Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Synthesis, 2D-QSAR Studies and Biological Evaluation of Quinazoline Derivatives as Potent Anti-Trypanosoma cruzi Agents

Author(s): Mariela Bollini, Ana M. Bruno*, María E. Niño, Juan J. Casal, Leandro D. Sasiambarrena, Damián A.G. Valdez, Leandro Battini, Vanesa R. Puente and María E. Lombardo

Volume 15, Issue 3, 2019

Page: [265 - 276] Pages: 12

DOI: 10.2174/1573406414666181005145042

Price: $65

Abstract

Background: Chagas disease affects about 7 million people worldwide. Only two drugs are currently available for the treatment for this parasite disease, namely, benznidazol (Bzn) and nifurtimox (Nfx). Both drugs have limited curative power in the chronic phase of the disease. Therefore, continuous research is an urgent need so as to discover novel therapeutic alternatives.

Objective: The development of safer and more efficient therapeutic anti-T. cruzi drugs continues to be a major goal in trypanocidal chemotherapy.

Method: Synthesis, 2D-QSAR and drug-like physicochemical properties of a set of quinazolinone and quinazoline derivatives were studied as trypanocidal agents. All compounds were screened in vitro against Trypanosoma cruzi (Tulahuen strain, Tul 2 stock) epimastigotes and bloodstream trypomastigotes.

Results: Out of 34 compounds synthesized and tested, six compounds (5a, 5b, 9b, 9h, 13f and 13p) displayed significant activity against both epimastigotes and tripomastigotes, without exerting toxicity on Vero cells.

Conclusion: The antiprotozoal activity of these quinazolinone and quinazoline derivatives represents an interesting starting point for a medicinal chemistry program aiming at the development of novel chemotherapies for Chagas disease.

Keywords: Chagas disease, quinazoline derivatives, QSAR, trypanosoma cruzi, physicochemical properties, drug discovery.

