A Systematic Review on Anti-diabetic Properties of Chalcones

Author(s): Sonia Rocha, Daniela Ribeiro, Eduarda Fernandes*, Marisa Freitas*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 14 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor


The use of anti-diabetic drugs has been increasing worldwide and the evolution of therapeutics has been enormous. Still, the currently available anti-diabetic drugs do not present the desired efficacy and are generally associated with serious adverse effects. Thus, entirely new interventions, addressing the underlying etiopathogenesis of type 2 diabetes mellitus, are required. Chalcones, secondary metabolites of terrestrial plants and precursors of the flavonoids biosynthesis, have been used for a long time in traditional medicine due to their wide-range of biological activities, from which the anti-diabetic activity stands out.

This review systematizes the information found in literature about the anti-diabetic properties of chalcones, in vitro and in vivo. Chalcones are able to exert these properties by acting in different therapeutic targets: Dipeptidyl Peptidase 4 (DPP-4); Glucose Transporter Type 4 (GLUT4), Sodium Glucose Cotransporter 2 (SGLT2), α-amylase, α-glucosidase, Aldose Reductase (ALR), Protein Tyrosine Phosphatase 1B (PTP1B), Peroxisome Proliferator-activated Receptor-gamma (PPARγ) and Adenosine Monophosphate (AMP)-activated Protein Kinase (AMPK). Chalcones are, undoubtedly, promising anti-diabetic agents, and some crucial structural features have already been established. From the Structure-Activity Relationships analysis, it can generally be stated that the presence of hydroxyl, prenyl and geranyl groups in their skeleton improves their activity for the evaluated anti-diabetic targets.

Keywords: Anti-diabetic drugs, chalcones, Dipeptidyl Peptidase 4 (DPP-4), Glucose Transporter Type 4 (GLUT4), Sodium Glucose Cotransporter 2 (SGLT2), α-amylase, α-glucosidase, Aldose Reductase (ALR), Protein Tyrosine Phosphatase 1B (PTP1B), Peroxisome Proliferator-activated Receptor-gamma (PPARγ), Adenosine Monophosphate (AMP)-activated Protein Kinase (AMPK), Structure-activity Relationship (SAR).

Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: a privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810.
[http://dx.doi.org/10.1021/acs.chemrev.7b00020] [PMID: 28488435]
Cazarolli, L.H. Kappel, V.D.; Zanatta, A.P.; Suzuki, D.O.H.; Yunes, R.A.; Nunes, R.J.; Pizzolatti, M.G.; Silva, F.R.M.B. In Studies In Natural Products Chemistry, 2013, 39, 47-89.
Chopra, G. Chalcones: a brief review. Int. J. Res. Eng. Appl. Sci., 2016, 6(5), 173-185.
Evranos Aksöz, B.; Ertan, R. Chemical and structural properties of chalcones I. Fabad. J. Pharm. Sci., 2011, 36(4), 223-242.
Gaonkar, S.L.; Vignesh, U.N. Synthesis and pharmacological properties of chalcones: a review. Res. Chem. Intermed., 2017, 43(11), 6043-6077.
Batovska, D.I.; Todorova, I.T. Trends in utilization of the pharmacological potential of chalcones. Curr. Clin. Pharmacol., 2010, 5(1), 1-29.
[http://dx.doi.org/10.2174/157488410790410579] [PMID: 19891604]
Nowakowska, Z. A review of anti-infective and anti-inflammatory chalcones. Eur. J. Med. Chem., 2007, 42(2), 125-137.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.019] [PMID: 17112640]
Winter, E.; Locatelli, C.; Di Pietro, A.; Creczynski-Pasa, T.B. Recent trends of chalcones potentialities as antiproliferative and antiresistance agents. Anticancer. Agents Med. Chem., 2015, 15(5), 592-604.
[http://dx.doi.org/10.2174/1871520615666150101130800] [PMID: 25553434]
Gomes, M.N.; Muratov, E.N.; Pereira, M.; Peixoto, J.C.; Rosseto, L.P.; Cravo, P.V.L.; Andrade, C.H.; Neves, B.J. Chalcone derivatives: promising starting points for drug design. Molecules, 2017, 22(8)E1210
[http://dx.doi.org/10.3390/molecules22081210] [PMID: 28757583]
Helio, M.T.A.; Clementina, M.M.S.; Jose, A.S.C.; Artur, M.S.S. Chalcones as versatile synthons for the synthesis of 5- and 6-membered nitrogen heterocycles. Curr. Org. Chem., 2014, 18(21), 2750-2775.
Rozmer, Z.; Perjési, P. Naturally occurring chalcones and their biological activities. Phytochem. Rev., 2016, 15(1), 87-120.
Hofmann, E.; Webster, J.; Do, T.; Kline, R.; Snider, L.; Hauser, Q.; Higginbottom, G.; Campbell, A.; Ma, L.; Paula, S. Hydroxylated chalcones with dual properties: Xanthine oxidase inhibitors and radical scavengers. Bioorg. Med. Chem., 2016, 24(4), 578-587.
