. Biol. Chem., 2010, 285(31), 23771-23778.
[http://dx.doi.org/10.1074/jbc.M110.110122] [PMID: 20511227]
[26]
Shum, B.O.; Mackay, C.R.; Gorgun, C.Z.; Frost, M.J.; Kumar, R.K.; Hotamisligil, G.S.; Rolph, M.S. The adipocyte fatty acid-binding protein aP2 is required in allergic airway inflammation. J. Clin. Invest., 2006, 116(8), 2183-2192.
[http://dx.doi.org/10.1172/JCI24767] [PMID: 16841093]
[27]
Elmasri, H.; Karaaslan, C.; Teper, Y.; Ghelfi, E.; Weng, M.; Ince, T.A.; Kozakewich, H.; Bischoff, J.; Cataltepe, S. Fatty acid binding protein 4 is a target of VEGF and a regulator of cell proliferation in endothelial cells. FASEB J., 2009, 23(11), 3865-3873.
[http://dx.doi.org/10.1096/fj.09-134882] [PMID: 19625659]
[28]
Rodríguez-Calvo, R.; Girona, J.; Alegret, J.M.; Bosquet, A.; Ibarretxe, D.; Masana, L. Role of the fatty acid-binding protein 4 in heart failure and cardiovascular disease. J. Endocrinol., 2017, 233(3), R173-R184.
[http://dx.doi.org/10.1530/JOE-17-0031] [PMID: 28420707]
[29]
Gray, S.; Kim, J.K. New insights into insulin resistance in the diabetic heart. Trends Endocrinol. Metab., 2011, 22(10), 394-403.
[http://dx.doi.org/10.1016/j.tem.2011.05.001] [PMID: 21680199]
[30]
Xu, A.; Wang, Y.; Xu, J.Y.; Stejskal, D.; Tam, S.; Zhang, J.; Wat, N.M.; Wong, W.K.; Lam, K.S. Adipocyte fatty acid-binding protein is a plasma biomarker closely associated with obesity and metabolic syndrome. Clin. Chem., 2006, 52(3), 405-413.
[http://dx.doi.org/10.1373/clinchem.2005.062463] [PMID: 16423904]
[31]
Kralisch, S.; Fasshauer, M. Adipocyte fatty acid binding protein: a novel adipokine involved in the pathogenesis of metabolic and vascular disease? Diabetologia, 2013, 56(1), 10-21.
[http://dx.doi.org/10.1007/s00125-012-2737-4] [PMID: 23052058]
[32]
Cabré, A.; Lázaro, I.; Girona, J.; Manzanares, J.M.; Marimón, F.; Plana, N.; Heras, M.; Masana, L. Plasma fatty acid-binding protein 4 increases with renal dysfunction in type 2 diabetic patients without microalbuminuria. Clin. Chem., 2008, 54(1), 181-187.
[http://dx.doi.org/10.1373/clinchem.2007.094672] [PMID: 18024526]
[33]
Sommer, G.; Ziegelmeier, M.; Bachmann, A.; Kralisch, S.; Lossner, U.; Kratzsch, J.; Blüher, M.; Stumvoll, M.; Fasshauer, M. Serum levels of adipocyte fatty acid-binding protein (AFABP) are increased in chronic haemodialysis (CD). Clin. Endocrinol. (Oxf.), 2008, 69(6), 901-905.
[http://dx.doi.org/10.1111/j.1365-2265.2008.03277.x] [PMID: 18419784]
[34]
Ebert, T.; Hopf, L.M.; Wurst, U.; Bachmann, A.; Kralisch, S.; Lössner, U.; Platz, M.; Kratzsch, J.; Stolzenburg, J.U.; Dietel, A.; Grisk, O.; Beige, J.; Anders, M.; Bast, I.; Klöting, N.; Blüher, M.; Stumvoll, M.; Fasshauer, M. Circulating adipocyte fatty acid binding protein is increased in chronic and acute renal dysfunction. Nutr. Metab. Cardiovasc. Dis., 2014, 24(9), 1027-1034.
[http://dx.doi.org/10.1016/j.numecd.2014.03.006] [PMID: 24813306]
[35]
Iwamoto, M.; Miyoshi, T.; Doi, M.; Takeda, K.; Kajiya, M.; Nosaka, K.; Nakayama, R.; Hirohata, S.; Usui, S.; Kusachi, S.; Sakane, K.; Nakamura, K.; Ito, H. Elevated serum adipocyte fatty acid-binding protein concentrations are independently associated with renal dysfunction in patients with stable angina pectoris. Cardiovasc. Diabetol., 2012, 11, 26.
[http://dx.doi.org/10.1186/1475-2840-11-26] [PMID: 22433902]
[36]
Toruner, F.; Altinova, A.E.; Akturk, M.; Kaya, M.; Arslan, E.; Bukan, N.; Kan, E.; Yetkin, I.; Arslan, M. The relationship between adipocyte fatty acid binding protein-4, retinol binding protein-4 levels and early diabetic nephropathy in patients with type 2 diabetes. Diabetes Res. Clin. Pract., 2011, 91(2), 203-207.