Graphical Abstract
[1]
W.H.O. http://www.who.int/mediacentre/factsheets/fs340/en/ Accessed December 20, 2017
[2]
Nunes, M.C.P.; Dones, W.; Morillo, C.A.; Encina, J.J.; Ribeiro, A.L. Chagas disease: An overview of clinical and epidemiological aspects. J. Am. Coll. Cardiol., 2013, 62, 767-776.
[3]
Castro, J.; Montalto de Mecca, M.; Bartel, L. Toxic side effects of drugs used to treat Chagas’ disease (American trypanosomiasis). Hum. Exp. Toxicol., 2006, 25, 471-479.
[4]
Andrews, K.T.; Fisher, G.; Skinner-Adams, T.S. Drug repurposing and human parasitic protozoan diseases. Int. J. Parasitol. Drugs Drug Resist., 2014, 4, 495-111.
[5]
Al-Salem, H.S.A.; Hegazy, G.H.; El-Taher, K.E.H.; El-Messery, S.M.; Al-Obaid, A.M.; El-Subbagh, H.I. Synthesis, anticonvulsant activity and molecular modeling study of some new hydrazinecarbothioamide, benzenesulfonohydrazide and phenacylacetohydrazide analogues of 4(3H)-quinazolinone. Bioorg. Med. Chem. Lett., 2015, 25, 1490-1499.
[6]
Wang, X.; Xin, M.; Xu, J.; Kang, B.; Li, Y.; Lu, S.; Zhang, S. Synthesis and antitumor activities evaluation of m - (4- morpholinoquinazolin-2-yl) benzamides in vitro and in vivo. Eur. J. Med. Chem., 2015, 96, 382-395.
[7]
Vani, K.V.; Ramesh, G.; Rao, C.V. Synthesis of New Triazole and Oxadiazole derivatives of Quinazolin-4(3H)-one and their antimicrobial activity. Heterocyclic. Chem, 2016, 53, 719-726.
[8]
Gobinath, M.; Subramanian, N.; Alagarsamy, V. Design, synthesis and H1-antihistaminic activity of novel 1-substituted-4-(3-chlorophenyl)-[1,2,4]triazolo [4,3-a]quinazolin-5(4H)-ones. J. Saudi Chem. Soc., 2015, 19, 282-286.
[9]
Hu, J.; Zhang, Y.; Dong, L.; Wang, Z.; Chen, L.; Liang, D.; Shi, D.; Shan, X.; Liang, G. Design, Synthesis and biological evaluation of novel Quinazoline derivatives as anti-inflammatory agents against lipopolysaccharide-induced acute lung injury in rats. Chem. Biol. Drug Des., 2015, 85, 672-684.
[10]
Gilson, P.R.; Tan, C.; Jarman, K.E.; Lowes, K.N.; Curtis, J.M.; Nguyen, W.; Di Rago, A.E.; Bullen, H.E.; Prinz, B.; Duffy, S.; Baell, J.B.; Hutton, C.A.; Subroux, H.J.; Crabb, B.S.; Avery, V.M.; Cowman, A.F.; Sleebs, B.E. Optimization of 2‑Anilino 4‑Amino substituted Quinazolines into potent antimalarial agents with oral in vivo activity. J. Med. Chem., 2017, 60, 1171-1188.
[11]
Singh, M.; Raghav, N. 2,3-Dihydroquinazolin-4(1H)-one derivatives as potential non-peptidyl inhibitors of cathepsins B and H. Bioorg. Chem., 2015, 59, 12-22.
[12]
Wei, M.; Chai, W.M.; Wang, R.; Yang, Q.; Deng, Z.; Peng, Y. Quinazolinone derivatives: synthesis and comparison of inhibitory mechanisms on α-glucosidase. Bioorg. Med. Chem., 2017, 25, 1303-1308.
[13]
Cavalli, A.; Lizzi, F.; Bongarzone, S.; Brun, R.; Luise Krauth-Siegel, R.; Bolognesi, M.L. Privileged structure-guided synthesis of quinazoline derivatives as inhibitors of trypanothione reductasa. Bioorg. Med. Chem. Lett., 2009, 19, 3031-3035.
[14]
Mendoza-Martínez, C.; Correa-Basurto, J.; Nieto-Meneses, R.; Márquez-Navarro, A.; Aguilar-Suárez, R.; Montero-Cortes, M.D.; Nogueda-Torres, B.; Suárez-Contreras, E.; Galindo-Sevilla, N.; Rojas-Rojas, Á.; Rodriguez-Lezama, A.; Hernández-Luis, F. Design, synthesis and biological evaluation of quinazoline derivatives as anti-trypanosomatid and anti-plasmodial agents. Eur. J. Med. Chem., 2015, 96, 296-307.
[15]
Khatab, T.K.; El-Bayouki, K.A.M.; Basyouni, W.M.; El-basyoni, F.A.; Ali, M.M.; Abbas, S.Y. Mostafa. E.A. Sulfamic Acid as an Efficient, cost-effective, eco-friendly and recyclable solid acid catalyst for the synthesis of a novel series of 2,3-dihydroquinazolin-4(1H)-ones and Antitumor Evaluation. Res. J. Pharm. Biol. Chem. Sci., 2015, 6, 281-291.
[16]
