Graphene and Graphene Oxide Applications for SERS Sensing and Imaging

Author(s): Anna Jabłońska, Aleksandra Jaworska, Mateusz Kasztelan, Sylwia Berbeć, Barbara Pałys*.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 38 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Surface Enhanced Raman Spectroscopy (SERS) has a long history as an ultrasensitive platform for the detection of biological species from small aromatic molecules to complex biological systems as circulating tumor cells. Thanks to unique properties of graphene, the range of SERS applications has largely expanded. Graphene is efficient fluorescence quencher improving quality of Raman spectra. It contributes also to the SERS enhancement factor through the chemical mechanism. In turn, the chemical flexibility of Reduced Graphene Oxide (RGO) enables tunable adsorption of molecules or cells on SERS active surfaces. Graphene oxide composites with SERS active nanoparticles have been also applied for Raman imaging of cells. This review presents a survey of SERS assays employing graphene or RGO emphasizing the improvement of SERS enhancement brought by graphene or RGO. The structure and physical properties of graphene and RGO will be discussed too.

Keywords: SERS platform, biosensors, theranostics, diagnosis, graphene, cancer cells, reduced graphene oxide.

[1]
Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett., 1974, 26(2), 163-166.
[http://dx.doi.org/10.1016/0009-2614(74)85388-1]
[2]
Jeanmaire, D.L.; Van Duyne, R.P. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem., 1977, 84(1), 1-20.
[http://dx.doi.org/10.1016/S0022-0728(77)80224-6]
[3]
Albrecht, M.G.; Creighton, J.A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc., 1977, 99(15), 5215-5217.
[http://dx.doi.org/10.1021/ja00457a071]
[4]
Zrimsek, A.B.; Chiang, N.; Mattei, M.; Zaleski, S.; McAnally, M.O.; Chapman, C.T.; Henry, A-I.; Schatz, G.C.; Van Duyne, R.P. Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy. Chem. Rev., 2017, 117(11), 7583-7613.
[http://dx.doi.org/10.1021/acs.chemrev.6b00552] [PMID: 28610424]
[5]
Porter, M.D.; Lipert, R.J.; Siperko, L.M.; Wang, G.; Narayanan, R. SERS as a bioassay platform: fundamentals, design, and applications. Chem. Soc. Rev., 2008, 37(5), 1001-1011.
[http://dx.doi.org/10.1039/b708461g] [PMID: 18443685]
[6]
Ravanshad, R.; Karimi Zadeh, A.; Amani, A.M.; Mousavi, S.M.; Hashemi, S.A.; Savar Dashtaki, A.; Mirzaei, E.; Zare, B. Application of nanoparticles in cancer detection by Raman scattering based techniques. Nano Rev Exp, 2017, 9(1)1373551
[http://dx.doi.org/10.1080/20022727.2017.1373551] [PMID: 30410710]
[7]
Lane, L.A.; Qian, X.; Nie, S. SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging. Chem. Rev., 2015, 115(19), 10489-10529.
[http://dx.doi.org/10.1021/acs.chemrev.5b00265] [PMID: 26313254]
[8]
Zhang, D.; Liang, P.; Yu, Z.; Huang, J.; Ni, D.; Shu, H.; Dong, Q. The effect of solvent environment toward optimization of SERS sensors for pesticides detection from chemical enhancement aspects. Sens. Actuators B Chem., 2018, 256, 721-728.
[http://dx.doi.org/10.1016/j.snb.2017.09.209]
[9]
Makam, P.; Shilpa, R.; Kandjani, A.E.; Periasamy, S.R.; Sabri, Y.M.; Madhu, C.; Bhargava, S.K.; Govindaraju, T. SERS and fluorescence-based ultrasensitive detection of mercury in water. Biosens. Bioelectron., 2018, 100, 556-564.
[http://dx.doi.org/10.1016/j.bios.2017.09.051] [PMID: 29020666]
[10]
Li, A.; Tang, L.; Song, D.; Song, S.; Ma, W.; Xu, L.; Kuang, H.; Wu, X.; Liu, L.; Chen, X.; Xu, C. A SERS-active sensor based on heterogeneous gold nanostar core-silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1. Nanoscale, 2016, 8(4), 1873-1878.
[http://dx.doi.org/10.1039/C5NR08372A] [PMID: 26732202]
[11]
Pearson, B.; Mills, A.; Tucker, M.; Gao, S.; McLandsborough, L.; He, L. Rationalizing and advancing the 3-MPBA SERS sandwich assay for rapid detection of bacteria in environmental and food matrices. Food Microbiol., 2018, 72, 89-97.
[http://dx.doi.org/10.1016/j.fm.2017.11.007] [PMID: 29407409]
[12]
Moskovits, M. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J. Chem. Phys., 1978, 69(9), 4159-4161.
[http://dx.doi.org/10.1063/1.437095]
[13]
Schatz, G.C.; Van Duyne, R.P. Electromagnetic mechanism of surface-enhanced spectroscopy. Handbook of Vibrational Spectroscopy; John Wiley & Sons, Ltd, 2006.
[http://dx.doi.org/10.1002/0470027320.s0601]
[14]
Jensen, L.; Aikens, C.M.; Schatz, G.C. Electronic structure methods for studying surface-enhanced Raman scattering. Chem. Soc. Rev., 2008, 37(5), 1061-1073.
[http://dx.doi.org/10.1039/b706023h] [PMID: 18443690]
[15]
Otto, A. The ‘chemical’ (electronic) contribution to surface‐enhanced Raman scattering. J. Raman Spectrosc., 2005, 36(6‐7), 497-509.
[http://dx.doi.org/10.1002/jrs.1355]
[16]
Lombardi, J.R. The theory of surface-enhanced Raman scattering on semiconductor nanoparticles; toward the optimization of SERS sensors. Faraday Discuss., 2017, 205(0), 105-120.
[http://dx.doi.org/10.1039/C7FD00138J] [PMID: 28885632]
[17]
Fu, H-Y.; Lang, X-Y.; Hou, C.; Wen, Z.; Zhu, Y-F.; Zhao, M.; Li, J-C.; Zheng, W-T.; Liu, Y-B.; Jiang, Q. Nanoporous Au/SnO/Ag Heterogeneous films for ultrahigh and uniform surface-enhanced Raman scattering. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2014, 2(35), 7216.
[http://dx.doi.org/10.1039/C4TC00603H]
[18]
Dumont, E.; De Bleye, C.; Sacré, P-Y.; Netchacovitch, L.; Hubert, P.; Ziemons, E. From near-infrared and Raman to surface-enhanced Raman spectroscopy: progress, limitations and perspectives in bioanalysis. Bioanalysis, 2016, 8(10), 1077-1103.
[http://dx.doi.org/10.4155/bio-2015-0030] [PMID: 27079546]
[19]
Shiohara, A.; Wang, Y.; Liz-Marzán, L.M. Recent approaches toward creation of hot spots for SERS detection. J. Photochem. Photobiol.C Photochem. Rev., 2014, 21, 2-25.
[http://dx.doi.org/10.1016/j.jphotochemrev.2014.09.001]
[20]
Fan, M.; Andrade, G.F.S.; Brolo, A.G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal. Chim. Acta, 2011, 693(1-2), 7-25.
[http://dx.doi.org/10.1016/j.aca.2011.03.002] [PMID: 21504806]
[21]
Brown, R.J.C.; Milton, M.J.T. Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS). J. Raman Spectrosc., 2008, 39(10), 1313-1326.
[http://dx.doi.org/10.1002/jrs.2030]
[22]
Ma, D.; Huang, C.; Zheng, J.; Tang, J.; Li, J.; Yang, J.; Yang, R. Quantitative detection of exosomal microRNA extracted from human blood based on surface-enhanced Raman scattering. Biosens. Bioelectron., 2018, 101, 167-173.
[http://dx.doi.org/10.1016/j.bios.2017.08.062] [PMID: 29073517]
[23]
Guo, X.; Guo, Z.; Jin, Y.; Liu, Z.; Zhang, W.; Huang, D. Silver-gold core-shell nanoparticles containing methylene blue as SERS labels for probing and imaging of live cells. Mikrochim. Acta, 2012, 178(1-2), 229-236.
[http://dx.doi.org/10.1007/s00604-012-0829-y]
[24]
Köker, T.; Tang, N.; Tian, C.; Zhang, W.; Wang, X.; Martel, R.; Pinaud, F. Cellular imaging by targeted assembly of hot-spot SERS and photoacoustic nanoprobes using split-fluorescent protein scaffolds. Nat. Commun., 2018, 9(1), 607.
[http://dx.doi.org/10.1038/s41467-018-03046-w] [PMID: 29426856]
[25]
Espina Palanco, M.; Mogensen, K.B.; Kneipp, K. Raman spectroscopic probing of plant material using SERS: SERS probing of plant material. J. Raman Spectrosc., 2016, 47(2), 156-161.
[http://dx.doi.org/10.1002/jrs.4768]
[26]
Sinha, S.S.; Jones, S. PRamanik, A.; Ray, P.C. Nanoarchitecture based SERS for biomolecular fingerprinting and label-free disease markers diagnosis. Acc. Chem. Res., 2016, 49(12), 2725-2735.
[http://dx.doi.org/10.1021/acs.accounts.6b00384] [PMID: 27993003]
[27]
Kang, L.; Han, X.; Chu, J.; Xiong, J.; He, X.; Wang, H-L.; Xu, P. In situ surface-enhanced Raman spectroscopy study of plasmon-driven catalytic reactions of 4-nitrothiophenol under a controlled atmosphere. ChemCatChem, 2015, 7(6), 1004-1010.
[http://dx.doi.org/10.1002/cctc.201403032]
[28]
Kang, L.; Chu, J.; Zhao, H.; Xu, P.; Sun, M. Recent progress in the applications of graphene in surface-enhanced Raman scattering and plasmon-induced catalytic reactions. J. Mater. Chem. C , 2015, 3(35), 9024-9037.
[http://dx.doi.org/10.1039/C5TC01759A]
[29]
Li, J.F.; Huang, Y.F.; Ding, Y.; Yang, Z.L.; Li, S.B.; Zhou, X.S.; Fan, F.R.; Zhang, W.; Zhou, Z.Y.; Wu, D.Y.; Ren, B.; Wang, Z.L.; Tian, Z.Q. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature, 2010, 464(7287), 392-395.
