Bacterial Lipoprotein Biosynthetic Pathway as a Potential Target for Structure-based Design of Antibacterial Agents

Author(s): Jie Xia*, Bo Feng, Gang Wen, Wenjie Xue, Guixing Ma, Hongmin Zhang, Song Wu*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 7 , 2020


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: Antibiotic resistance is currently a serious problem for global public health. To this end, discovery of new antibacterial drugs that interact with novel targets is important. The biosynthesis of lipoproteins is vital to bacterial survival and its inhibitors have shown efficacy against a range of bacteria, thus bacterial lipoprotein biosynthetic pathway is a potential target.

Methods: At first, the literature that covered the basic concept of bacterial lipoprotein biosynthetic pathway as well as biochemical characterization of three key enzymes was reviewed. Then, the recently resolved crystal structures of the three enzymes were retrieved from Protein Data Bank (PDB) and the essential residues in the active sites were analyzed. Lastly, all the available specific inhibitors targeting this pathway and their Structure-activity Relationship (SAR) were discussed.

Results: We briefly introduce the bacterial lipoprotein biosynthetic pathway and describe the structures and functions of three key enzymes in detail. In addition, we present much knowledge on ligand recognition that may facilitate structure-based drug design. Moreover, we focus on the SAR of LspA inhibitors and discuss their potency and drug-likeness.

Conclusion: This review presents a clear background of lipoprotein biosynthetic pathway and provides practical clues for structure-based drug design. In particular, the most up-to-date knowledge on the SAR of lead compounds targeting this pathway would be a good reference for discovery of a novel class of antibacterial agents.

Keywords: Antibiotic resistance, bacterial lipoproteins, Lgt, LspA, Lnt, globomycin, myxovirescin, benzamides.

[1]
Medina, E.; Pieper, D.H. Tackling threats and future problems of multidrug-resistant bacteria. Curr. Top. Microbiol. Immunol., 2016, 398, 3-33.
[http://dx.doi.org/10.1007/82_2016_492] [PMID: 27406189 ]
[2]
WHO global strategy for containment of antimicrobial resistance. Available at https://apps.who.int/iris/bitstream/handle/10665/66860/WHO_CDS_CSR_DRS_2001.2.pdf?sequence=1 (Accessed Date: January 2018)
[3]
Vermote, A.; Van Calenbergh, S. Small-molecule potentiators for conventional antibiotics against Staphylococcus aureus. ACS Infect. Dis., 2017, 3(11), 780-796.
[http://dx.doi.org/10.1021/acsinfecdis.7b00084] [PMID: 28889735 ]
[4]
Cansizoglu, M.F.; Toprak, E. Fighting against evolution of antibiotic resistance by utilizing evolvable antimicrobial drugs. Curr. Genet., 2017, 63(6), 973-976.
[http://dx.doi.org/10.1007/s00294-017-0703-x] [PMID: 28497241 ]
[5]
Brown, D. Antibiotic resistance breakers: can repurposed drugs fill the antibiotic discovery void? Nat. Rev. Drug Discov., 2015, 14(12), 821-832.
[http://dx.doi.org/10.1038/nrd4675] [PMID: 26493767 ]
[6]
Narita, S.; Tokuda, H. Biogenesis and membrane targeting of lipoproteins. Ecosal Plus, 2010, 4(1)
[http://dx.doi.org/10.1128/ecosalplus.4.3.7] [PMID: 26443779 ]
[7]
Vogeley, L.; El Arnaout, T.; Bailey, J.; Stansfeld, P.J.; Boland, C.; Caffrey, M. Structural basis of lipoprotein signal peptidase II action and inhibition by the antibiotic globomycin. Science, 2016, 351(6275), 876-880.
[http://dx.doi.org/10.1126/science.aad3747] [PMID: 26912896 ]
[8]
Mao, G.; Zhao, Y.; Kang, X.; Li, Z.; Zhang, Y.; Wang, X.; Sun, F.; Sankaran, K.; Zhang, X.C. Crystal structure of E. coli lipoprotein diacylglyceryl transferase. Nat. Commun., 2016, 7, 10198.