[http://dx.doi.org/10.1016/j.bmc.2015.12.024] [PMID: 26762836]
Matos, M.J.; Vazquez-Rodriguez, S.; Uriarte, E.; Santana, L. Potential pharmacological uses of chalcones: a patent review (from June 2011 - 2014). Expert Opin. Ther. Pat., 2015, 25(3), 351-366.
[http://dx.doi.org/10.1517/13543776.2014.995627] [PMID: 25598152]
Zhang, E.H.; Wang, R.F.; Guo, S.Z.; Liu, B. An update on antitumor activity of naturally occurring chalcones. Evid. Based Complement. Alternat. Med., 2013, 2013815621
[http://dx.doi.org/10.1155/2013/815621] [PMID: 23690855]
Patel, D.K.; Kumar, R.; Laloo, D.; Hemalatha, S. Diabetes mellitus: an overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity. Asian Pac. J. Trop. Biomed., 2012, 2(5), 411-420.
[http://dx.doi.org/10.1016/S2221-1691(12)60067-7] [PMID: 23569941]
Asmat, U.; Abad, K.; Ismail, K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm. J., 2016, 24(5), 547-553.
[http://dx.doi.org/10.1016/j.jsps.2015.03.013] [PMID: 27752226]
Baynest, H.W. Classification, pathophysiology, diagnosis and management of diabetes mellitus. J. Diabetes Metab., 2015, 6(5), 1-9.
World Health Organization. Global Report On Diabetes, 2016, 88.
American Diabetes Association. 2. Classification and diagnosis of diabetes. Diabetes Care, 2017, 40(1)(Suppl. 1), S11-S24.
[http://dx.doi.org/10.2337/dc17-S005] [PMID: 27979889]
Seuring, T.; Archangelidi, O.; Suhrcke, M. The economic costs of type 2 diabetes: a global systematic review. Pharmacoeconomics, 2015, 33(8), 811-831.
[http://dx.doi.org/10.1007/s40273-015-0268-9] [PMID: 25787932]
Abiola, D.; Sathyapalan, T.; Hepburn, D. Management of type 1 and type 2 diabetes requiring insulin. Prescriber, 2016, 27(9), 50-57.
Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K.; Sasapu, A.; Beebe, A.; Patil, N.; Musham, C.K.; Lohani, G.P.; Mirza, W. Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front. Endocrinol. (Lausanne), 2017, 8, 6.
[http://dx.doi.org/10.3389/fendo.2017.00006] [PMID: 28167928]
Seino, Y.; Fukushima, M.; Yabe, D. GIP and GLP-1, the two incretin hormones: Similarities and differences. J. Diabetes Investig., 2010, 1(1-2), 8-23.
[http://dx.doi.org/10.1111/j.2040-1124.2010.00022.x] [PMID: 24843404]
Yabe, D.; Seino, Y. Two incretin hormones GLP-1 and GIP: comparison of their actions in insulin secretion and β cell preservation. Prog. Biophys. Mol. Biol., 2011, 107(2), 248-256.
[http://dx.doi.org/10.1016/j.pbiomolbio.2011.07.010] [PMID: 21820006]
Kalra, S.; Baruah, M.P.; Sahay, R.K.; Unnikrishnan, A.G.; Uppal, S.; Adetunji, O. Glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes: Past, present, and future. Indian J. Endocrinol. Metab., 2016, 20(2), 254-267.
[http://dx.doi.org/10.4103/2230-8210.176351] [PMID: 27042424]
Capuano, A.; Sportiello, L.; Maiorino, M.I.; Rossi, F.; Giugliano, D.; Esposito, K. Dipeptidyl peptidase-4 inhibitors in type 2 diabetes therapy--focus on alogliptin. Drug Des. Devel. Ther., 2013, 7, 989-1001.
[http://dx.doi.org/10.2147/DDDT.S37647] [PMID: 24068868]
Tiwari, N. Therapeutic targets for diabetes mellitus: an update. Clin. Pharmacol. Biopharm., 2014, 3(1), 1-10.
Anishkumar, C.; Rashmi, M.; Tabassum, K. Novel therapeutic targets for management of type-2 diabetes mellitus. Immunol. Endocr. Metab. Agents Med. Chem., 2016, 16(1), 18-30.
Wilding, J.P. The role of the kidneys in glucose homeostasis in type 2 diabetes: clinical implications and therapeutic significance through sodium glucose co-transporter 2 inhibitors. Metabolism, 2014, 63(10), 1228-1237.