[http://dx.doi.org/10.1038/nature08907] [PMID: 20237566]
[30]
Ji, X.; Yang, W. High-purity gold nanocrystal dimers: scalable synthesis and size-dependent plasmonic and Raman enhancement. Chem. Sci. (Camb.), 2014, 5(1), 311-323.
[http://dx.doi.org/10.1039/C3SC52135D]
[31]
Zhang, N.; Tong, L.; Zhang, J. Graphene-based enhanced Raman scattering toward analytical applications. Chem. Mater., 2016, 28(18), 6426-6435.
[http://dx.doi.org/10.1021/acs.chemmater.6b02925]
[32]
Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; Geim, A.K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett., 2006, 97(18)187401
[http://dx.doi.org/10.1103/PhysRevLett.97.187401] [PMID: 17155573]
[33]
Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman spectroscopy in graphene. Phys. Rep., 2009, 473(5), 51-87.
[http://dx.doi.org/10.1016/j.physrep.2009.02.003]
[34]
Claramunt, S.; Varea, A.; López-Díaz, D.; Velázquez, M.M.; Cornet, A.; Cirera, A. The importance of interbands on the interpretation of the Raman spectrum of graphene oxide. The J. of Phys. Chem. C, 2015, 119(18), 10123-10129.
[http://dx.doi.org/10.1021/acs.jpcc.5b01590]
[35]
Beams, R.; Gustavo Cançado, L.; Novotny, L. Raman characterization of defects and dopants in graphene. J. Phys. Condens. Matter, 2015, 27(8)083002
[http://dx.doi.org/10.1088/0953-8984/27/8/083002] [PMID: 25634863]
[36]
Ferrari, A.C.; Basko, D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol., 2013, 8(4), 235-246.
[http://dx.doi.org/10.1038/nnano.2013.46] [PMID: 23552117]
[37]
Chua, C.K.; Pumera, M. Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev., 2014, 43(1), 291-312.
[http://dx.doi.org/10.1039/C3CS60303B] [PMID: 24121318]
[38]
Lerf, A.; He, H.; Forster, M.; Klinowski, J. Structure of graphite oxide revisited. J. Phys. Chem. B, 1998, 102(23), 4477-4482.
[http://dx.doi.org/10.1021/jp9731821]
[39]
Gao, W.; Alemany, L.B.; Ci, L.; Ajayan, P.M. New insights into the structure and reduction of graphite oxide. Nat. Chem., 2009, 1(5), 403-408.
[http://dx.doi.org/10.1038/nchem.281] [PMID: 21378895]
[40]
Zhu, S.; Cen, Y.; Yang, M.; Guo, J.; Chen, C.; Wang, J.; Fan, W. Probing the intrinsic active sites of modified graphene oxide for aerobic benzylic alcohol oxidation. Appl. Catal. B, 2017, 211, 89-97.
[http://dx.doi.org/10.1016/j.apcatb.2017.04.035]
[41]
Begliarbekov, M.; Sul, O.; Santanello, J.; Ai, N.; Zhang, X.; Yang, E-H.; Strauf, S. Localized states and resultant band bending in graphene antidot superlattices. Nano Lett., 2011, 11(3), 1254-1258.
[http://dx.doi.org/10.1021/nl1042648] [PMID: 21322601]
[42]
Ambrosi, A.; Chua, C.K.; Latiff, N.M.; Loo, A.H.; Wong, C.H.A.; Eng, A.Y.S.; Bonanni, A.; Pumera, M. Graphene and its electrochemistry - an update. Chem. Soc. Rev., 2016, 45(9), 2458-2493.
[http://dx.doi.org/10.1039/C6CS00136J] [PMID: 27052352]
[43]
Jorio, A.; Souza Filho, A.G.; Dresselhaus, G.; Dresselhaus, M.S.; Swan, A.K.; Ünlü, M.S.; Goldberg, B.B.; Pimenta, M.A.; Hafner, J.H.; Lieber, C.M. G-band resonant Raman study of 62 isolated single-wall carbon nanotubes. Phys. Rev. B Condens. Matter Mater. Phys., 2002, 65(15)155412
[http://dx.doi.org/10.1103/PhysRevB.65.155412]
[44]
Thomsen, C.; Reich, S. Double resonant Raman scattering in graphite. Phys. Rev. Lett., 2000, 85(24), 5214-5217.
[http://dx.doi.org/10.1103/PhysRevLett.85.5214] [PMID: 11102224]
[45]
Tuinstra, F.; Koenig, J.L. Raman spectrum of graphite. J. Chem. Phys., 1970, 53(3), 1126-1130.
[http://dx.doi.org/10.1063/1.1674108]
[46]
Kudin, K.N.; Ozbas, B.; Schniepp, H.C.; Prud’homme, R.K.; Aksay, I.A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett., 2008, 8(1), 36-41.
[http://dx.doi.org/10.1021/nl071822y] [PMID: 18154315]
[47]
Berbeć, S.; Żołądek, S.; Jabłońska, A.; Pałys, B. Electrochemically reduced graphene oxide on gold nanoparticles modified with a polyoxomolybdate film. Highly sensitive non-enzymatic electrochemical detection of H2O2. Sens. Actuators B Chem., 2018, 258, 745-756.