[http://dx.doi.org/10.1038/ncomms10198] [PMID: 26729647 ]
[9]
Kovacs-Simon, A.; Titball, R.W.; Michell, S.L. Lipoproteins of bacterial pathogens. Infect. Immun., 2011, 79(2), 548-561.
[http://dx.doi.org/10.1128/IAI.00682-10] [PMID: 20974828 ]
[10]
Inouye, S.; Wang, S.; Sekizawa, J.; Halegoua, S.; Inouye, M. Amino acid sequence for the peptide extension on the prolipoprotein of the Escherichia coli outer membrane. Proc. Natl. Acad. Sci. USA, 1977, 74(3), 1004-1008.
[http://dx.doi.org/10.1073/pnas.74.3.1004] [PMID: 322142 ]
[11]
Thompson, B.J.; Widdick, D.A.; Hicks, M.G.; Chandra, G.; Sutcliffe, I.C.; Palmer, T.; Hutchings, M.I. Investigating lipoprotein biogenesis and function in the model Gram-positive bacterium Streptomyces coelicolor. Mol. Microbiol., 2010, 77(4), 943-957.
[http://dx.doi.org/10.1111/j.1365-2958.2010.07261.x] [PMID: 20572939 ]
[12]
Narita, S.I.; Tokuda, H. Bacterial lipoproteins; biogenesis, sorting and quality control. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2017, 1862(11), 1414-1423.
[http://dx.doi.org/10.1016/j.bbalip.2016.11.009] [PMID: 27871940 ]
[13]
Nguyen, M.T.; Götz, F. Lipoproteins of gram-positive bacteria: Key players in the immune response and virulence. Microbiol. Mol. Biol. Rev., 2016, 80(3), 891-903.
[http://dx.doi.org/10.1128/MMBR.00028-16] [PMID: 27512100 ]
[14]
Kurokawa, K.; Kim, M.S.; Ichikawa, R.; Ryu, K.H.; Dohmae, N.; Nakayama, H.; Lee, B.L. Environment-mediated accumulation of diacyl lipoproteins over their triacyl counterparts in Staphylococcus aureus. J. Bacteriol., 2012, 194(13), 3299-3306.
[http://dx.doi.org/10.1128/JB.00314-12] [PMID: 22467779 ]
[15]
Shruthi, H.; Babu, M.M.; Sankaran, K. TAT-pathway-dependent lipoproteins as a niche-based adaptation in prokaryotes. J. Mol. Evol., 2010, 70(4), 359-370.
[http://dx.doi.org/10.1007/s00239-010-9334-2] [PMID: 20333370 ]
[16]
Paetzel, M.; Karla, A.; Strynadka, N.C.; Dalbey, R.E. Signal peptidases. Chem. Rev., 2002, 102(12), 4549-4580.
[http://dx.doi.org/10.1021/cr010166y] [PMID: 12475201 ]
[17]
Banerjee, S.; Sankaran, K. First ever isolation of bacterial prolipoprotein diacylglyceryl transferase in single step from Lactococcus lactis. Protein Expr. Purif., 2013, 87(2), 120-128.
[http://dx.doi.org/10.1016/j.pep.2012.11.001] [PMID: 23165241 ]
[18]
Petit, C.M.; Brown, J.R.; Ingraham, K.; Bryant, A.P.; Holmes, D.J. Lipid modification of prelipoproteins is dispensable for growth in vitro but essential for virulence in Streptococcus pneumoniae. FEMS Microbiol. Lett., 2001, 200(2), 229-233.
[http://dx.doi.org/10.1111/j.1574-6968.2001.tb10720.x] [PMID: 11425480 ]
[19]
Hussain, M.; Ichihara, S.; Mizushima, S. Accumulation of glyceride-containing precursor of the outer membrane lipoprotein in the cytoplasmic membrane of Escherichia coli treated with globomycin. J. Biol. Chem., 1980, 255(8), 3707-3712.
[PMID: 6988430 ]
[20]
Tokunaga, M.; Loranger, J.M.; Wu, H.C. Prolipoprotein modification and processing enzymes in Escherichia coli. J. Biol. Chem., 1984, 259(6), 3825-3830.
[PMID: 6368552 ]
[21]
Gupta, S.D.; Dowhan, W.; Wu, H.C. Phosphatidylethanolamine is not essential for the N-acylation of apolipoprotein in Escherichia coli. J. Biol. Chem., 1991, 266(15), 9983-9986.
[PMID: 2033085 ]
[22]
Hussain, M.; Ichihara, S.; Mizushima, S. Mechanism of signal peptide cleavage in the biosynthesis of the major lipoprotein of the Escherichia coli outer membrane. J. Biol. Chem., 1982, 257(9), 5177-5182.
[PMID: 7040395 ]
[23]
Sankaran, K.; Wu, H.C. Lipid modification of bacterial prolipoprotein. Transfer of diacylglyceryl moiety from phosphatidylglycerol. J. Biol. Chem., 1994, 269(31), 19701-19706.
[PMID: 8051048 ]
[24]
Chimalapati, S.; Cohen, J.M.; Camberlein, E.; MacDonald, N.; Durmort, C.; Vernet, T.; Hermans, P.W.; Mitchell, T.; Brown, J.S. Effects of deletion of the Streptococcus pneumoniae lipoprotein diacylglyceryl transferase gene lgt on ABC transporter function and on growth in vivo. PLoS One, 2012, 7(7)e41393
[http://dx.doi.org/10.1371/journal.pone.0041393] [PMID: 22911788 ]
[25]
Tschumi, A.; Grau, T.; Albrecht, D.; Rezwan, M.; Antelmann, H.; Sander, P. Functional analyses of mycobacterial lipoprotein diacylglyceryl transferase and comparative secretome analysis of a mycobacterial lgt mutant. J. Bacteriol., 2012, 194(15), 3938-3949.
[http://dx.doi.org/10.1128/JB.00127-12] [PMID: 22609911 ]
[26]
Leskelä, S.; Wahlström, E.; Kontinen, V.P.; Sarvas, M. Lipid modification of prelipoproteins is dispensable for growth but essential for efficient protein secretion in Bacillus subtilis: characterization of the Lgt gene. Mol. Microbiol., 1999, 31(4), 1075-1085.
[http://dx.doi.org/10.1046/j.1365-2958.1999.01247.x] [PMID: 10096076 ]
[27]
Pribyl, T.; Moche, M.; Dreisbach, A.; Bijlsma, J.J.; Saleh, M.; Abdullah, M.R.; Hecker, M.; van Dijl, J.M.; Becher, D.; Hammerschmidt, S. Influence of impaired lipoprotein biogenesis on surface and exoproteome of Streptococcus pneumoniae. J. Proteome Res., 2014, 13(2), 650-667.
[http://dx.doi.org/10.1021/pr400768v] [PMID: 24387739 ]
[28]
Qi, H.Y.; Sankaran, K.; Gan, K.; Wu, H.C. Structure-function relationship of bacterial prolipoprotein diacylglyceryl transferase: functionally significant conserved regions. J. Bacteriol., 1995, 177(23), 6820-6824.
[http://dx.doi.org/10.1128/JB.177.23.6820-6824.1995] [PMID: 7592473 ]
[29]
Pailler, J.; Aucher, W.; Pires, M.; Buddelmeijer, N. Phosphatidylglycerol:prolipoprotein diacylglyceryl transferase (Lgt) of Escherichia coli has seven transmembrane segments, and its essential residues are embedded in the membrane. J. Bacteriol., 2012, 194(9), 2142-2151.
[http://dx.doi.org/10.1128/JB.06641-11] [PMID: 22287519 ]
[30]
Sankaran, K.; Gan, K.; Rash, B.; Qi, H.Y.; Wu, H.C.; Rick, P.D. Roles of histidine-103 and tyrosine-235 in the function of the prolipoprotein diacylglyceryl transferase of Escherichia coli. J. Bacteriol., 1997, 179(9), 2944-2948.
[http://dx.doi.org/10.1128/JB.179.9.2944-2948.1997] [PMID: 9139912 ]
[31]
Nakayama, H.; Kurokawa, K.; Lee, B.L. Lipoproteins in bacteria: structures and biosynthetic pathways. FEBS J., 2012, 279(23), 4247-4268.
[http://dx.doi.org/10.1111/febs.12041] [PMID: 23094979 ]
[32]
Réglier-Poupet, H.; Frehel, C.; Dubail, I.; Beretti, J.L.; Berche, P.; Charbit, A.; Raynaud, C. Maturation of lipoproteins by type II signal peptidase is required for phagosomal escape of Listeria monocytogenes. J. Biol. Chem., 2003, 278(49), 49469-49477.
[http://dx.doi.org/10.1074/jbc.M307953200] [PMID: 12975369 ]
[33]
Baumgärtner, M.; Kärst, U.; Gerstel, B.; Loessner, M.; Wehland, J.; Jänsch, L. Inactivation of Lgt allows systematic characterization of lipoproteins from Listeria monocytogenes. J. Bacteriol., 2007, 189(2), 313-324.
[http://dx.doi.org/10.1128/JB.00976-06] [PMID: 17041050 ]
[34]
Khandavilli, S.; Homer, K.A.; Yuste, J.; Basavanna, S.; Mitchell, T.; Brown, J.S. Maturation of Streptococcus pneumoniae lipoproteins by a type II signal peptidase is required for ABC transporter function and full virulence. Mol. Microbiol., 2008, 67(3), 541-557.
[http://dx.doi.org/10.1111/j.1365-2958.2007.06065.x] [PMID: 18086214 ]
[35]
Munnoch, J.T.; Widdick, D.A.; Chandra, G.; Sutcliffe, I.C.; Palmer, T.; Hutchings, M.I. Cosmid based mutagenesis causes genetic instability in Streptomyces coelicolor, as shown by targeting of the lipoprotein signal peptidase gene. Sci. Rep., 2016, 6, 29495.
[http://dx.doi.org/10.1038/srep29495] [PMID: 27404047 ]
[36]
Hayashi, S.; Chang, S.Y.; Chang, S.; Giam, C.Z.; Wu, H.C. Modification and processing of internalized signal sequences of prolipoprotein in Escherichia coli and in Bacillus subtilis. J. Biol. Chem., 1985, 260(9), 5753-5759.
[PMID: 2985611 ]
[37]
Muñoa, F.J.; Miller, K.W.; Beers, R.; Graham, M.; Wu, H.C. Membrane topology of Escherichia coli prolipoprotein signal peptidase (signal peptidase II). J. Biol. Chem., 1991, 266(26), 17667-17672.
[PMID: 1894646 ]
[38]
Paitan, Y.; Orr, E.; Ron, E.Z.; Rosenberg, E. A nonessential signal peptidase II (Lsp) of Myxococcus xanthus might be involved in biosynthesis of the polyketide antibiotic TA. J. Bacteriol., 1999, 181(18), 5644-5651.
[http://dx.doi.org/10.1128/JB.181.18.5644-5651.1999] [PMID: 10482504 ]
[39]
Tjalsma, H.; Zanen, G.; Venema, G.; Bron, S.; van Dijl, J.M. The potential active site of the lipoprotein-specific (type II) signal peptidase of Bacillus subtilis. J. Biol. Chem., 1999, 274(40), 28191-28197.
