CdSe Quantum Dots to Quantum Rods: Transition Studies and Evaluation of Sensitivity as Transducers for Biosensing Glucose

Author(s): Amit D. Saran*, Jayesh R. Bellare.

Journal Name: Nanoscience & Nanotechnology-Asia

Volume 10 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: The estimation of glucose level in the blood serum, has been widely used as a clinical indicator of diabetes. Optical and electrochemical sensing of glucose widely uses Glucose Oxidase (GOD) enzyme, as the catalyst for glucose oxidation, which releases hydrogen peroxide (H2O2). Optical biosensors are superior to their electrochemical counter-parts as they are resistant to electromagnetic interference, easier to fabricate into a microdevice and require low power supply. The quantum-dot-based biosensors work on the phenomenon of fluorescence quenching following the release of H2O2.

Methods: The CdSe nanoparticles are prepared in two series by room-temperature microemulsion method. In series A, only AOT surfactant is used to synthesize spherical CdSe nanoparticles. In series B, the mixed surfactant system of AOT and lecithin is used to synthesize anisotropic CdSe. The morphology and crystallography is studied as the CdSe shape changes from spherical to rod-like. As the CdSe nanoparticles are studied from spherical to rod-like morphology, the transducing sensitivity of these nanoparticles is evaluated with respect to glucose biosensing. The effects of size and shape are studied, based on the fluorescence quenching by H2O2 solutions. The sensitivity of proposed nanoparticles, is evaluated as a function of size, shape, surface area and number concentration of CdSe nanoparticles.

Results: The spherical CdSe nanoparticles are found to increase in size as R(water-to-surfactant ratio) is increased from 4 to 12, in series A. Also, the aspect ratio of CdSe nanoparticle is found to increase from 4.2 to 12.8 as the ratio of AOT to lecithin is varied from 1:0.5 to 1:3. The decrease in sensitivity index is seen with increasing surface area for both series A and B. The sensitivity is decreasing again with increasing maximum dimension of the CdSe nanoparticle in the dispersion. While the trend is reverse in case of the number concentration for CdSe nanoparticles synthesized in series B.

Conclusion: From the data presented, it can be safely concluded that the sensitivity indices for series A are better than those for series B, for the same values of a) the total surface area of CdSe nanoparticles, b) total number concentration, and c) maximum dimension of CdSe nanoparticles. Also, the single surfactant system (series A) is simple, cheaper and more reproducible to synthesize the CdSe nanosheres, as compared with the mixed surfactant system forming CdSe quantum rods (series B). With these points, it is reasonable to report that CdSe spherical QDs are better candidates for glucose biosensing, as compared to CdSe quantum rods.

Keywords: CdSe, microemulsion, AOT, lecithin, quantum dots, quantum rods, transducer, glucose, bio-sensor and sensitivity.

[1]
Qu, L.; Peng, Z.A.; Peng, X. Alternative routes toward high-quality CdSe nanocrystals. Nano Lett., 2001, 1, 333-337.
[2]
Talapin, D.V.; Haubold, S.; Rogach, A.L.; Kornowski, A.; Haase, M.; Weller, H. A novel organometallic synthesis of highly luminescent CdTe nanocrystals. J. Phys. Chem. B, 2001, 105, 2260-2263.
[3]
Murray, C.B.; Norris, D.J.; Bawendi, M.G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc., 1993, 115, 8706-8715.
[4]
Chen, H.; Lo, B.; Hwang, J.; Chang, G.; Chen, C.; Tasi, S.; Wang, S. Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS quantum dots synthesized from ZnO. J. Phys. Chem. B, 2004, 108, 17119-17123.
[5]
Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281, 2013-2016.
[6]
Chan, W.C.W.; Nie, S.M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281, 2016-2018.
[7]
Michalet, X.; Pinaud, F.F.; Bentolila, L.A.; Tsay, J.M.; Doose, S.; Li, J.J.; Sundaresan, G.; Wu, A.M.; Gambhir, S.S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 2005, 307, 538-544.
[8]
Howarth, M.; Liu, W.; Puthenveetil, S.; Zheng, Y.; Marshall, L.F.; Schmidt, M.M.; Wittrup, K.D.; Bawendi, M.G.; Ting, A.Y. Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat. Methods, 2008, 5, 397-399.
[9]
Yan, J.; Hu, M.; Li, D.; He, Y.; Zhao, R.; Jiang, X.Y.; Song, S.P.; Wang, L.H.; Fan, C.H. A nano- and micro- integrated protein chip based on quantum dot probes and a microfluidic network. Nano Res., 2008, 1, 490-496.
[10]
Wu, P.; He, Y.; Wang, H.F.; Yan, X.P. Conjugation of glucose oxidase onto Mn-doped ZnS quantum dots for phosphorescent sensing of glucose in biological fluids. Anal. Chem., 2010, 82, 1427-1433.
[11]
Deng, Z.T.; Zhang, Y.; Yue, J.C.; Tang, F.Q.; Wei, Q. Green and orange CdTe quantum dots as effective ph-sensitive fluorescent probes for dual simultaneous and independent detection of viruses. J. Phys. Chem. B, 2007, 111, 12024-12031.
[12]
Ali, E.M.; Zheng, Y.; Yu, H.H.; Ying, J.Y. Ultrasensitive Pb2+ detection by glutathione-capped quantum dots. Anal. Chem., 2007, 79, 9452-9458.
[13]
Vinayaka, A.C.; Basheer, S.; Thakur, M.S. Bioconjugation of CdTe quantum dot for the detection of 2,4-dichlorophenoxyacetic acid by competitive fluoroimmunoassay based biosensor. Biosens. Bioelectron., 2009, 24, 1615-1620.
[14]
Medintz, I.L.; Pons, T.; Trammell, S.A.; Grimes, A.F.; English, D.S.; Blanco-Canosa, J.B.; Dawson, P.E.; Mattoussi, H. Interactions between redox complexes and semiconductor quantum dots coupled via a peptide bridge. J. Am. Chem. Soc., 2008, 130, 16745-16756.
[15]
Hua, M.; Tiana, J.; Lua, H.T.; Weng, L.X.; Wang, L.H.H. 2O2-sensitive quantum dots for the label-free detection of glucose. Talanta, 2010, 82, 997-1002.
[16]
Cao, L.; Ye, J.; Tong, L.; Tang, B. A new route to the considerable enhancement of glucose oxidase (GOx) activity: The simple assembly of a complex from CdTe quantum dots and GOx, and its glucose sensing. Chem. Eur. J., 2008, 14, 9633-9640.
[17]
Saran, A.D.; Sadawana, M.M.; Srivastava, R.; Bellare, J.R. An optimized quantum dot-ligand system for biosensing applications: Evaluation as a glucose biosensor. Colloids Surf. A., 2011, 384, 393-400.
[18]
Jaricot, S.C.; Darbandi, M.; Kucur, E.; Nann, T. Silica-coated quantum dots: A new tool for electrochemical and optical glucose detection. Mikrochim. Acta, 2008, 160, 375-383.
[19]
Huang, C.P.; Liu, S.W.; Chen, T.M.; Li, Y.K. A new approach for quantitative determination of glucose by using CdSe/ZnS quantum dots. Sens. Actuat. B, 2008, 130, 338-342.
[20]
Wu, W.; Zhou, T.; Shen, J.; Zhou, S. Optical detection of glucose by CdS quantum dots immobilized in smart microgels. Chem. Commun., 2009, 29, 4390-4392.
[21]
Priyam, A.; Chatterjee, A.; Bhattacharya, S.C.; Saha, A. Conformation and activity dependent interaction of glucose oxidase with CdTe quantum dots: Towards developing a nanoparticle based enzymatic assay. Photochem. Photobiol. Sci., 2009, 8(3), 362-370.
[22]
Zhang, Y.; Yang, M.; Portney, N.G.; Cui, D.; Budak, G.; Ozbay, E.; Ozkan, M.; Ozkan, C.S. A surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells. Biomed. Microdevelop, 2008, 10, 321-328.
[23]
Cui, D. Advances and prospects on biomolecules functionalized carbon nanotubes. J. Nanosci. Nanotechnol., 2007, 7, 1298-1314.
[24]
Pan, B.; Cui, D.; Ozkan, C.S.; Ozkan, M.; Xu, P.; Huang, T.; Liu, F.; Chen, H.; Li, Q.; He, R.; Gao, F. Effects of carbon nanotubes on photoluminescence properties of quantum dots. J. Phys. Chem. C, 2008, 112, 939-944.
[25]
Zimnitsky, D.; Xu, J.; Lin, Z.; Tsukruk, V.V. Domain and network aggregation of CdTe quantum rods within Langmuir–Blodgett monolayers. Nanotechnology, 2008, 19215606
[26]
Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M.A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev., 2005, 105, 1025-1102.
[27]
Han, T.T.; Fu, Y.; Wu, J.; Yue, Y.; Dai, N. Optical properties of multicoated CdSe/CdS/ZnS quantum dots for multiphoton applications. J. Phys. D Appl. Phys., 2008, 41115104
[28]
Li, X.; Embden, J.; Chon, J.W.M.; Gu, M. Enhanced two-photon absorption of CdS nanocrystal rods. Appl. Phys. Lett., 2009, 94103117
[29]
Htoon, H.; Hollingworth, J.A.; Malko, A.V.; Dickerson, R.; Klimov, V.I. Light amplification in semiconductor nanocrystals: Quantum rods versus quantum dots. Appl. Phys. Lett., 2003, 82, 4776.
[30]
Shabaev, A.; Efros, A.L. 1D exciton spectroscopy of semiconductor nanorods. Nano Lett., 2004, 4, 1821-1825.
[31]
Li, L.; Hu, J.; Yang, W.; Alivisatos, A.P. Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett., 2001, 1, 349-351.
[32]
Manna, L.; Scher, E.C.; Alivisatos, A.P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc., 2000, 122, 12700-12706.
[33]
Qu, L.; Peng, X. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc., 2002, 124, 2049-2055.
[34]
Gaponik, N.; Talapin, D.V.; Rogach, A.L.; Hoppe, K.; Shevchenko, E.V.; Kornowski, A.; Eychmuller, A.; Weller, H. Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes. J. Phys. Chem. B, 2002, 106, 7177-7185.
[35]
Zhang, W.; Qiao, X. Formation of silver nanoparticles in SDS inverse microemulsions. Mater. Chem. Phys., 2008, 109, 411-416.
[36]
Chu, M.; Sun, Y.; Xu, S. Silica-coated quantum dots fluorescent spheres synthesized using a quaternary ‘water-in-oil’ microemulsion system. J. Nanopart. Res., 2008, 10, 613-624.
[37]
Tai, C.Y.; Chen, C. Particle morphology, habit, and size control of CaCO3 using reverse microemulsion technique. Chem. Eng. Sci., 2008, 63, 3632-3642.
[38]
Marciano, V.; Minore, A.; Liveri, V.T. A simple method to prepare solid nanoparticles of water-soluble salts using water-in-oil microemulsions. Colloid Polym. Sci., 2000, 278, 250-252.
[39]
Debuigne, F.; Jeunieau, L.; Wiame, M.; Nagy, J.B. Synthesis of organic nanoparticles in different w/o microemulsions. Langmuir, 2000, 16, 7605-7611.
[40]
Saran, A.D.; Bellare, J.R. Green engineering for large-scale synthesis of water-soluble and bio-taggable CdSe and CdSe–CdS quantum dots from microemulsion by double-capping. Colloids Surf. A, 2010, 369, 165-175.
[41]
Simmons, B.A.; Li, S.; John, V.T.; McPherson, G.L.; Bose, A.; Zhou, W.; He, J. Morphology of CdS nanocrystals synthesized in a mixed surfactant system. Nano Lett., 2002, 2, 263-268.
[42]
Simmons, B.; Agarwal, V.; McPherson, G.; John, V.; Bose, A. Small angle neutron scattering study of mixed AOT + lecithin reverse micelles. Langmuir, 2002, 18, 8345-8349.
[43]
Israelachvili, J.N.; Wennerstrom, H. Entropic forces between amphiphliic surfaces in liquids. J. Phys. Chem., 1992, 96, 520-531.
[44]
De, T.K.; Maitra, A. Solution behaviour of aerosol OT in non-polar solvents. Adv. Colloid Interface Sci., 1995, 59, 193.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 10
ISSUE: 1
Year: 2020
Page: [29 - 38]
Pages: 10
DOI: 10.2174/2210681208666180927105629
Price: $25

Article Metrics

PDF: 13
HTML: 4
PRC: 1