[http://dx.doi.org/10.1016/j.snb.2017.11.163]
[48]
Vollebregt, S.; Ishihara, R.; Tichelaar, F.D.; Hou, Y.; Beenakker, C.I.M. Influence of the growth temperature on the first and second-order Raman band ratios and widths of carbon nanotubes and fibers. Carbon, 2012, 50(10), 3542-3554.
[http://dx.doi.org/10.1016/j.carbon.2012.03.026]
[49]
Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon, 2005, 43(8), 1731-1742.
[http://dx.doi.org/10.1016/j.carbon.2005.02.018]
[50]
Xu, W.; Mao, N.; Zhang, J. Graphene: a platform for surface-enhanced Raman spectroscopy. Small, 2013, 9(8), 1206-1224.
[http://dx.doi.org/10.1002/smll.201203097] [PMID: 23529788]
[51]
Schedin, F.; Lidorikis, E.; Lombardo, A.; Kravets, V.G.; Geim, A.K.; Grigorenko, A.N.; Novoselov, K.S.; Ferrari, A.C. Surface-enhanced Raman spectroscopy of graphene. ACS Nano, 2010, 4(10), 5617-5626.
[http://dx.doi.org/10.1021/nn1010842] [PMID: 20857921]
[52]
Xu, W.; Ling, X.; Xiao, J.; Dresselhaus, M.S.; Kong, J.; Xu, H.; Liu, Z.; Zhang, J. Surface enhanced Raman spectroscopy on a flat graphene surface. Proc. Natl. Acad. Sci. USA, 2012, 109(24), 9281-9286.
[http://dx.doi.org/10.1073/pnas.1205478109] [PMID: 22623525]
[53]
Jalani, G.; Cerruti, M. Nano graphene oxide-wrapped gold nanostars as ultrasensitive and stable SERS nanoprobes. Nanoscale, 2015, 7(22), 9990-9997.
[http://dx.doi.org/10.1039/C4NR07473D] [PMID: 25981393]
[54]
Tran, L-H.; Lee, C.; Kang, T.J.; Jang, S-H. Graphene oxide-mediated fluorescence quenching of green fluorescent protein for biomedical applications: graphene oxide-mediated quenching of GFP fluorescence. Bull. Korean Chem. Soc., 2016, 37(8), 1265-1269.
[http://dx.doi.org/10.1002/bkcs.10850]
[55]
Ling, X.; Xie, L.; Fang, Y.; Xu, H.; Zhang, H.; Kong, J.; Dresselhaus, M.S.; Zhang, J.; Liu, Z. Can graphene be used as a substrate for Raman enhancement? Nano Lett., 2010, 10(2), 553-561.
[http://dx.doi.org/10.1021/nl903414x] [PMID: 20039694]
[56]
Sil, S.; Kuhar, N.; Acharya, S.; Umapathy, S. Is chemically synthesized graphene ‘really’ a unique substrate for SERS and fluorescence quenching? Sci. Rep., 2013, 3, 3336.
[http://dx.doi.org/10.1038/srep03336] [PMID: 24275718]
[57]
Liu, R.; Li, S.; Liu, J-F. Self-assembly of plasmonic nanostructures into superlattices for surface-enhanced Raman scattering applications. TrAC Trends Analyt. Chem., 2017, 97, 188-200.
[http://dx.doi.org/10.1016/j.trac.2017.09.003]
[58]
Lu, G.; Li, H.; Liusman, C.; Yin, Z.; Wu, S.; Zhang, H. Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules. Chem. Sci. (Camb.), 2011, 2(9), 1817-1821.
[http://dx.doi.org/10.1039/c1sc00254f]
[59]
Hernández-Sánchez, D.; Villabona-Leal, G.; Saucedo-Orozco, I.; Bracamonte, V.; Pérez, E.; Bittencourt, C.; Quintana, M. Stable graphene oxide-gold nanoparticle platforms for biosensing applications. Phys. Chem. Chem. Phys., 2018, 20(3), 1685-1692.
[http://dx.doi.org/10.1039/C7CP04817C] [PMID: 29264594]
[60]
Wang, R-C.; Kung, E-C.; Chen, Y-H. Ultrahigh sensitive metal-free SERS platforms by functional-groups. Sens. Actuators B Chem., 2018, 263, 258-265.
[http://dx.doi.org/10.1016/j.snb.2018.02.127]
[61]
Umadevi, D.; Panigrahi, S.; Sastry, G.N. Noncovalent interaction of carbon nanostructures. Acc. Chem. Res., 2014, 47(8), 2574-2581.
[http://dx.doi.org/10.1021/ar500168b] [PMID: 25032482]
[62]
Dolgov, L.; Pidhirnyi, D.; Dovbeshko, G.; Lebedieva, T.; Kiisk, V.; Heinsalu, S.; Lange, S.; Jaaniso, R.; Sildos, I. Graphene-enhanced Raman scattering from the adenine molecules. Nanoscale Res. Lett., 2016, 11(1), 197.