[http://dx.doi.org/10.1074/jbc.274.40.28191] [PMID: 10497172 ]
[40]
Jackowski, S.; Rock, C.O. Transfer of fatty acids from the 1-position of phosphatidylethanolamine to the major outer membrane lipoprotein of Escherichia coli. J. Biol. Chem., 1986, 261(24), 11328-11333.
[PMID: 3525566 ]
[41]
Gupta, S.D.; Wu, H.C. Identification and subcellular localization of apolipoprotein N-acyltransferase in Escherichia coli. FEMS Microbiol. Lett., 1991, 62(1), 37-41.
[http://dx.doi.org/10.1111/j.1574-6968.1991.tb04413.x] [PMID: 2032623 ]
[42]
Vidal-Ingigliardi, D.; Lewenza, S.; Buddelmeijer, N. Identification of essential residues in apolipoprotein N-acyl transferase, a member of the CN hydrolase family. J. Bacteriol., 2007, 189(12), 4456-4464.
[http://dx.doi.org/10.1128/JB.00099-07] [PMID: 17416655 ]
[43]
Buddelmeijer, N.; Young, R. The essential Escherichia coli apolipoprotein N-acyltransferase (Lnt) exists as an extracytoplasmic thioester acyl-enzyme intermediate. Biochemistry, 2010, 49(2), 341-346.
[http://dx.doi.org/10.1021/bi9020346] [PMID: 20000742 ]
[44]
Hillmann, F.; Argentini, M.; Buddelmeijer, N. Kinetics and phospholipid specificity of apolipoprotein N-acyltransferase. J. Biol. Chem., 2011, 286(32), 27936-27946.
[http://dx.doi.org/10.1074/jbc.M111.243519] [PMID: 21676878 ]
[45]
Noland, C.L.; Kattke, M.D.; Diao, J.; Gloor, S.L.; Pantua, H.; Reichelt, M.; Katakam, A.K.; Yan, D.; Kang, J.; Zilberleyb, I.; Xu, M.; Kapadia, S.B.; Murray, J.M. Structural insights into lipoprotein N-acylation by Escherichia coli apolipoprotein N-acyltransferase. Proc. Natl. Acad. Sci. USA, 2017, 114(30), E6044-E6053.
[http://dx.doi.org/10.1073/pnas.1707813114] [PMID: 28698362 ]
[46]
Gélis-Jeanvoine, S.; Lory, S.; Oberto, J.; Buddelmeijer, N. Residues located on membrane-embedded flexible loops are essential for the second step of the apolipoprotein N-acyltransferase reaction. Mol. Microbiol., 2015, 95(4), 692-705.
[http://dx.doi.org/10.1111/mmi.12897] [PMID: 25471278 ]
[47]
Lu, G.; Xu, Y.; Zhang, K.; Xiong, Y.; Li, H.; Cui, L.; Wang, X.; Lou, J.; Zhai, Y.; Sun, F.; Zhang, X.C. Crystal structure of E. coli apolipoprotein N-acyl transferase. Nat. Commun., 2017, 8, 15948.
[http://dx.doi.org/10.1038/ncomms15948] [PMID: 28885614 ]
[48]
Wiktor, M.; Weichert, D.; Howe, N.; Huang, C-Y.; Olieric, V.; Boland, C.; Bailey, J.; Vogeley, L.; Stansfeld, P.J.; Buddelmeijer, N.; Wang, M.; Caffrey, M. Structural insights into the mechanism of the membrane integral N-acyltransferase step in bacterial lipoprotein synthesis. Nat. Commun., 2017, 8, 15952.
[http://dx.doi.org/10.1038/ncomms15952] [PMID: 28675161 ]
[49]
Baulard, A.R.; Gurcha, S.S.; Engohang-Ndong, J.; Gouffi, K.; Locht, C.; Besra, G.S. In vivo interaction between the polyprenol phosphate mannose synthase Ppm1 and the integral membrane protein Ppm2 from Mycobacterium smegmatis revealed by a bacterial two-hybrid system. J. Biol. Chem., 2003, 278(4), 2242-2248.
