Sugars and Sweeteners: Structure, Properties and In Silico Modeling

Author(s): Dušanka Janežič, Lorentz Jäntschi*, Sorana D. Bolboacă

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 1 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor


Several studies report the effects of excessive use of sugars and sweeteners in the diet. These include obesity, cardiac diseases, diabetes, and even lymphomas, leukemias, cancers of the bladder and brain, chronic fatigue syndrome, Parkinson's disease, Alzheimer's disease, multiple sclerosis, autism, and systemic lupus. On the other hand, each sugar and sweetener has a distinct metabolic assimilation process, and its chemical structure plays an important role in this process. Several scientific papers present the biological effects of the sugars and sweeteners in relation to their chemical structure. One important issue dealing with the sugars is the degree of similarity in their structures, focusing mostly on optical isomerism. Finding and developing new sugars and sweeteners with desired properties is an emerging research area, in which in silico approaches play an important role.

Keywords: Monosaccharides, disaccharides, glucose isomers, carbohydrates, diet, quantitative structure-taste relationships (QSTR).

Olsen, N.J.; Heitmann, B.L. Intake of calorically sweetened beverages and obesity. Obes. Rev., 2009, 10(1), 68-75.
[] [PMID: 18764885]
Malik, V.S.; Hu, F.B. Fructose and Cardiometabolic Health: What the evidence from sugar-sweetened beverages tells us. J. Am. Coll. Cardiol., 2015, 66(14), 1615-1624.
[] [PMID: 26429086]
DiNicolantonio, J.J.; Lucan, S.C. The wrong white crystals: not salt but sugar as aetiological in hypertension and cardiometabolic disease. Open Heart, 2014, 1(1) e000167
[] [PMID: 25717381]
DiNicolantonio, J.J.; O’Keefe, J.H. Hypertension due to toxic white crystals in the diet: should we blame salt or sugar? Prog. Cardiovasc. Dis., 2016, 59(3), 219-225.
[ 10.1016/j.pcad.2016.07.004] [PMID: 27449852]
Hu, F.B.; Malik, V.S. Sugar-sweetened beverages and risk of obesity and type 2 diabetes: epidemiologic evidence. Physiol. Behav., 2010, 100(1), 47-54.
[] [PMID: 20138901]
Song, I.S.; Han, K.; Ko, Y.; Park, Y.G.; Ryu, J.J.; Park, J.B. Associations between the consumption of carbonated beverages and periodontal disease: The 2008-2010 Korea national health and nutrition examination survey. Medicine (Baltimore), 2016, 95(28) e4253
[] [PMID: 27428235]
Stanhope, K.L. Sugar consumption, metabolic disease and obesity: The state of the controversy. Crit. Rev. Clin. Lab. Sci., 2016, 53(1), 52-67.
[] [PMID: 26376619]
Rippe, J.M.; Angelopoulos, T.J. Sugars, obesity, and cardiovascular disease: results from recent randomized control trials. Eur. J. Nutr., 2016, 55(Suppl. 2), 45-53.
[] [PMID: 27418186]
Bray, G.A.; Popkin, B.M. Dietary sugar and body weight: have we reached a crisis in the epidemic of obesity and diabetes?: health be damned! Pour on the sugar. Diabetes Care, 2014, 37(4), 950-956.
[] [PMID: 24652725]
Mozaffarian, D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation, 2016, 133(2), 187-225.
[] [PMID: 26746178]
Toxqui, L.; Vaquero, M.P. An Intervention with mineral water decreases cardiometabolic risk biomarkers. a crossover, randomised, controlled trial with two mineral waters in moderately hypercholesterolaemic adults. Nutrients, 2016, 8(7)E400
[] [PMID: 27367723]
World Health Organization. 2015. Guideline: sugars intake for adults and children., Available at:.
SACN Carbohydrates and Health Report (2015) Scientific Advisory Committee on Nutrition. Available at: (Accessed Date: 22 August, 2016)
U.S. Department of Health and Human Services and U.S. Department of Agriculture. 2015 - 2020 Dietary Guidelines for Americans. 8th Edition. December 2015. Available at:. (Accessed Date: 2 September, 2016)
Agostoni, C.; Bresson, J.L.; Fairweather-Tait, S. Scientific opinion on the substantiation of health claims related to fructose and reduction of post-prandial glycaemic responses (ID 558) pursuant to Article 13(1) of Regulation (EC) no 1924/2006. EFSA, 2011, 9, 2223-2238.
Institute of Medicine (U.S.). National Academies Press: Washington, 2005. Panel on Macronutrients, Institute of Medicine (U.S.). Standing committee on the scientific evaluation of dietary reference intakes. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids.Chapter 6-dietary carbohydrates: sugars and starches; National Academies Press, Washington, .
Fox, J. Researchers probe aspartame’s sweetness. Chem. Eng. News Archive, 1980, 58(16), 27-28.
Jenner, M.R. Sucralose. How to make sugar sweeter In: Sweeteners ACS Symposium Series; , 1991; 450, pp. 68-87.
Kauffman, G.B.; Priebe, P.M. The discovery of saccharin: a centennial retrospect. Ambix, 1978, 25(3), 191-207.
[] [PMID: 11615708]
Nofre, C.; Tinti, J-M. Neotame: Discovery, properties, utility. Food Chem., 2000, 69(3), 245-257.
Clauss, K.; Jensen, H. Oxathiazinone dioxides - a new group of sweetening agents. Angew. Chem. Int. Ed., 1973, 12(11), 869-876.
Kaufman, L. Michael Sveda. The inventor of cyclamates, dies at 87. New York Times, 1999. Available at:.. (Accessed Date: August 29, 2016).
Report from the commission on dietary food additive intake in the European Union Available at: (Accessed Date: August 25, 2016)
Scientific opinion on the safety of the proposed amendment of the specifications for steviol glycosides (E 960) as a food additive. EFSA J., 2015, 13(12), 4316.
Safety of the proposed extension of use of sucralose (E 955) in foods for special medical purposes in young children. EFSA Journal., 2016, 14(1), 4361.
[ 10.2903/j.efsa.2016.4361]
Neotame as a sweetener and flavour enhancer ‐ Scientific opinion of the panel on food additives, flavourings, processing aids and materials in contact with food. EFSA J., 2007, 5(11), 581.
Low- and no-calorie sweetener safety and estimated intakes. Available at: (Accessed Date: August 25, 2016)
Additional information about high-intensity sweeteners permitted for use in food in the United States. Available at:. (Accessed Date: August 25, 2016)
Sadakane, A.; Tsutsumi, A.; Gotoh, T.; Ishikawa, S.; Ojima, T.; Kario, K.; Nakamura, Y.; Kayaba, K. Dietary patterns and levels of blood pressure and serum lipids in a Japanese population. J. Epidemiol., 2008, 18(2), 58-67.
[] [PMID: 18403855]
Jayalath, V.H.; de Souza, R.J.; Ha, V.; Mirrahimi, A.; Blanco-Mejia, S.; Di Buono, M.; Jenkins, A.L.; Leiter, L.A.; Wolever, T.M.; Beyene, J.; Kendall, C.W.; Jenkins, D.J.; Sievenpiper, J.L. Sugar-sweetened beverage consumption and incident hypertension: a systematic review and meta-analysis of prospective cohorts. Am. J. Clin. Nutr., 2015, 102(4), 914-921.
[] [PMID: 26269365]
Brunkwall, L.; Chen, Y.; Hindy, G.; Rukh, G.; Ericson, U.; Barroso, I.; Johansson, I.; Franks, P.W.; Orho-Melander, M.; Renström, F. Sugar-sweetened beverage consumption and genetic predisposition to obesity in 2 Swedish cohorts. Am. J. Clin. Nutr., 2016, 104(3), 809-815.
[] [PMID: 27465381]
DiNicolantonio, J.J.; Berger, A. Added sugars drive nutrient and energy deficit in obesity: a new paradigm. Open Heart, 2016, 3(2) e000469
[] [PMID: 27547437]
Wang, M.; Yu, M.; Fang, L.; Hu, R.Y. Association between sugar-sweetened beverages and type 2 diabetes: A meta-analysis. J. Diabetes Investig., 2015, 6(3), 360-366.
[] [PMID: 25969723]
Imamura, F.; O’Connor, L.; Ye, Z.; Mursu, J.; Hayashino, Y.; Bhupathiraju, S.N.; Forouhi, N.G. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. BMJ, 2015, 351, h3576.
[] [PMID: 26199070]
Swithers, S.E. Artificial sweeteners are not the answer to childhood obesity. Appetite, 2015, 93, 85-90.
[] [PMID: 25828597]
DiNicolantonio, J.J. Increase in the intake of refined carbo-hydrates and sugar may have led to the health decline of the Greenland Eskimos. Open Heart, 2016, 3(2) e000444
[] [PMID: 27547433]
Pasinetti, G.M.; Eberstein, J.A. Metabolic syndrome and the role of dietary lifestyles in Alzheimer’s disease. J. Neurochem., 2008, 106(4), 1503-1514.
[] [PMID: 18466323]
Sharma, A.; Amarnath, S.; Thulasimani, M.; Ramaswamy, S. Artificial sweeteners as a sugar substitute: Are they really safe? Indian J. Pharmacol., 2016, 48(3), 237-240.
[] [PMID: 27298490]
Suez, J.; Korem, T.; Zeevi, D.; Zilberman-Schapira, G.; Thaiss, C.A.; Maza, O.; Israeli, D.; Zmora, N.; Gilad, S.; Weinberger, A.; Kuperman, Y.; Harmelin, A.; Kolodkin-Gal, I.; Shapiro, H.; Halpern, Z.; Segal, E.; Elinav, E. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature, 2014, 514(7521), 181-186.
[] [PMID: 25231862]
Suez, J.; Korem, T.; Zilberman-Schapira, G.; Segal, E.; Elinav, E. Non-caloric artificial sweeteners and the microbiome: findings and challenges. Gut Microbes, 2015, 6(2), 149-155.
[] [PMID: 25831243]
Lakhan, S.E.; Kirchgessner, A. The emerging role of dietary fructose in obesity and cognitive decline. Nutr. J., 2013, 12, 114.
[] [PMID: 23924506]
Chiavaroli, L.; Ha, V.; de Souza, R.J.; Kendall, C.W.C.; Sievenpiper, J.L. Fructose in obesity and cognitive decline: is it the fructose or the excess energy? Nutr. J., 2014, 13, 27.
[] [PMID: 24666585]
Di Ianni, M.E.; Enrique, A.V.; Del Valle, M.E.; Aldana, B.; Rosella, M.A.; Rocha, L.; Castro, E.A.; Bruno-Blanch, L.E.; Talevi, A. Is there a relationship between sweet taste and seizures? Anticonvulsant and proconvulsant effects of non-nutritive sweeteners. Comb. Chem. High Throughput Screen., 2015, 18(4), 335-345.
[] [PMID: 25747439]
Stevens, B.; Yamada, J.; Ohlsson, A.; Haliburton, S.; Shorkey, A. Sucrose for analgesia in newborn infants undergoing painful procedures. Cochrane Database Syst. Rev., 2016, 7 CD001069
[] [PMID: 27420164]
Grenov, B.; Briend, A.; Sangild, P.T.; Thymann, T.; Rytter, M.H.; Hother, A.L.; Mølgaard, C.; Michaelsen, K.F. Undernourished children and milk lactose. Food Nutr. Bull., 2016, 37(1), 85-99.
[] [PMID: 26893059]
Whitehouse, C.R.; Boullata, J.; McCauley, L.A. The potential toxicity of artificial sweeteners. AAOHN J., 2008, 56(6), 251-259.