[http://dx.doi.org/10.1186/s11671-016-1418-5] [PMID: 27075339]
[63]
Wang, P.; Xia, M.; Liang, O.; Sun, K.; Cipriano, A.F.; Schroeder, T.; Liu, H.; Xie, Y-H. Label-Free SERS selective detection of dopamine and serotonin using graphene-Au nanopyramid heterostructure. Anal. Chem., 2015, 87(20), 10255-10261.
[http://dx.doi.org/10.1021/acs.analchem.5b01560] [PMID: 26382549]
[64]
Zhao, Y.; Xie, Y.; Bao, Z.; Tsang, Y.H.; Xie, L.; Chai, Y. Enhanced SERS stability of R6G molecules with monolayer graphene. J. Phys. Chem. C, 2014, 118(22), 11827-11832.
[http://dx.doi.org/10.1021/jp503487a]
[65]
Du, Y.; Zhao, Y.; Qu, Y.; Chen, C-H.; Chen, C-M.; Chuang, C-H.; Zhu, Y. Enhanced light–matter interaction of graphene-gold nanoparticle hybrid films for high-performance SERS detection. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2014, 2(23), 4683-4691.
[http://dx.doi.org/10.1039/C4TC00353E]
[66]
Wang, X.; Wang, N.; Gong, T.; Zhu, Y.; Zhang, J. Preparation of graphene-Ag nanoparticles hybrids and their SERS activities. Appl. Surf. Sci., 2016, 387, 707-719.
[http://dx.doi.org/10.1016/j.apsusc.2016.06.161]
[67]
Guo, Y.; Wang, H.; Ma, X.; Jin, J.; Ji, W.; Wang, X.; Song, W.; Zhao, B.; He, C. Fabrication of Ag-Cu2O/Reduced graphene oxide nanocomposites as surface-enhanced Raman scattering substrates for in situ monitoring of peroxidase-like catalytic reaction and biosensing. ACS Appl. Mater. Interfaces, 2017, 9(22), 19074-19081.
[http://dx.doi.org/10.1021/acsami.7b02149] [PMID: 28508627]
[68]
Wang, Y.; Polavarapu, L.; Liz-Marzán, L.M. Reduced graphene oxide-supported gold nanostars for improved SERS sensing and drug delivery. ACS Appl. Mater. Interfaces, 2014, 6(24), 21798-21805.
[http://dx.doi.org/10.1021/am501382y] [PMID: 24827538]
[69]
Zheng, Y.; Wang, A.; Wang, Z.; Fu, L.; Peng, F. Facial synthesis of carrageenan/reduced graphene oxide/ag composite as efficient SERS platform. Mater. Res., 2016, 20(1), 15-20.
[http://dx.doi.org/10.1590/1980-5373-mr-2016-0287]
[70]
Murphy, S.; Huang, L.; Kamat, P.V. Reduced graphene oxide-silver nanoparticle composite as an active SERS material. J. Phys. Chem. C, 2013, 117(9), 4740-4747.
[http://dx.doi.org/10.1021/jp3108528]
[71]
Shanta, P.V.; Cheng, Q. Graphene oxide nanoprisms for sensitive detection of environmentally important aromatic compounds with SERS. ACS Sens., 2017, 2(6), 817-827.
[http://dx.doi.org/10.1021/acssensors.7b00182] [PMID: 28723120]
[72]
Zheng, H.; Ni, D.; Yu, Z.; Liang, P. Preparation of SERS-active substrates based on graphene oxide/silver nanocomposites for rapid zdetection of l-Theanine. Food Chem., 2017, 217, 511-516.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.010] [PMID: 27664666]
[73]
Li, M.; Gou, H.; Al-Ogaidi, I.; Wu, N. Nanostructured sensors for detection of heavy metals: a review. ACS Sustain. Chem.& Eng., 2013, 1(7), 713-723.
[http://dx.doi.org/10.1021/sc400019a]
[74]
Zhang, L.; Peng, D.; Liang, R-P.; Qiu, J-D. Graphene-based optical nanosensors for detection of heavy metal ions. TrAC Trends Analyt. Chem., 2018, 102, 280-289.
[http://dx.doi.org/10.1016/j.trac.2018.02.010]
[75]
Miyake, Y.; Togashi, H.; Tashiro, M.; Yamaguchi, H.; Oda, S.; Kudo, M.; Tanaka, Y.; Kondo, Y.; Sawa, R.; Fujimoto, T.; Machinami, T.; Ono, A. MercuryII-mediated formation of thymine-HgII-thymine base pairs in DNA duplexes. J. Am. Chem. Soc., 2006, 128(7), 2172-2173.
[http://dx.doi.org/10.1021/ja056354d] [PMID: 16478145]
[76]
Kumar, P.; Kim, K-H.; Bansal, V.; Lazarides, T.; Kumar, N. Progress in the sensing techniques for heavy metal ions using nanomaterials. J. Ind. Eng. Chem., 2017, 54, 30-43.
[http://dx.doi.org/10.1016/j.jiec.2017.06.010]
[77]
Ding, X.; Kong, L.; Wang, J.; Fang, F.; Li, D.; Liu, J. Highly sensitive SERS detection of Hg2+ ions in aqueous media using gold nanoparticles/graphene heterojunctions. ACS Appl. Mater. Interfaces, 2013, 5(15), 7072-7078.