[http://dx.doi.org/10.1074/jbc.M207922200] [PMID: 12427759 ]
[50]
Kitamura, S.; Owensby, A.; Wall, D.; Wolan, D.W. Lipoprotein signal peptidase inhibitors with antibiotic properties identified through design of a robust in vitro HT platform. Cell Chem. Biol., 2018, 25(3), 301-308.e12.
[http://dx.doi.org/10.1016/j.chembiol.2017.12.011] [PMID: 29337186 ]
[51]
Inukai, M.; Enokita, R.; Torikata, A.; Nakahara, M.; Iwado, S.; Arai, M. Globomycin, a new peptide antibiotic with spheroplast-forming activity. I. Taxonomy of producing organisms and fermentation. J. Antibiot. (Tokyo), 1978, 31(5), 410-420.
[http://dx.doi.org/10.7164/antibiotics.31.410] [PMID: 670084 ]
[52]
Inukai, M.; Nakajima, M.; Osawa, M.; Haneishi, T.; Arai, M. Globomycin, a new peptide antibiotic with spheroplast-forming activity. II. Isolation and physico-chemical and biological characterization. J. Antibiot. (Tokyo), 1978, 31(5), 421-425.
[http://dx.doi.org/10.7164/antibiotics.31.421] [PMID: 353012 ]
[53]
Nakajima, M.; Inukai, M.; Haneishi, T.; Terahara, A.; Arai, M.; Kinoshita, T.; Tamura, C. Globomycin, a new peptide antibiotic with spheroplast-forming activity. III. Structural determination of globomycin. J. Antibiot. (Tokyo), 1978, 31(5), 426-432.
[http://dx.doi.org/10.7164/antibiotics.31.426] [PMID: 670085 ]
[54]
Dev, I.K.; Harvey, R.J.; Ray, P.H. Inhibition of prolipoprotein signal peptidase by globomycin. J. Biol. Chem., 1985, 260(10), 5891-5894.
[PMID: 3888977 ]
[55]
Kiho, T.; Nakayama, M.; Yasuda, K.; Miyakoshi, S.; Inukai, M.; Kogen, H. Synthesis and antimicrobial activity of novel globomycin analogues. Bioorg. Med. Chem. Lett., 2003, 13(14), 2315-2318.
[http://dx.doi.org/10.1016/S0960-894X(03)00432-3] [PMID: 12824025 ]
[56]
Kogen, H.; Kiho, T.; Nakayama, M.; Furukawa, Y.; Kinoshita, T.; Inkai, M. Crystal structure and total synthesis of globomycin: Establishment of relative and absolute configurations. J. Am. Chem. Soc., 2000, (122)2.
[http://dx.doi.org/10.1021/ja002547j]
[57]
Kiho, T.; Nakayama, M.; Kogen, H. Total synthesis and NMR conformational study of signal peptidase II inhibitors, globomycin and SF-1902 A5. Tetrahedron, 2003, 59(10), 1685-1697.
[http://dx.doi.org/10.1016/S0040-4020(03)00110-8]
[58]
Sarabia, F.; Chammaa, S.; García-Ruiz, C. Solid phase synthesis of globomycin and SF-1902 A5. J. Org. Chem., 2011, 76(7), 2132-2144.
[http://dx.doi.org/10.1021/jo1025145] [PMID: 21366318 ]
[59]
Kiho, T.; Nakayama, M.; Yasuda, K.; Miyakoshi, S.; Inukai, M.; Kogen, H. Structure-activity relationships of globomycin analogues as antibiotics. Bioorg. Med. Chem., 2004, 12(2), 337-361.
[http://dx.doi.org/10.1016/j.bmc.2003.10.055] [PMID: 14723954 ]
[60]
Sutcliffe, I.C.; Harrington, D.J.; Hutchings, M.I. A phylum level analysis reveals lipoprotein biosynthesis to be a fundamental property of bacteria. Protein Cell, 2012, 3(3), 163-170.