[http://dx.doi.org/10.1016/j.metabol.2014.06.018] [PMID: 25104103]
Jesus, A.R.; Vila-Viçosa, D.; Machuqueiro, M.; Marques, A.P.; Dore, T.M.; Rauter, A.P. Targeting type 2 diabetes with C-glucosyl dihydrochalcones as selective sodium glucose co-transporter 2 (SGLT2) inhibitors: synthesis and biological evaluation. J. Med. Chem., 2017, 60(2), 568-579.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01134] [PMID: 28098449]
Norton, L.; Shannon, C.E.; Fourcaudot, M.; Hu, C.; Wang, N.; Ren, W.; Song, J.; Abdul-Ghani, M.; DeFronzo, R.A.; Ren, J.; Jia, W. Sodium-glucose co-transporter (SGLT) and glucose transporter (GLUT) expression in the kidney of type 2 diabetic subjects. Diabetes Obes. Metab., 2017, 19(9), 1322-1326.
[http://dx.doi.org/10.1111/dom.13003] [PMID: 28477418]
Raskin, P. Sodium-glucose cotransporter inhibition: therapeutic potential for the treatment of type 2 diabetes mellitus. Diabetes Metab. Res. Rev., 2013, 29(5), 347-356.
[http://dx.doi.org/10.1002/dmrr.2403] [PMID: 23463735]
American Diabetes Association. 6. Glycemic Targets. Diabetes Care, 2017, 40(1), 48-56.
Huang, S.; Czech, M.P. The GLUT4 glucose transporter. Cell Metab., 2007, 5(4), 237-252.
[http://dx.doi.org/10.1016/j.cmet.2007.03.006] [PMID: 17403369]
Mueckler, M.; Thorens, B. The SLC2 (GLUT) family of membrane transporters. Mol. Aspects Med., 2013, 34(2-3), 121-138.
[http://dx.doi.org/10.1016/j.mam.2012.07.001] [PMID: 23506862]
Li, Y.; Zheng, L.; Wang, D.; Zhang, X.; Li, J.; Ali, S.; Lu, J.; Zong, H.; Xu, X. Staurosporine as an agonist for induction of GLUT4 translocation, identified by a pH-sensitive fluorescent IRAP-mOrange2 probe. Biochem. Biophys. Res. Commun., 2016, 480(4), 534-538.
[http://dx.doi.org/10.1016/j.bbrc.2016.10.056] [PMID: 27769857]
Mahmood, N. A review of α-amylase inhibitors on weight loss and glycemic control in pathological state such as obesity and diabetes. Comp. Clin. Pathol., 2016, 25(6), 1253-1264.
Agarwal, P.; Gupta, R. Alpha-amylase inhibition can treat diabetes mellitus. Res. Rev. J. Med. Health Sci., 2016, 5(4), 1-8.
Quezada-Calvillo, R.; Sim, L.; Ao, Z.; Hamaker, B.R.; Quaroni, A.; Brayer, G.D.; Sterchi, E.E.; Robayo-Torres, C.C.; Rose, D.R.; Nichols, B.L. Luminal starch substrate “brake” on maltase-glucoamylase activity is located within the glucoamylase subunit. J. Nutr., 2008, 138(4), 685-692.
[http://dx.doi.org/10.1093/jn/138.4.685] [PMID: 18356321]
Lee, M.Y.; Choi, D.S.; Lee, M.K.; Lee, H.W.; Park, T.S.; Kim, D.M.; Chung, C.H.; Kim, D.K.; Kim, I.J.; Jang, H.C.; Park, Y.S.; Kwon, H.S.; Lee, S.H.; Shin, H.K. Comparison of acarbose and voglibose in diabetes patients who are inadequately controlled with basal insulin treatment: randomized, parallel, open-label, active-controlled study. J. Korean Med. Sci., 2014, 29(1), 90-97.
[http://dx.doi.org/10.3346/jkms.2014.29.1.90] [PMID: 24431911]
Kalra, S. Alpha glucosidase inhibitors. J. Pak. Med. Assoc., 2014, 64(4), 474-476.
[PMID: 24864650]
Joshi, S.R.; Standl, E.; Tong, N.; Shah, P.; Kalra, S.; Rathod, R. Therapeutic potential of α-glucosidase inhibitors in type 2 diabetes mellitus: an evidence-based review. Expert Opin. Pharmacother., 2015, 16(13), 1959-1981.
[http://dx.doi.org/10.1517/14656566.2015.1070827] [PMID: 26255950]
El-Kabbani, O.; Podjarny, A. Selectivity determinants of the aldose and aldehyde reductase inhibitor-binding sites. Cell. Mol. Life Sci., 2007, 64(15), 1970-1978.
[http://dx.doi.org/10.1007/s00018-007-6514-3] [PMID: 17497245]
Tang, W.H.; Martin, K.A.; Hwa, J. Aldose reductase, oxidative stress, and diabetic mellitus. Front. Pharmacol., 2012, 3, 87.
[http://dx.doi.org/10.3389/fphar.2012.00087] [PMID: 22582044]
Maheswara, A.C.G.K.V.C.U. Polyol pathway: a review on a potential target for the prevention of diabetic complications. Int. J. Res. Pharm. Sci., 2014, 2(2), 696-711.
Chalk, C.; Benstead, T.J.; Moore, F. Aldose reductase inhibitors for the treatment of diabetic polyneuropathy. Cochrane Database Syst. Rev., 2007, (4)CD004572
[http://dx.doi.org/10.1002/14651858.CD004572.pub2] [PMID: 17943821]
Hotta, N.; Akanuma, Y.; Kawamori, R.; Matsuoka, K.; Oka, Y.; Shichiri, M.; Toyota, T.; Nakashima, M.; Yoshimura, I.; Sakamoto, N.; Shigeta, Y. Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy: the 3-year, multicenter, comparative Aldose Reductase Inhibitor-Diabetes Complications Trial. Diabetes Care, 2006, 29(7), 1538-1544.
[http://dx.doi.org/10.2337/dc05-2370] [PMID: 16801576]
Proença, C.; Freitas, M.; Ribeiro, D.; Sousa, J.L.C.; Carvalho, F.; Silva, A.M.S.; Fernandes, P.A.; Fernandes, E. Inhibition of protein tyrosine phosphatase 1B by flavonoids: A structure - activity relationship study. Food Chem. Toxicol., 2018, 111, 474-481.
[http://dx.doi.org/10.1016/j.fct.2017.11.039] [PMID: 29175190]
Zabolotny, J.M.; Bence-Hanulec, K.K.; Stricker-Krongrad, A.; Haj, F.; Wang, Y.; Minokoshi, Y.; Kim, Y.B.; Elmquist, J.K.; Tartaglia, L.A.; Kahn, B.B.; Neel, B.G. PTP1B regulates leptin signal transduction in vivo. Dev. Cell, 2002, 2(4), 489-495.
[http://dx.doi.org/10.1016/S1534-5807(02)00148-X] [PMID: 11970898]
Tamrakar, A.K.; Maurya, C.K.; Rai, A.K. PTP1B inhibitors for type 2 diabetes treatment: a patent review (2011 - 2014). Expert Opin. Ther. Pat., 2014, 24(10), 1101-1115.
[http://dx.doi.org/10.1517/13543776.2014.947268] [PMID: 25120222]
Jay, M.A.; Ren, J. Peroxisome proliferator-activated receptor (PPAR) in metabolic syndrome and type 2 diabetes mellitus. Curr. Diabetes Rev., 2007, 3(1), 33-39.
[http://dx.doi.org/10.2174/157339907779802067] [PMID: 18220654]
Janani, C.; Ranjitha Kumari, B.D. PPAR gamma gene--a review. Diabetes Metab. Syndr., 2015, 9(1), 46-50.
[http://dx.doi.org/10.1016/j.dsx.2014.09.015] [PMID: 25450819]
Soccio, R.E.; Chen, E.R.; Lazar, M.A. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab., 2014, 20(4), 573-591.
[http://dx.doi.org/10.1016/j.cmet.2014.08.005] [PMID: 25242225]
Consoli, A.; Formoso, G. Do thiazolidinediones still have a role in treatment of type 2 diabetes mellitus? Diabetes Obes. Metab., 2013, 15(11), 967-977.
[http://dx.doi.org/10.1111/dom.12101] [PMID: 23522285]
Coughlan, K.A.; Valentine, R.J.; Ruderman, N.B.; Saha, A.K. AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab. Syndr. Obes., 2014, 7, 241-253.
[http://dx.doi.org/10.2147/DMSO.S43731] [PMID: 25018645]
Kim, J.; Yang, G.; Kim, Y.; Kim, J.; Ha, J. AMPK activators: mechanisms of action and physiological activities. Exp. Mol. Med., 2016, 48e224
[http://dx.doi.org/10.1038/emm.2016.16] [PMID: 27034026]
American Diabetes Association. 8. Pharmacologic approaches to glycemic treatment. Diabetes Care, 2017, 40(Suppl. 1), 64-74.
Bak, E.J.; Park, H.G.; Lee, C.; Lee, T.I.; Woo, G.H.; Na, Y.; Yoo, Y.J.; Cha, J.H. Effects of novel chalcone derivatives on α-glucosidase, dipeptidyl peptidase-4, and adipocyte differentiation in vitro. BMB Rep., 2011, 44(6), 410-414.
[http://dx.doi.org/10.5483/BMBRep.2011.44.6.410] [PMID: 21699755]
Morikawa, T.; Ninomiya, K.; Akaki, J.; Kakihara, N.; Kuramoto, H.; Matsumoto, Y.; Hayakawa, T.; Muraoka, O.; Wang, L.B.; Wu, L.J.; Nakamura, S.; Yoshikawa, M.; Matsuda, H. Dipeptidyl peptidase-IV inhibitory activity of dimeric dihydrochalcone glycosides from flowers of Helichrysum arenarium. J. Nat. Med., 2015, 69(4), 494-506.
[http://dx.doi.org/10.1007/s11418-015-0914-8] [PMID: 25921859]
Dudash, J., Jr; Zhang, X.; Zeck, R.E.; Johnson, S.G.; Cox, G.G.; Conway, B.R.; Rybczynski, P.J.; Demarest, K.T. Glycosylated dihydrochalcones as potent and selective sodium glucose co-transporter 2 (SGLT2) inhibitors. Bioorg. Med. Chem. Lett., 2004, 14(20), 5121-5125.
[http://dx.doi.org/10.1016/j.bmcl.2004.07.082] [PMID: 15380212]
Li, Y.; Goto, T.; Yamakuni, K.; Takahashi, H.; Takahashi, N.; Jheng, H.F.; Nomura, W.; Taniguchi, M.; Baba, K.; Murakami, S.; Kawada, T. 4-Hydroxyderricin, as a PPARγ agonist, promotes adipogenesis, adiponectin secretion, and glucose uptake in 3T3-L1 cells. Lipids, 2016, 51(7), 787-795.
[http://dx.doi.org/10.1007/s11745-016-4154-9] [PMID: 27098252]
Ohta, M.; Fujinami, A.; Kobayashi, N.; Amano, A.; Ishigami, A.; Tokuda, H.; Suzuki, N.; Ito, F.; Mori, T.; Sawada, M.; Iwasa, K.; Kitawaki, J.; Ohnishi, K.; Tsujikawa, M.; Obayashi, H. Two chalcones, 4-hydroxyderricin and xanthoangelol, stimulate GLUT4-dependent glucose uptake through the LKB1/AMP-activated protein kinase signaling pathway in 3T3-L1 adipocytes. Nutr. Res., 2015, 35(7), 618-625.
[http://dx.doi.org/10.1016/j.nutres.2015.05.010] [PMID: 26077869]
Kawabata, K.; Sawada, K.; Ikeda, K.; Fukuda, I.; Kawasaki, K.; Yamamoto, N.; Ashida, H. Prenylated chalcones 4-hydroxyderricin and xanthoangelol stimulate glucose uptake in skeletal muscle cells by inducing GLUT4 translocation. Mol. Nutr. Food Res., 2011, 55(3), 467-475.
[http://dx.doi.org/10.1002/mnfr.201000267] [PMID: 20938990]
Yamamoto, N.; Kawabata, K.; Sawada, K.; Ueda, M.; Fukuda, I.; Kawasaki, K.; Murakami, A.; Ashida, H. Cardamonin stimulates glucose uptake through translocation of glucose transporter-4 in L6 myotubes. Phytother. Res., 2011, 25(8), 1218-1224.
[http://dx.doi.org/10.1002/ptr.3416] [PMID: 21305634]
Sun, H.; Wang, D.; Song, X.; Zhang, Y.; Ding, W.; Peng, X.; Zhang, X.; Li, Y.; Ma, Y.; Wang, R.; Yu, P. Natural prenylchalconaringenins and prenylnaringenins as antidiabetic agents: alpha-glucosidase and alpha-amylase inhibition and in vivo antihyperglycemic and antihyperlipidemic effects. J. Agric. Food Chem., 2017, 65(8), 1574-1581.
[http://dx.doi.org/10.1021/acs.jafc.6b05445] [PMID: 28132506]
Seo, W.D.; Kim, J.H.; Kang, J.E.; Ryu, H.W.; Curtis-Long, M.J.; Lee, H.S.; Yang, M.S.; Park, K.H. Sulfonamide chalcone as a new class of alpha-glucosidase inhibitors. Bioorg. Med. Chem. Lett., 2005, 15(24), 5514-5516.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.087] [PMID: 16202584]
Hu, Y.C.; Luo, Y.D.; Li, L.; Joshi, M.K.; Lu, Y.H. In vitro investigation of 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone for glycemic control. J. Agric. Food Chem., 2012, 60(42), 10683-10688.
[http://dx.doi.org/10.1021/jf303078r] [PMID: 23013379]
Najafian, M.; Ebrahim-Habibi, A.; Hezareh, N.; Yaghmaei, P.; Parivar, K.; Larijani, B. Trans-chalcone: a novel small molecule inhibitor of mammalian alpha-amylase. Mol. Biol. Rep., 2011, 38(3), 1617-1620.
[http://dx.doi.org/10.1007/s11033-010-0271-3] [PMID: 20857221]
Kim, J.H.; Ryu, Y.B.; Kang, N.S.; Lee, B.W.; Heo, J.S.; Jeong, I.Y.; Park, K.H. Glycosidase inhibitory flavonoids from Sophora flavescens. Biol. Pharm. Bull., 2006, 29(2), 302-305.
[http://dx.doi.org/10.1248/bpb.29.302] [PMID: 16462036]
Yang, X.W.; Huang, M.Z.; Jin, Y.S.; Sun, L.N.; Song, Y.; Chen, H.S. Phenolics from Bidens bipinnata and their amylase inhibitory properties. Fitoterapia, 2012, 83(7), 1169-1175.
[http://dx.doi.org/10.1016/j.fitote.2012.07.005] [PMID: 22814126]
Jabeen, F.; Oliferenko, P.V.; Oliferenko, A.A.; Pillai, G.G.; Ansari, F.L.; Hall, C.D.; Katritzky, A.R. Dual inhibition of the α-glucosidase and butyrylcholinesterase studied by molecular field topology analysis. Eur. J. Med. Chem., 2014, 80, 228-242.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.018] [PMID: 24780600]
Cai, C.Y.; Rao, L.; Rao, Y.; Guo, J.X.; Xiao, Z.Z.; Cao, J.Y.; Huang, Z.S.; Wang, B. Analogues of xanthones--Chalcones and bis-chalcones as α-glucosidase inhibitors and anti-diabetes candidates. Eur. J. Med. Chem., 2017, 130, 51-59.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.007] [PMID: 28242551]
Ansari, F.L.; Umbreen, S.; Hussain, L.; Makhmoor, T.; Nawaz, S.A.; Lodhi, M.A.; Khan, S.N.; Shaheen, F.; Choudhary, M.I. Atta-ur-Rahman. Syntheses and biological activities of chalcone and 1,5-benzothiazepine derivatives: promising new free-radical scavengers, and esterase, urease, and alpha-glucosidase inhibitors. Chem. Biodivers., 2005, 2(4), 487-496.
[http://dx.doi.org/10.1002/cbdv.200590029] [PMID: 17191997]
Imran, S.; Taha, M.; Ismail, N.H.; Kashif, S.M.; Rahim, F.; Jamil, W.; Hariono, M.; Yusuf, M.; Wahab, H. Synthesis of novel flavone hydrazones: in-vitro evaluation of α-glucosidase inhibition, QSAR analysis and docking studies. Eur. J. Med. Chem., 2015, 105, 156-170.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.017] [PMID: 26491979]
Liu, M.; Yin, H.; Liu, G.; Dong, J.; Qian, Z.; Miao, J. Xanthohumol, a prenylated chalcone from beer hops, acts as an α-glucosidase inhibitor in vitro. J. Agric. Food Chem., 2014, 62(24), 5548-5554.
[http://dx.doi.org/10.1021/jf500426z] [PMID: 24897556]
Sun, H.; Li, Y.; Zhang, X.; Lei, Y.; Ding, W.; Zhao, X.; Wang, H.; Song, X.; Yao, Q.; Zhang, Y.; Ma, Y.; Wang, R.; Zhu, T.; Yu, P. Synthesis, α-glucosidase inhibitory and molecular docking studies of prenylated and geranylated flavones, isoflavones and chalcones. Bioorg. Med. Chem. Lett., 2015, 25(20), 4567-4571.
[http://dx.doi.org/10.1016/j.bmcl.2015.08.059] [PMID: 26351039]
Ryu, H.W.; Lee, B.W.; Curtis-Long, M.J.; Jung, S.; Ryu, Y.B.; Lee, W.S.; Park, K.H. Polyphenols from Broussonetia papyrifera displaying potent alpha-glucosidase inhibition. J. Agric. Food Chem., 2010, 58(1), 202-208.
[http://dx.doi.org/10.1021/jf903068k] [PMID: 19954213]
Imran, S.; Taha, M.; Ismail, N.H.; Kashif, S.M.; Rahim, F.; Jamil, W.; Wahab, H.; Khan, K.M. Synthesis, in vitro and docking studies of new flavone ethers as alpha-glucosidase inhibitors. Chem. Biol. Drug Des., 2016, 87(3), 361-373.
[http://dx.doi.org/10.1111/cbdd.12666] [PMID: 26362113]
Han, L.; Fang, C.; Zhu, R.; Peng, Q.; Li, D.; Wang, M. Inhibitory effect of phloretin on α-glucosidase: Kinetics, interaction mechanism and molecular docking. Int. J. Biol. Macromol., 2017, 95, 520-527.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.089] [PMID: 27894824]
Chatsumpun, N.; Sritularak, B.; Likhitwitayawuid, K. New biflavonoids with alpha-glucosidase and pancreatic lipase inhibitory activities from Boesenbergia rotunda. Molecules, 2017, 22(11)E1862
[http://dx.doi.org/10.3390/molecules22111862] [PMID: 29084164]
Aida, K.; Tawata, M.; Shindo, H.; Onaya, T.; Sasaki, H.; Yamaguchi, T.; Chin, M.; Mitsuhashi, H. Isoliquiritigenin: a new aldose reductase inhibitor from glycyrrhizae radix. Planta Med., 1990, 56(3), 254-258.
[http://dx.doi.org/10.1055/s-2006-960950] [PMID: 2118267]
Shindo, H.; Tawata, M.; Aida, K.; Onaya, T. The role of cyclic adenosine 3′,5′-monophosphate and polyol metabolism in diabetic neuropathy. J. Clin. Endocrinol. Metab., 1992, 74(2), 393-398.