[http://dx.doi.org/10.1021/am401373e] [PMID: 23855919]
[78]
Zhao, L.; Gu, W.; Zhang, C.; Shi, X.; Xian, Y. In situ regulation nanoarchitecture of Au nanoparticles/reduced graphene oxide colloid for sensitive and selective SERS detection of lead ions. J. Colloid Interface Sci., 2016, 465, 279-285.
[http://dx.doi.org/10.1016/j.jcis.2015.11.073] [PMID: 26688120]
[79]
Breuer, P.L.; Jeffrey, M.I. Thiosulfate leaching kinetics of gold in the presence of copper and ammonia. Miner. Eng., 2000, 13(10-11), 1071-1081.
[http://dx.doi.org/10.1016/S0892-6875(00)00091-1]
[80]
Zhang, X.; Dai, Z. Shuyao, S.; Xiaolei, Z.; Wei, W.; Hongbing, D.; Fubing, W.; Xiangheng, X.; Changzhong, J. Ultrasensitive SERS substrate integrated with uniform subnanometer scale “hot spots” created by a graphene spacer for the detection of mercury ions. Small, 2016, 13(9)1603347
[http://dx.doi.org/10.1002/smll.201603347]
[81]
Li, F.; Wang, J.; Lai, Y.; Wu, C.; Sun, S.; He, Y.; Ma, H. Ultrasensitive and selective detection of copper (II) and mercury (II) ions by dye-coded silver nanoparticle-based SERS probes. Biosens. Bioelectron., 2013, 39(1), 82-87.
[http://dx.doi.org/10.1016/j.bios.2012.06.050] [PMID: 22840330]
[82]
Yin, J.; Wu, T.; Song, J.; Zhang, Q.; Liu, S.; Xu, R.; Duan, H. SERS-active nanoparticles for sensitive and selective detection of cadmium ion (Cd 2+). Chem. Mater., 2011, 23(21), 4756-4764.
[http://dx.doi.org/10.1021/cm201791r]
[83]
Shi, X.; Gu, W.; Zhang, C.; Zhao, L.; Li, L.; Peng, W.; Xian, Y. Construction of a graphene/au-nanoparticles/cucurbit[7]uril-based sensor for Pb(2+) sensing. Chemistry, 2016, 22(16), 5643-5648.
[http://dx.doi.org/10.1002/chem.201505034] [PMID: 26948157]
[84]
Cao, Y.C.; Jin, R.; Mirkin, C.A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science, 2002, 297(5586), 1536-1540.
[http://dx.doi.org/10.1126/science.297.5586.1536] [PMID: 12202825]
[85]
Braun, G.; Lee, S.J.; Dante, M.; Nguyen, T-Q.; Moskovits, M.; Reich, N. Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films. J. Am. Chem. Soc., 2007, 129(20), 6378-6379.
[http://dx.doi.org/10.1021/ja070514z] [PMID: 17469825]
[86]
Gao, F.; Lei, J.; Ju, H. Label-free surface-enhanced Raman spectroscopy for sensitive DNA detection by DNA-mediated silver nanoparticle growth. Anal. Chem., 2013, 85(24), 11788-11793.
[http://dx.doi.org/10.1021/ac4032109] [PMID: 24171654]
[87]
Qian, Y.; Fan, T.; Yao, Y.; Shi, X.; Liao, X.; Zhou, F.; Gao, F. Label-free and Raman dyes-free surface-enhanced Raman spectroscopy for detection of DNA. Sens. Actuators B Chem., 2018, 254, 483-489.
[http://dx.doi.org/10.1016/j.snb.2017.07.112]
[88]
Sharma, B.; Frontiera, R.R.; Henry, A-I.; Ringe, E.; Van Duyne, R.P. SERS: materials, applications, and the future. Mater. Today, 2012, 15(1-2), 16-25.
[http://dx.doi.org/10.1016/S1369-7021(12)70017-2]
[89]
Hwang, D.W.; Hong, B.H.; Lee, D.S. Multifunctional graphene oxide for bioimaging: emphasis on biological research. Eur. J. Nanomed., 2017, 9(2), 47-57.
[http://dx.doi.org/10.1515/ejnm-2016-0036]
[90]
Fan, Z.; Kanchanapally, R.; Ray, P.C. Hybrid graphene oxide based ultrasensitive SERS probe for label-free biosensing. J. Phys. Chem. Lett., 2013, 4(21), 3813-3818.
[http://dx.doi.org/10.1021/jz4020597]
[91]
Lin, T-W.; Wu, H-Y.; Tasi, T-T.; Lai, Y-H.; Shen, H-H. Surface-enhanced Raman spectroscopy for DNA detection by the self-assembly of Ag nanoparticles onto Ag nanoparticle-graphene oxide nanocomposites. Phys. Chem. Chem. Phys., 2015, 17(28), 18443-18448.
[http://dx.doi.org/10.1039/C5CP02805A] [PMID: 26106968]
[92]
He, S.; Liu, K-K.; Su, S.; Yan, J.; Mao, X.; Wang, D.; He, Y.; Li, L-J.; Song, S.; Fan, C. Graphene-based high-efficiency surface-enhanced Raman scattering-active platform for sensitive and multiplex DNA detection. Anal. Chem., 2012, 84(10), 4622-4627.