[http://dx.doi.org/10.1007/s13238-012-2023-8] [PMID: 22410786 ]
[61]
Rosenberg, E.; Vaks, B.; Zuckerberg, A. Bactericidal action of an antibiotic produced by Myxococcus xanthus. Antimicrob. Agents Chemother., 1973, 4(5), 507-513.
[http://dx.doi.org/10.1128/AAC.4.5.507] [PMID: 4208901 ]
[62]
Vaks, B.; Zuckerberg, A.; Rosenberg, E. Purification and partial characterization of an antibiotic produced by Myxococcus xanthus. Can. J. Microbiol., 1974, 20(2), 155-161.
[http://dx.doi.org/10.1139/m74-025] [PMID: 4362757 ]
[63]
Rosenberg, E.; Fytlovitch, S.; Carmeli, S.; Kashman, Y. Chemical properties of Myxococcus xanthus antibiotic TA. J. Antibiot. (Tokyo), 1982, 35(7), 788-793.
[http://dx.doi.org/10.7164/antibiotics.35.788] [PMID: 6816780 ]
[64]
Gerth, K.; Irschik, H.; Reichenbach, H.; Trowitzsch, W. The myxovirescins, a family of antibiotics from Myxococcus virescens (Myxobacterales). J. Antibiot. (Tokyo), 1982, 35(11), 1454-1459.
[http://dx.doi.org/10.7164/antibiotics.35.1454] [PMID: 6819280 ]
[65]
Trowitzsch, W.; Wray, V.; Gerth, K.; Höfle, G. Structure of myxovirescin A, a new macrocylic antibiotic from gliding bacteria. J. Chem. Soc. Chem. Commun., 1982, (23), 1340-1342.
[http://dx.doi.org/10.1039/C39820001340]
[66]
Rosenberg, E.; Dworkin, M. Autocides and a paracide, antibiotic TA, produced by Myxococcus xanthus. J. Ind. Microbiol., 1996, 17(5), 424-431.
[67]
Onishi, N.; Izaki, K.; Takahashi, H. A macrocyclic antibiotic M-230B produced by Myxococcus xanthus. Isolation and characterization. J. Antibiot. (Tokyo), 1984, 37(1), 13-19.
[http://dx.doi.org/10.7164/antibiotics.37.13] [PMID: 6421789 ]
[68]
Miyashiro, S.; Yamanaka, S.; Takayama, S.; Shibai, H. Novel macrocyclic antibiotics: megovalicins A, B, C, D, G and H. I. Screening of antibiotics-producing myxobacteria and production of megovalicins. J. Antibiot. (Tokyo), 1988, 41(4), 433-438.
[http://dx.doi.org/10.7164/antibiotics.41.433] [PMID: 3131289 ]
[69]
Takayama, S.; Yamanaka, S.; Miyashiro, S.; Yokokawa, Y.; Shibai, H. Novel macrocyclic antibiotics: megovalicins A, B, C, D, G and H. II. Isolation and chemical structures of megovalicins. J. Antibiot. (Tokyo), 1988, 41(4), 439-445.
[http://dx.doi.org/10.7164/antibiotics.41.439] [PMID: 3131290 ]
[70]
Xiao, Y.; Gerth, K.; Müller, R.; Wall, D. Myxobacterium-produced antibiotic TA (myxovirescin) inhibits type II signal peptidase. Antimicrob. Agents Chemother., 2012, 56(4), 2014-2021.
[http://dx.doi.org/10.1128/AAC.06148-11] [PMID: 22232277 ]
[71]
Manor, A.; Eli, I.; Varon, M.; Judes, H.; Rosenberg, E. Effect of adhesive antibiotic TA on plaque and gingivitis in man. J. Clin. Periodontol., 1989, 16(10), 621-624.
[http://dx.doi.org/10.1111/j.1600-051X.1989.tb01029.x] [PMID: 2613931 ]
[72]
Simhi, E.; van der Mei, H.C.; Ron, E.Z.; Rosenberg, E.; Busscher, H.J. Effect of the adhesive antibiotic TA on adhesion and initial growth of E. coli on silicone rubber. FEMS Microbiol. Lett., 2000, 192(1), 97-100.