[http://dx.doi.org/10.1210/jcem.74.2.1370506] [PMID: 1370506]
Lim, S.S.; Jung, S.H.; Ji, J.; Shin, K.H.; Keum, S.R. Inhibitory effects of 2′-hydroxychalcones on rat lens aldose reductase and rat platelet aggregation. Chem. Pharm. Bull. (Tokyo), 2000, 48(11), 1786-1789.
[http://dx.doi.org/10.1248/cpb.48.1786] [PMID: 11086916]
Lim, S.S.; Jung, S.H.; Ji, J.; Shin, K.H.; Keum, S.R. Synthesis of flavonoids and their effects on aldose reductase and sorbitol accumulation in streptozotocin-induced diabetic rat tissues. J. Pharm. Pharmacol., 2001, 53(5), 653-668.
[http://dx.doi.org/10.1211/0022357011775983] [PMID: 11370705]
Jung, H.A.; Yoon, N.Y.; Kang, S.S.; Kim, Y.S.; Choi, J.S. Inhibitory activities of prenylated flavonoids from Sophora flavescens against aldose reductase and generation of advanced glycation endproducts. J. Pharm. Pharmacol., 2008, 60(9), 1227-1236.
[http://dx.doi.org/10.1211/jpp.60.9.0016] [PMID: 18718128]
Lee, E.H.; Song, D.G.; Lee, J.Y.; Pan, C.H.; Um, B.H.; Jung, S.H. Inhibitory effect of the compounds isolated from Rhus verniciflua on aldose reductase and advanced glycation endproducts. Biol. Pharm. Bull., 2008, 31(8), 1626-1630.
[http://dx.doi.org/10.1248/bpb.31.1626] [PMID: 18670102]
Severi, F.; Benvenuti, S.; Costantino, L.; Vampa, G.; Melegari, M.; Antolini, L. Synthesis and activity of a new series of chalcones as aldose reductase inhibitors. Eur. J. Med. Chem., 1998, 33(11), 859-866.
Na, M.; Jang, J.; Njamen, D.; Mbafor, J.T.; Fomum, Z.T.; Kim, B.Y.; Oh, W.K.; Ahn, J.S. Protein tyrosine phosphatase-1B inhibitory activity of isoprenylated flavonoids isolated from Erythrina mildbraedii. J. Nat. Prod., 2006, 69(11), 1572-1576.
[http://dx.doi.org/10.1021/np0601861] [PMID: 17125223]
Sun, L.P.; Gao, L.X.; Ma, W.P.; Nan, F.J.; Li, J.; Piao, H.R. Synthesis and biological evaluation of 2,4,6-trihydroxychalcone derivatives as novel protein tyrosine phosphatase 1B inhibitors. Chem. Biol. Drug Des., 2012, 80(4), 584-590.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01431.x] [PMID: 22805439]
Sasaki, T.; Li, W.; Higai, K.; Quang, T.H.; Kim, Y.H.; Koike, K. Protein tyrosine phosphatase 1B inhibitory activity of lavandulyl flavonoids from roots of Sophora flavescens. Planta Med., 2014, 80(7), 557-560.
[http://dx.doi.org/10.1055/s-0034-1368400] [PMID: 24782228]
Li, J.L.; Gao, L.X.; Meng, F.W.; Tang, C.L.; Zhang, R.J.; Li, J.Y.; Luo, C.; Li, J.; Zhao, W.M. PTP1B inhibitors from stems of Angelica keiskei (Ashitaba). Bioorg. Med. Chem. Lett., 2015, 25(10), 2028-2032.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.003] [PMID: 25891102]
Zhang, L.B.; Lei, C.; Gao, L.X.; Li, J.Y.; Li, J.; Hou, A.J. Isoprenylated flavonoids with PTP1B inhibition from Macaranga denticulata. Nat. Prod. Bioprospect., 2016, 6(1), 25-30.
[http://dx.doi.org/10.1007/s13659-015-0082-2] [PMID: 26791751]
Xie, C.; Sun, Y.; Pan, C.Y.; Tang, L.M.; Guan, L.P. 2,4-Dihydroxychalcone derivatives as novel potent cell division cycle 25B phosphatase inhibitors and protein tyrosine phosphatase 1B inhibitors. Pharmazie, 2014, 69(4), 257-262.
[http://dx.doi.org/10.1691/ph.2014.3824] [PMID: 24791588]
Liu, Z.; Lee, W.; Kim, S.N.; Yoon, G.; Cheon, S.H. Design, synthesis, and evaluation of bromo-retrochalcone derivatives as protein tyrosine phosphatase 1B inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(12), 3755-3758.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.057] [PMID: 21555221]
Yoon, G.; Lee, W.; Kim, S.N.; Cheon, S.H. Inhibitory effect of chalcones and their derivatives from Glycyrrhiza inflata on protein tyrosine phosphatase 1B. Bioorg. Med. Chem. Lett., 2009, 19(17), 5155-5157.