[http://dx.doi.org/10.1021/ac300577d] [PMID: 22497579]
[93]
Duan, B.; Zhou, J.; Fang, Z.; Wang, C.; Wang, X.; Hemond, H.F.; Chan-Park, M.B.; Duan, H. Surface enhanced Raman scattering by graphene-nanosheet-gapped plasmonic nanoparticle arrays for multiplexed DNA detection. Nanoscale, 2015, 7(29), 12606-12613.
[http://dx.doi.org/10.1039/C5NR02164B] [PMID: 26147399]
[94]
Prinz, J.; Matković, A.; Pešić, J.; Gajić, R.; Bald, I. Hybrid structures for surface-enhanced Raman scattering: DNA origami/gold nanoparticle dimer/graphene. Small, 2016, 12(39), 5458-5467.
[http://dx.doi.org/10.1002/smll.201601908] [PMID: 27594092]
[95]
Botti, S.; Rufoloni, A.; Laurenzi, S.; Gay, S.; Rindzevicius, T.; Schmidt, M.S.; Santonicola, M.G. DNA Self-assembly on graphene surface studied by SERS mapping. Carbon, 2016, 109, 363-372.
[http://dx.doi.org/10.1016/j.carbon.2016.07.069]
[96]
Ouyang, L.; Hu, Y.; Zhu, L.; Cheng, G.J.; Irudayaraj, J. A reusable laser wrapped graphene-Ag array based SERS sensor for trace detection of genomic DNA methylation. Biosens. Bioelectron., 2017, 92, 755-762.
[http://dx.doi.org/10.1016/j.bios.2016.09.072] [PMID: 27825882]
[97]
Ilkhani, H.; Hughes, T.; Li, J.; Zhong, C.J.; Hepel, M. Nanostructured SERS-electrochemical biosensors for testing of anticancer drug interactions with DNA. Biosens. Bioelectron., 2016, 80, 257-264.
[http://dx.doi.org/10.1016/j.bios.2016.01.068] [PMID: 26851584]
[98]
Sidorov, A.N.; Orlando, T.M. Monolayer graphene platform for the study of DNA damage by low-energy electron irradiation. J. Phys. Chem. Lett., 2013, 4(14), 2328-2333.
[http://dx.doi.org/10.1021/jz4010416] [PMID: 27286464]
[99]
Zhao, H.; Cao, X.; Wang, M.; Tao, L.; Pan, X.; Yuan, C.; Qian, W. CD44 antibody-conjugated gold nanostars as SERS probes for distinguishing cancer cells (A549 Cells, H1229 Cells) from normal cells (ATII Cells). Nano, 2015, 10(03)1550034
[http://dx.doi.org/10.1142/S1793292015500344]
[100]
Mukhopadhyay, P.; Chakraborty, S.; Ponnusamy, M.P.; Lakshmanan, I.; Jain, M.; Batra, S.K. Mucins in the pathogenesis of breast cancer: implications in diagnosis, prognosis and therapy. Biochim. Biophys. Acta, 2011, 1815(2), 224-240.
[http://dx.doi.org/10.1016/j.bbcan.2011.01.001] [PMID: 21277939]
[101]
Wu, P.; Gao, Y.; Zhang, H.; Cai, C. Aptamer-guided silver-gold bimetallic nanostructures with highly active surface-enhanced Raman scattering for specific detection and near-infrared photothermal therapy of human breast cancer cells. Anal. Chem., 2012, 84(18), 7692-7699.
[http://dx.doi.org/10.1021/ac3015164] [PMID: 22925013]
[102]
Leamon, C.P.; Low, P.S. Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proc. Natl. Acad. Sci. USA, 1991, 88(13), 5572-5576.
[http://dx.doi.org/10.1073/pnas.88.13.5572] [PMID: 2062838]
[103]
Wu, X.; Luo, L.; Yang, S.; Ma, X.; Li, Y.; Dong, C.; Tian, Y.; Zhang, L.; Shen, Z.; Wu, A. Improved SERS nanoparticles for direct detection of circulating tumor cells in the blood. ACS Appl. Mater. Interfaces, 2015, 7(18), 9965-9971.
[http://dx.doi.org/10.1021/acsami.5b02276] [PMID: 25875511]
[104]
Oseledchyk, A.; Andreou, C.; Wall, M.A.; Kircher, M.F. Folate-targeted surface-enhanced resonance Raman scattering nanoprobe ratiometry for detection of microscopic ovarian cancer. ACS Nano, 2017, 11(2), 1488-1497.
[http://dx.doi.org/10.1021/acsnano.6b06796] [PMID: 27992724]
[105]
Liu, Z.; Guo, Z.; Zhong, H.; Qin, X.; Wan, M.; Yang, B. Graphene oxide based surface-enhanced Raman scattering probes for cancer cell imaging. Phys. Chem. Chem. Phys., 2013, 15(8), 2961-2966.
[http://dx.doi.org/10.1039/c2cp43715e] [PMID: 23340832]
[106]
Zhang, Z.; Wang, M.; Gao, D.; Luo, D.; Liu, Q.; Yang, J.; Li, Y. Targeted Raman imaging of cells using graphene oxide-based hybrids. Langmuir, 2016, 32(40), 10253-10258.