[http://dx.doi.org/10.1016/j.diabres.2010.11.011] [PMID: 21176857]
[37]
Yeung, D.C.; Xu, A.; Tso, A.W.; Chow, W.S.; Wat, N.M.; Fong, C.H.; Tam, S.; Sham, P.C.; Lam, K.S. Circulating levels of adipocyte and epidermal fatty acid-binding proteins in relation to nephropathy staging and macrovascular complications in type 2 diabetic patients. Diabetes Care, 2009, 32(1), 132-134.
[http://dx.doi.org/10.2337/dc08-1333] [PMID: 18931100]
[38]
Okazaki, Y.; Furuhashi, M.; Tanaka, M.; Mita, T.; Fuseya, T.; Ishimura, S.; Watanabe, Y.; Hoshina, K.; Akasaka, H.; Ohnishi, H.; Yoshida, H.; Saitoh, S.; Shimamoto, K.; Miura, T. Urinary excretion of fatty acid-binding protein 4 is associated with albuminuria and renal dysfunction. PLoS One, 2014, 9(12)e115429
[http://dx.doi.org/10.1371/journal.pone.0115429] [PMID: 25506691]
[39]
Yeung, D.C.; Xu, A.; Cheung, C.W.; Wat, N.M.; Yau, M.H.; Fong, C.H.; Chau, M.T.; Lam, K.S. Serum adipocyte fatty acid-binding protein levels were independently associated with carotid atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2007, 27(8), 1796-1802.
[http://dx.doi.org/10.1161/ATVBAHA.107.146274] [PMID: 17510463]
[40]
Xu, A.; Tso, A.W.; Cheung, B.M.; Wang, Y.; Wat, N.M.; Fong, C.H.; Yeung, D.C.; Janus, E.D.; Sham, P.C.; Lam, K.S. Circulating adipocyte-fatty acid binding protein levels predict the development of the metabolic syndrome: a 5-year prospective study. Circulation, 2007, 115(12), 1537-1543.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.647503] [PMID: 17389279]
[41]
Tso, A.W.; Xu, A.; Sham, P.C.; Wat, N.M.; Wang, Y.; Fong, C.H.; Cheung, B.M.; Janus, E.D.; Lam, K.S. Serum adipocyte fatty acid binding protein as a new biomarker predicting the development of type 2 diabetes: a 10-year prospective study in a Chinese cohort. Diabetes Care, 2007, 30(10), 2667-2672.
[http://dx.doi.org/10.2337/dc07-0413] [PMID: 17620449]
[42]
El Nahas, M. Cardio-Kidney-Damage: a unifying concept. Kidney Int., 2010, 78(1), 14-18.
[http://dx.doi.org/10.1038/ki.2010.123] [PMID: 20445499]
[43]
Furuhashi, M.; Ishimura, S.; Ota, H.; Hayashi, M.; Nishitani, T.; Tanaka, M.; Yoshida, H.; Shimamoto, K.; Hotamisligil, G.S.; Miura, T. Serum fatty acid-binding protein 4 is a predictor of cardiovascular events in end-stage renal disease. PLoS One, 2011, 6(11)e27356
[http://dx.doi.org/10.1371/journal.pone.0027356] [PMID: 22102888]
[44]
Chen, Y.C.; Hsu, B.G.; Lee, C.J.; Ho, C.C.; Ho, G.J.; Lee, M.C. Serum adipocyte fatty acid-binding protein level is associated with arterial stiffness quantified with cardio-ankle vascular index in kidney transplant patients. Clin. Exp. Nephrol., 2018, 22(1), 188-195.
[http://dx.doi.org/10.1007/s10157-017-1438-1] [PMID: 28660445]
[45]
Tanaka, M.; Furuhashi, M.; Okazaki, Y.; Mita, T.; Fuseya, T.; Ohno, K.; Ishimura, S.; Yoshida, H.; Miura, T. Ectopic expression of fatty acid-binding protein 4 in the glomerulus is associated with proteinuria and renal dysfunction. Nephron Clin. Pract., 2014, 128(3-4), 345-351.
[http://dx.doi.org/10.1159/000368412] [PMID: 25592475]
[46]
Matthys, E.; Patel, Y.; Kreisberg, J.; Stewart, J.H.; Venkatachalam, M. Lipid alterations induced by renal ischemia: pathogenic factor in membrane damage. Kidney Int., 1984, 26(2), 153-161.
[http://dx.doi.org/10.1038/ki.1984.149] [PMID: 6503134]
[47]
Zimmerman, A.W.; Veerkamp, J.H. Fatty-acid-binding proteins do not protect against induced cytotoxicity in a kidney cell model. Biochem. J., 2001, 360(Pt 1), 159-165.
[http://dx.doi.org/10.1042/bj3600159] [PMID: 11696003]
[48]
Soccio, R.E.; Chen, E.R.; Rajapurkar, S.R.; Safabakhsh, P.; Marinis, J.M.; Dispirito, J.R.; Emmett, M.J.; Briggs, E.R.; Fang, B.; Everett, L.J.; Lim, H.W.; Won, K.J.; Steger, D.J.; Wu, Y.; Civelek, M.; Voight, B.F.; Lazar, M.A. Genetic variation determines ppargamma function and anti-diabetic drug response in vivo. Cell, 2015, 162(1), 33-44.
[http://dx.doi.org/10.1016/j.cell.2015.06.025] [PMID: 26140591]
[49]
Buckingham, R.E.; Al-Barazanji, K.A.; Toseland, C.D.; Slaughter, M.; Connor, S.C.; West, A.; Bond, B.; Turner, N.C.; Clapham, J.C. Peroxisome proliferator-activated receptor-gamma agonist, rosiglitazone, protects against nephropathy and pancreatic islet abnormalities in Zucker fatty rats. Diabetes, 1998, 47(8), 1326-1334.
[http://dx.doi.org/10.2337/diabetes.47.8.1326] [PMID: 9703335]
[50]
Yoshimoto, T.; Naruse, M.; Nishikawa, M.; Naruse, K.; Tanabe, A.; Seki, T.; Imaki, T.; Demura, R.; Aikawa, E.; Demura, H. Antihypertensive and vasculo- and renoprotective effects of pioglitazone in genetically obese diabetic rats. Am. J. Physiol., 1997, 272(6 Pt 1), E989-E996.
[http://dx.doi.org/10.1152/ajpendo.1997.272.6.E989] [PMID: 9227442]
[51]
Guan, Y.; Zhang, Y.; Schneider, A.; Davis, L.; Breyer, R.M.; Breyer, M.D. Peroxisome proliferator-activated receptor-gamma activity is associated with renal microvasculature. Am. J. Physiol. Renal Physiol., 2001, 281(6), F1036-F1046.
[http://dx.doi.org/10.1152/ajprenal.0025.2001] [PMID: 11704554]
[52]
Adida, A.; Spener, F. Adipocyte-type fatty acid-binding protein as inter-compartmental shuttle for peroxisome proliferator activated receptor gamma agonists in cultured cell. Biochim. Biophys. Acta, 2006, 1761(2), 172-181.
[http://dx.doi.org/10.1016/j.bbalip.2006.02.006] [PMID: 16574478]
[53]
Ayers, S.D.; Nedrow, K.L.; Gillilan, R.E.; Noy, N. Continuous nucleocytoplasmic shuttling underlies transcriptional activation of PPARgamma by FABP4. Biochemistry, 2007, 46(23), 6744-6752.
[http://dx.doi.org/10.1021/bi700047a] [PMID: 17516629]
[54]
Gillilan, R.E.; Ayers, S.D.; Noy, N. Structural basis for activation of fatty acid-binding protein 4. J. Mol. Biol., 2007, 372(5), 1246-1260.
[http://dx.doi.org/10.1016/j.jmb.2007.07.040] [PMID: 17761196]
[55]
Floresta, G.; Pistarà, V.; Amata, E.; Dichiara, M.; Marrazzo, A.; Prezzavento, O.; Rescifina, A. Adipocyte fatty acid binding protein 4 (FABP4) inhibitors. A comprehensive systematic review. Eur. J. Med. Chem., 2017, 138, 854-873.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.022] [PMID: 28738306]
[56]
Hornigold, N.; Johnson, T.S.; Huang, L.; Haylor, J.L.; Griffin, M.; Mooney, A. Inhibition of collagen I accumulation reduces glomerulosclerosis by a Hic-5-dependent mechanism in experimental diabetic nephropathy. Lab. Invest., 2013, 93(5), 553-565.
[http://dx.doi.org/10.1038/labinvest.2013.42] [PMID: 23508044]
[57]
Xu, H.; Hertzel, A.V.; Steen, K.A.; Wang, Q.; Suttles, J.; Bernlohr, D.A. Uncoupling lipid metabolism from inflammation through fatty acid binding protein-dependent expression of UCP2. Mol. Cell. Biol., 2015, 35(6), 1055-1065.
[http://dx.doi.org/10.1128/MCB.01122-14] [PMID: 25582199]
[58]
Zarjou, A.; Agarwal, A. Sepsis and acute kidney injury. J. Am. Soc. Nephrol., 2011, 22(6), 999-1006.
[http://dx.doi.org/10.1681/ASN.2010050484] [PMID: 21566052]
[59]
Akchurin, O.M.; Kaskel, F. Update on inflammation in chronic kidney disease. Blood Purif., 2015, 39(1-3), 84-92.
[http://dx.doi.org/10.1159/000368940] [PMID: 25662331]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 22
Year: 2020
Page: [3657 - 3664]
Pages: 8
DOI: 10.2174/0929867325666181008154622
Price: $65

Article Metrics

PDF: 30
HTML: 1