[http://dx.doi.org/10.1016/j.bmcl.2009.07.054] [PMID: 19632832]
Cui, L.; Ndinteh, D.T.; Na, M.; Thuong, P.T.; Silike-Muruumu, J.; Njamen, D.; Mbafor, J.T.; Fomum, Z.T.; Ahn, J.S.; Oh, W.K. Isoprenylated flavonoids from the stem bark of Erythrina abyssinica. J. Nat. Prod., 2007, 70(6), 1039-1042.
[http://dx.doi.org/10.1021/np060477+] [PMID: 17489632]
Matin, A.; Gavande, N.; Kim, M.S.; Yang, N.X.; Salam, N.K.; Hanrahan, J.R.; Roubin, R.H.; Hibbs, D.E. 7-Hydroxy-benzopyran-4-one derivatives: a novel pharmacophore of peroxisome proliferator-activated receptor alpha and -gamma (PPARalpha and gamma) dual agonists. J. Med. Chem., 2009, 52(21), 6835-6850.
[http://dx.doi.org/10.1021/jm900964r] [PMID: 19807106]
Jung, S.H.; Park, S.Y.; Kim-Pak, Y.; Lee, H.K.; Park, K.S.; Shin, K.H.; Ohuchi, K.; Shin, H.K.; Keum, S.R.; Lim, S.S. Synthesis and PPAR-gamma ligand-binding activity of the new series of 2′-hydroxychalcone and thiazolidinedione derivatives. Chem. Pharm. Bull. (Tokyo), 2006, 54(3), 368-371.
[http://dx.doi.org/10.1248/cpb.54.368] [PMID: 16508194]
Park, H.G.; Bak, E.J.; Woo, G.H.; Kim, J.M.; Quan, Z.; Kim, J.M.; Yoon, H.K.; Cheon, S.H.; Yoon, G.; Yoo, Y.J.; Na, Y.; Cha, J.H. Licochalcone E has an antidiabetic effect. J. Nutr. Biochem., 2012, 23(7), 759-767.
[http://dx.doi.org/10.1016/j.jnutbio.2011.03.021] [PMID: 21840191]
Enoki, T.; Ohnogi, H.; Nagamine, K.; Kudo, Y.; Sugiyama, K.; Tanabe, M.; Kobayashi, E.; Sagawa, H.; Kato, I. Antidiabetic activities of chalcones isolated from a Japanese Herb, Angelica keiskei. J. Agric. Food Chem., 2007, 55(15), 6013-6017.
[http://dx.doi.org/10.1021/jf070720q] [PMID: 17583349]
Jiang, B.; Le, L.; Zhai, W.; Wan, W.; Hu, K.; Yong, P.; He, C.; Xu, L.; Xiao, P. Protective effects of marein on high glucose-induced glucose metabolic disorder in HepG2 cells. Phytomedicine, 2016, 23(9), 891-900.
[http://dx.doi.org/10.1016/j.phymed.2016.05.004] [PMID: 27387397]
Choi, J.W.; Kim, M.; Song, H.; Lee, C.S.; Oh, W.K.; Mook-Jung, I.; Chung, S.S.; Park, K.S. DMC (2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone) improves glucose tolerance as a potent AMPK activator. Metabolism, 2016, 65(4), 533-542.
[http://dx.doi.org/10.1016/j.metabol.2015.12.010] [PMID: 26975545]
Guo, H.; Zhao, H.; Kanno, Y.; Li, W.; Mu, Y.; Kuang, X.; Inouye, Y.; Koike, K.; Jiang, H.; Bai, H. A dihydrochalcone and several homoisoflavonoids from Polygonatum odoratum are activators of adenosine monophosphate-activated protein kinase. Bioorg. Med. Chem. Lett., 2013, 23(11), 3137-3139.
[http://dx.doi.org/10.1016/j.bmcl.2013.04.027] [PMID: 23639538]
Wakasugi, M.; Noguchi, T.; Inoue, M.; Tawata, M.; Shindo, H.; Onaya, T. Effects of aldose reductase inhibitors on prostacyclin (PGI2) synthesis by aortic rings from rats with streptozotocin-induced diabetes. Prostaglandins Leukot. Essent. Fatty Acids, 1991, 44(4), 233-236.
[http://dx.doi.org/10.1016/0952-3278(91)90022-W] [PMID: 1840007]
Najafian, M.; Ebrahim-Habibi, A.; Yaghmaei, P.; Parivar, K.; Larijani, B. Core structure of flavonoids precursor as an antihyperglycemic and antihyperlipidemic agent: an in vivo study in rats. Acta Biochim. Pol., 2010, 57(4), 553-560.
[http://dx.doi.org/10.18388/abp.2010_2443] [PMID: 21060897]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 01 October, 2018
Page: [2257 - 2321]
Pages: 65
DOI: 10.2174/0929867325666181001112226
Price: $65

Article Metrics

PDF: 45