[http://dx.doi.org/10.1021/acs.langmuir.6b02248] [PMID: 27646513]
[107]
Kim, Y-K.; Kim, S.; Cho, S-P.; Jang, H.; Huh, H.; Hong, B.H.; Min, D-H. Facile one-pot photosynthesis of stable Ag@graphene oxide nanocolloid core@shell nanoparticles with sustainable localized surface plasmon resonance properties. J. Mater. Chem. C , 2017, 5(38), 10016-10022.
[http://dx.doi.org/10.1039/C7TC03379F]
[108]
Wirtz, D.; Konstantopoulos, K.; Searson, P.C. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer, 2011, 11(7), 512-522.
[http://dx.doi.org/10.1038/nrc3080] [PMID: 21701513]
[109]
Ashworth, T.R. A case of cancer in which cells similar to those in the tumors were seen in the blood after dead. Aust. Med. J., 1869, 14, 146-147.
[110]
Gu, Y.; Ju, C.; Li, Y.; Shang, Z.; Wu, Y.; Jia, Y.; Niu, Y. Detection of circulating tumor cells in prostate cancer based on carboxylated graphene oxide modified light addressable potentiometric sensor. Biosens. Bioelectron., 2015, 66, 24-31.
[http://dx.doi.org/10.1016/j.bios.2014.10.070] [PMID: 25460877]
[111]
Wang, X.; Qian, X.; Beitler, J.J.; Chen, Z.G.; Khuri, F.R.; Lewis, M.M.; Shin, H.J.C.; Nie, S.; Shin, D.M. Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles. Cancer Res., 2011, 71(5), 1526-1532.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3069] [PMID: 21212408]
[112]
Li, J.; Wang, C.; Kang, H.; Shao, L.; Hu, L.; Xiao, R.; Wang, S.; Gu, B. Label-free identification carbapenem-resistant Escherichia coli Based on surface-enhanced resonance Raman Scattering. RSC Advances, 2018, 8(9), 4761-4765.
[http://dx.doi.org/10.1039/C7RA13063E]
[113]
Sivanesan, A.; Witkowska, E.; Adamkiewicz, W.; Dziewit, Ł.; Kamińska, A.; Waluk, J. Nanostructured silver-gold bimetallic SERS substrates for selective identification of bacteria in human blood. Analyst (Lond.), 2014, 139(5), 1037-1043.
[http://dx.doi.org/10.1039/c3an01924a] [PMID: 24419003]
[114]
Zhou, H.; Yang, D.; Ivleva, N.P.; Mircescu, N.E.; Niessner, R.; Haisch, C. SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Anal. Chem., 2014, 86(3), 1525-1533.
[http://dx.doi.org/10.1021/ac402935p] [PMID: 24387044]
[115]
Li, Y.; Yang, J.; Zhong, T.; Zhao, N.; Liu, Q.; Shi, H.; Xu, H. Fast and green synthesis of silver nanoparticles/reduced graphene oxide composite as efficient surface-enhanced Raman scattering substrate for bacteria detection. Monatshefte Für Chemie Chem. Mon., 2017, 148(7), 1155-1163.
[http://dx.doi.org/10.1007/s00706-017-1990-0]
[116]
Fan, Z.; Yust, B.; Nellore, B.P.V.; Sinha, S.S.; Kanchanapally, R.; Crouch, R.A. PRamanik, A.; Chavva, S.R.; Sardar, D.; Ray, P.C. Accurate identification and selective removal of rotavirus using a plasmonic-magnetic 3d graphene oxide architecture. J. Phys. Chem. Lett., 2014, 5(18), 3216-3221.
[http://dx.doi.org/10.1021/jz501402b] [PMID: 26276335]
[117]
Qiu, X.; You, X.; Chen, X.; Chen, H.; Dhinakar, A.; Liu, S.; Guo, Z.; Wu, J.; Liu, Z. Development of graphene oxide-wrapped gold nanorods as robust nanoplatform for ultrafast near-infrared SERS bioimaging. Int. J. Nanomedicine, 2017, 12, 4349-4360.
[http://dx.doi.org/10.2147/IJN.S130648] [PMID: 28652737]
[118]
Chen, H.; Liu, Z.; Li, S.; Su, C.; Qiu, X.; Zhong, H.; Guo, Z. Fabrication of graphene and AuNP core polyaniline shell nanocomposites as multifunctional theranostic platforms for SERS real-time monitoring and chemo-photothermal therapy. Theranostics, 2016, 6(8), 1096-1104.
[http://dx.doi.org/10.7150/thno.14361] [PMID: 27279904]
[119]
Ma, X.; Qu, Q.; Zhao, Y.; Luo, Z.; Zhao, Y.; Ng, K.W.; Zhao, Y. Graphene oxide wrapped gold nanoparticles for intracellular Raman imaging and drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(47), 6495.
[http://dx.doi.org/10.1039/c3tb21385d]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 38
Year: 2019
Page: [6878 - 6895]
Pages: 18
DOI: 10.2174/0929867325666181004152247
Price: $65

Article Metrics

PDF: 25
HTML: 5