[http://dx.doi.org/10.1111/j.1574-6968.2000.tb09365.x] [PMID: 11040435 ]
[73]
Dieter, S.A.M.M.; Michael, S.; Geo, A.; Samuel, H.; Axel, N. Total synthesis of myxovirescins, 1 strategy and construction of the “Southeastern”. Part. Liebigs Ann. Chem., 1994, 1994(7), 701-717.
[http://dx.doi.org/10.1002/jlac.199419940712]
[74]
Michael, S.; Axel, N.; Thimo, S.; Francine, S.A.M.M.; Dieter, S. Total synthesis of myxovirescins, 2 assembly of the “Northwestern”. Part. Liebigs Ann. Chem., 1994, 1994(7), 719-729.
[http://dx.doi.org/10.1002/jlac.199419940713]
[75]
A., M.M.; Michael, S.; Dieter, S. Total synthesis of myxovirescins, 3 coupling of the two key fragments and last steps to myxovirescins A1 and M2. Liebigs Ann. Chem., 1994, 1994(7), 731-738.
[http://dx.doi.org/10.1002/jlac.199419940714]
[76]
Williams, D.R.; Li, J. Total synthesis of myxovirescin A1. Tetrahedron Lett., 1994, 35(29), 5113-5116.
[http://dx.doi.org/10.1016/S0040-4039(00)77041-9]
[77]
Fürstner, A.; Bonnekessel, M.; Blank, J.T.; Radkowski, K.; Seidel, G.; Lacombe, F.; Gabor, B.; Mynott, R. Total synthesis of myxovirescin A1. Chemistry, 2007, 13(31), 8762-8783.
[http://dx.doi.org/10.1002/chem.200700926] [PMID: 17768720 ]
[78]
Williams, D.R.; McGill, J.M. Total synthesis of myxovirescin B. J. Org. Chem., 1990, 55(11), 3457-3459.
[http://dx.doi.org/10.1021/jo00298a016]
[79]
Content, S.; Dutton, C.J.; Roberts, L. Myxovirescin analogues via macrocyclic ring-closing metathesis. Bioorg. Med. Chem. Lett., 2003, 13(3), 321-325.
[http://dx.doi.org/10.1016/S0960-894X(02)01024-7] [PMID: 12565921 ]
[80]
Xiao, Y.; Wall, D. Genetic redundancy, proximity, and functionality of lspA, the target of antibiotic TA, in the Myxococcus xanthus producer strain. J. Bacteriol., 2014, 196(6), 1174-1183.
[http://dx.doi.org/10.1128/JB.01361-13] [PMID: 24391051 ]
[81]
Martens, E.; Demain, A.L. The antibiotic resistance crisis, with a focus on the United States. J. Antibiot. (Tokyo), 2017, 70(5), 520-526.
[http://dx.doi.org/10.1038/ja.2017.30] [PMID: 28246379 ]
[82]
Melander, R.J.; Zurawski, D.V.; Melander, C. Narrow-spectrum antibacterial agents. MedChemComm, 2018, 9, 12-21.
[http://dx.doi.org/10.1039/C7MD00528H] [PMID: 29527285 ]
[83]
Richter, M.F.; Drown, B.S.; Riley, A.P.; Garcia, A.; Shirai, T.; Svec, R.L.; Hergenrother, P.J. Predictive compound accumulation rules yield a broad-spectrum antibiotic. Nature, 2017, 545(7654), 299-304.
[http://dx.doi.org/10.1038/nature22308] [PMID: 28489819 ]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 7
Year: 2020
Published on: 16 March, 2020
Page: [1132 - 1150]
Pages: 19
DOI: 10.2174/0929867325666181008143411
Price: $65

Article Metrics

PDF: 45
HTML: 6