Esteva, M.; Ruiz, A.M.; Stoka, A.M. Trypanosoma cruzi: methoprene is a potent agent to sterilize blood infected with tripomastigotes. Exp. Parasitol., 2002, 100, 248-251.
[17]
Frank, M.F.; Cicarelli, A.B.; Bollini, M.; Bruno, A.M.; Batlle, A.; Lombardo, M.E. Trypanocidal activity of thioamide-substituted imidazoquinolinone: Electrochemical properties and biological effects Evidence-based Complement. Altern. Med., 2013, 2013, 1-10. Article ID 945953.
[18]
Jorgensen, WL n.d. QikProp, v 3.0; Schrö dinger LLC
[19]
Yap, C.W. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem., 2011, 32, 1466-1474.
[20]
Meinl, T.; Jagla, B.; Berthold, M.R. Integrated data analysis with KNIME, published by Woodhead Publishing Limited, 2012.
[21]
Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software. SIGKDD Explor Newsl., 2009, 11, 10-18.
[22]
Palacios-Bejarano, B.; Cerruela García, G.; Luque Ruiz, I.; Gómez-Nieto, M.Á. QSAR model based on weighted MCS trees approach for the representation of molecule data sets. J. Comput. Aided Mol. Des., 2013, 27, 185-201.
[23]
Sochacka, J. Docking of thiopurine derivatives to human serum albumin and binding site analysis with Molegro Virtual Docker. Acta Pol. Pharm., 2014, 71, 343-349.
[24]
Venkatraman, V.; Dalby, A.R.; Yang, Z.R. Evaluation of mutual information, genetic algorithm and SVR for feature selection in QSAR regression. J. Chem. Inf. Comput. Sci., 2004, 44, 1688-1692.
[25]
Tropsha, A.; Gramatica, P.; Gombar, V. The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb. Sci., 2003, 22, 69-77.
[26]
Baskin, I.I.; Winkler, D.I.; Tetko, V. A renaissance of neural networks in drug discovery. Expert Opin. Drug Discov., 2016, 11, 785-795.
[27]
Leal, E.S.; Aucar, M.G.; Gebhard, L.G.; Iglesias, N.G.; Pascual, M.J.; Casal, J.J.; Gamarnik, A.V.; Cavasotto, C.N.; Bollini, M. Discovery of novel dengue virus entry inhibitors via a structure-based approach. Bioorg. Med. Chem. Lett., 2017, 27, 3851-3855.
[28]
Shestakov, A.S.; Sidorenko, O.E.; Bushmarinov, I.S.; Shikhaliev, K.S.; Antipin, M.Y. 3-aryl(alkyl)quinazoline-2,4(1H,3H)-diones and their alkyl derivatives. Russ. J. Org. Chem., 2009, 45, 1691-1696.
[29]
Leticia Guerrero, R.; Rivero, I.A. Reaction of o-aminobenzamides with dialkyl carbonates and ionic liquids: A novel one-pot, high-yield, microwave-assisted synthesis of 1-alkylquinazoline-2,4-diones. J. Mex. Chem. Soc., 2012, 56, 201-206.
[30]
Cortez, R.; Rivero, I.; Somanathan, R.; Aguirre, G.; Ramirez, F.; Hong, E. Synthesis of Quinazolinedione Using Triphosgene. Synth. Commun., 1991, 21(2), 285-292.
[31]
Petrov, J.S.; Andreev, G.N. Synthesis of 2,4 (1H,3H)-Quinazolinedione and 3-substituted 2,4 (1H,3H)-Quinazolinediones. Org. Prep. Proced. Int., 2005, 37, 560-565.
[32]
Abbas, S.Y.; El-Bayouki, K.A.M.; Basyouni, W.M. Utilization of isatoic anhydride in the syntheses of various types of quinazoline and quinazolinone derivatives. Synth. Commun., 2016, 46, 993-1035.
[33]
Alinezhad, H.; Tajbakhsh, M.; Ghobadi, N. Synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones using Bronsted acidic ionic liquid. Res. Rev. Mat. Sci. Chem., 2014, 3(2), 123-135.
[34]
Chawla, A.; Batra, C. Recent advances of Quinazolinone derivatives as marker for various biological activities. Int. Res. J. Pharm., 2013, 4, 49-58.
[35]
Cheng, R.; Guo, T.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. One-pot synthesis of Quinazolinones from Anthranilamides and aldehydes via p-Toluenesulfonic Acid Catalyzed cyclocondensation and Phenyliodine diacetate mediated oxidative dehydrogenation. Synthesis, 2013, 45(21), 2998-3006.
[36]
Jorgensen, W.L.; Duffy, E.M. Prediction of drug solubility from structure. Adv. Drug Deliv. Rev., 2002, 54, 355-366.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy