New Trypanosoma cruzi Trypanothione Reductase Inhibitors Identification using the Virtual Screening in Database of Nucleus Bioassay, Biosynthesis and Ecophysiology (NuBBE)

Author(s): Nelcí do Carmo Santos, Vinícius G. da Paixão, Samuel S. da Rocha Pita*

Journal Name: Anti-Infective Agents
Formerly Anti-Infective Agents in Medicinal Chemistry

Volume 17 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Background: American trypanosomiasis, also known as Chagas disease, is caused by the protozoan Trypanosoma cruzi (T. cruzi) and affects approximately 10 to 12 million, primarily in Latin America. Since its discovery in 1909, there is no effective treatment for its chronic phase, with benzonidazole being the only anti-trypanosoma drug used in Brazil, despite the absence of conclusive evidence to prove its efficacy and safety. Thus, it is necessary to develop new drugs that are more effective and selective against Trypanosoma cruzi.

Methods: The T. cruzi enzyme Trypanothione Reductase (TcTR) is a validated target for the discovery of new antiprotozoal compounds and we employed the Virtual Screening technique on the database of Nucleus of Bioassays, Biosynthesis and Ecophysiology (NuBBE), aiming to search for new chemical moieties against T. cruzi. From these we selected the 10 best ligand energies interactions and verified their interaction profile with the main TcTR sites through the AuPosSOM server (

Results and Conclusion: Finally, we analyzed some pharmacokinetics and toxicological information through the servers Aggregator Advisor (, Pred-hERG 4.0 ( and pkCSM ( which we expect will be useful in in vitro preclinical trials.

Keywords: Chagas'disease, Trypanosoma cruzi, trypanothione reductase, virtual screeening, NuBBE, aggregator advisor, Pred-hERG 4.0, pkCSM.

Hotez, P.J.; Dumonteil, E.; Betancourt-Cravioto, M.; Bottazzi, M.E.; Tapia-Conyer, R.; Meymandi, S. An unfolding tragedy of chagas disease in north america. PLoS Negl. Trop. Dis., 2013, 7(10)e2300
Herricks, J.R.; Hotez, P.J.; Wanga, V.; Coffeng, L.E.; Haagsma, J.A.; Basáñez, M-G.; Murray, C.J.L. The global burden of disease study 2013: What does it mean for the NTDs? PLoS Negl. Trop. Dis., 2017, 11(8)e0005424
Bern, C.; Kjos, S.; Yabsley, M.J.; Montgomery, S.P. Trypanosoma cruzi and Chagas’ Disease in the United States. Clin. Microbiol. Rev., 2011, 24, 655-681.
Maccari, G.; Jaeger, T.; Moraca, F.; Biava, M.; Flohé, L.; Botta, M. A fast virtual screening approach to identify structurally diverse inhibitors of trypanothione reductase. Bioorg. Med. Chem. Lett., 2011, 21, 5255-5258.
Schmidt, T.J.; Khalid, S.A.; Romanha, A.J.; Alves, T.M.; Biavatti, M.W.; Brun, R. The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases - part II. Curr. Med. Chem., 2012, 19, 2128-2175.
Noya, B.A.; Díaz-Bello, Z.; Colmenares, C.; Ruiz-Guevara, R.; Mauriello, L.; Muñoz-Calderón, A. Update on oral Chagas disease outbreaks in Venezuela: Epidemiological, clinical and diagnostic approaches. Mem. Inst. Oswaldo Cruz, 2015, 110, 377-386.
Liu, Q.; Zhou, X.N. Preventing the transmission of American trypanosomiasis and its spread into non-endemic countries. Infect. Dis. Poverty, 2015, 4, 1-11.
Ferreira, A.M.; Sabino, E.C.; de Oliveira, L.C.; Oliveira, C.D.L.; Cardoso, C.S.; Ribeiro, A.L.P. Benznidazole use among patients with chronic chagas’ Cardiomyopathy in an endemic region of brazil. PLoS One, 2016, 11, 1-13.
Renslo, A.R.; McKerrow, J.H. Drug discovery and development for neglected parasitic diseases. Nat. Chem. Biol., 2006, 2, 701-710.
Pita, S.S.R.; Pascutti, P.G. Alvos terapêuticos na doença de chagas: A Tripanotiona redutase como foco. Revista Virtual de Química, 2011, 3, 307-324.
Jaeger, T.; Flohé, L. The thiol-based redox networks of pathogens: Unexploited targets in the search for new drugs. Biofactors, 2006, 27, 109-120.
Krauth-Siegel, R.L.; Comini, M.A. Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim. Biophys. Acta, 2008, 1780, 1236-1248.
Paulino, M.; Iribarne, F.; Dubin, M.; Aguilera-Morales, S.; Tapia, O.; Stoppani, A.O.M. The chemotherapy of chagas’ disease: An overview. Mini Rev. Med. Chem., 2005, 5, 499-519.
Fairlamb, A.H.; Cerami, A. Metabolism and functions of trypanothione in the Kinetoplastida. Annu. Rev. Microbiol., 1992, 46, 695-729.
Paixão, V.G.; Pita, S.S.R. Triagem virtual aplicada na busca de inibidores da tripanotiona redutase de trypanosoma cruzi utilizando a base de dados de produtos naturais do semiárido baiano (NatProDB). Revista Virtual de Química, 2016, 8, 1289-1310.
Krieger, S.; Schwarz, W.; Ariyanayagam, M.R.; Fairlamb, A.H.; Krauth-Siegel, R.L.; Clayton, C. Trypanosomes lacking trypanothione reductase are avirulent and show increased sensitivity to oxidative stress. Mol. Microbiol., 2000, 35(3), 542-552.
Bond, C.S.; Zhang, Y.; Berriman, M.; Cunningham, M.L.; Fairlamb, A.H.; Hunter, W.N. Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors. Structure, 1999, 7, 81-89.
Venkatesan, S.K.; Dubey, V.K. Footprinting of inhibitor interactions of in silico identified inhibitors of trypanothione reductase of leishmania parasite. ScientificWorldJournal, 2012, 2012963658
Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital electronegativity - A rapid access to atomic charges. Tetrahedron, 1980, 36(22), 3219-3228.
Olsson, M.H.M.; Sondergaad, C.R.; Rostkowski, M.; Jensen, J.H. PROPKA3: Consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput., 2011, 7, 525-537.
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30, 2785-2791.
Goodford, P.G. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem., 1985, 28, 849-847.
Valli, M.; Santos, R.N.; Figueira, L.D.; Nakajima, C.H.; Castro-Gamboa, I.; Andricopulo, A.D. Development of a natural products database from the biodiversity of brazil. J. Nat. Prod., 2013, 76, 439-444.
Forli, S. Raccon AutoDock VS: An automated tool for preparing AutoDock virtual screenings (Acessed on May, 04, 2017).
Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K. Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19, 1639-1662.
Rodrigues, P.R.; Mantoani, S.P.; de Almeida, J.R.; Pinsetta, F.R.; Semighini, E.P.; da Silva, V.B. Estratégias de triagem virtual no planejamento de fármacos. Revista Virtual de Química, 2012, 4, 739-776.
Sant’Anna, C.M.R. Métodos de modelagem molecular para estudo e planejamento de compostos bioativos: Uma introdução. Revista Virtual de Química, 2009, 1, 49-57.
Bouvier, G.; Evrard-Todeschi, N.; Girault, J.P.; Bertho, G. Automatic clustering of docking poses in virtual screening process using self-organizing map. Bioinformatics, 2010, 26, 53-60.
Mantsyzov, A.B.; Bouvier, G.; Evrard-Todeschi, N.; Bertho, G. Contact-based ligand-clustering approach for the identification of active compounds in virtual screening. Adv. Appl. Bioinform. Chem., 2012, 5, 61-79.
Irwin, J.J.; Duan, D.; Torosyan, H.; Doak, A.K.; Ziebart, K.T.; Sterling, T. An aggregation advisor for ligand discovery. J. Med. Chem., 2015, 58, 7076-7087.
Braga, R.C.; Alves, V.M.; Silva, M.F.B.; Muratov, E.; Fourches, D.; Lião, L.M. Pred-hERG: A novel web-accessible computational tool for predicting cardiac toxicity. Mol. Inform., 2015, 34, 698-701.
Braga, R.C.; Alves, V.M.; Silva, M.F.B.; Muratov, E.; Fourches, D.; Tropsha, A. Tuning HERG out: Antitarget QSAR models for drug development. Curr. Top. Med. Chem., 2014, 14, 1399-1415.
Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 2015, 58, 4066-4072.
Chan, C.; Yin, H.; Garforth, J.; McKie, J.H.; Jaouhari, R.; Speers, P. Phenothiazine inhibitors of trypanothione reductase as potential antitrypanosomal and antileishmanial drugs. J. Med. Chem., 1998, 41, 148-156.
Khan, M.O.; Austin, S.E.; Chan, C.; Yin, H.; Marks, D.; Vaghjiani, S.N. Use of an additional hydrophobic binding site, the z site, in the rational drug design of a new class of stronger trypanothione reductase inhibitor, quaternary alkylammonium phenothiazines. J. Med. Chem., 2000, 43, 3148-3156.
Pita, S.S.R.; Batista, P.R.; Albuquerque, M.G.; Pascutti, P.G. Molecular dynamics simulations of peptide inhibitors complexed with trypanosoma cruzi trypanothione reductase. Chem. Biol. Drug Des., 2012, 80, 561-571.
Zhang, Y.; Bond, C.S.; Bailey, S.; Cunningham, M.L.; Fairlamb, A.H.; Hunter, W.N. The crystal structure of trypanothione reductase from the human pathogen Trypanosoma cruzi at 2.3 A resolution. Pro. Sci., 1996, 5, 52-61.
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46, 3-26.
Kennedy, C.; Brewer, L.; Williams, D. Drug interactions. Clin. Pharmacol. Ther., 2016, 4, 422-426.
Thummel, K.E.; Wilkinson, G.R. In vitro and in vivo drug interactions involving human CYP3A. Annu. Rev. Pharmacol. Toxicol., 1998, 38, 389-430.
Letunic, I.; Bork, P. Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res., 2016, 44(W1)W242-245
MarvinSketch version, calculation module developed by ChemAxon products/marvin2015.
The PyMOL molecular graphics system, Version 2.1.0, 2013.

open access plus

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 05 July, 2019
Page: [138 - 149]
Pages: 12
DOI: 10.2174/2211352516666180928130031

Article Metrics

PDF: 34