[] [PMID: 18604921]
Yılmaz, S.; Uçar, A. A review of the genotoxic and carcinogenic effects of aspartame: does it safe or not? Cytotechnology, 2014, 66(6), 875-881.
[] [PMID: 24510317]
Halldorsson, T.I.; Strøm, M.; Petersen, S.B.; Olsen, S.F. Intake of artificially sweetened soft drinks and risk of preterm delivery: a prospective cohort study in 59,334 Danish pregnant women. Am. J. Clin. Nutr., 2010, 92(3), 626-633.
[] [PMID: 20592133]
Updegraff, D.M. Semimicro determination of cellulose in biological materials. Anal. Biochem., 1969, 32(3), 420-424.
[] [PMID: 5361396]
Hogan, C.M. Deoxyribonucleic acid.Encyclopedia of Earth; Draggan, S; Cleveland, C., Ed.; National Council for Science and the Environment: Washington, DC, 2010.
Davidson, E.A. Carbohydrate. ©2016 Encyclopædia Britannica, Inc. Available at: (Accessed Date: 9 August, 2016)
Yu, Y.; Mishra, S.; Song, X.; Lasanajak, Y.; Bradley, K.C.; Tappert, M.M.; Air, G.M.; Steinhauer, D.A.; Halder, S.; Cotmore, S.; Tattersall, P.; Agbandje-McKenna, M.; Cummings, R.D.; Smith, D.F. Functional glycomic analysis of human milk glycans reveals the presence of virus receptors and embryonic stem cell biomarkers. J. Biol. Chem., 2012, 287(53), 44784-44799.
[] [PMID: 23115247]
Bode, L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology, 2012, 22(9), 1147-1162.
[] [PMID: 22513036]
Kulinich, A.; Liu, L. Human milk oligosaccharides: The role in the fine-tuning of innate immune responses. Carbohydr. Res., 2016, 432, 62-70.
[] [PMID: 27448325]
Wu, J.; Wu, Y.; Yang, C.; Wang, Z. Enzymatic preparation and characterization of soybean oligosaccharides from Okara. Procedia Eng., 2012, 37, 186-191.
Chen, H.; Li-Jun, L.; Jian-Jun, Z.; Bo, X.; Rui, L. Chemical composition analysis of soybean oligosaccharides and its effect on ATPase activities in hyperlipidemic rats. Int. J. Biol. Macromol., 2010, 46(2), 229-231.
[] [PMID: 20025901]
Mensink, M.A.; Frijlink, H.W.; van der Voort Maarschalk, K.; Hinrichs, W.L. Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics. Carbohydr. Polym., 2015, 130, 405-419.
[] [PMID: 26076642]
Landry, E.J.; Fuchs, S.J.; Hu, J. Carbohydrate composition of mature and immature faba bean seeds. J. Food Compos. Anal., 2016, 50, 55-60.
Scheller, H.V.; Ulvskov, P. Hemicelluloses. Annu. Rev. Plant Biol., 2010, 61(2), 263-289.
[] [PMID: 20192742]
Ünal, M.; Vardar, F.; Aytürk, Ö. Callose in plant sexual reproduction In: Current Progress in Biological Research; Marina Silva-Opps, M., Ed.; IntechOpen, 2013; pp. 319-343.
Mohnen, D. Pectin structure and biosynthesis. Curr. Opin. Plant Biol., 2008, 11(3), 266-277.
[] [PMID: 18486536]
Karaki, N.; Aljawish, A.; Humeau, C.; Muniglia, L.; Jasniewski, J. Enzymatic modification of polysaccharides: Mechanisms, properties, and potential applications: A review. Enzyme Microb. Technol., 2016, 90, 1-18.
[] [PMID: 27241287]
Velíšek, J.; Cejpek, K. Biosynthesis of food constituents: Saccharides. 2. Polysaccharides - A review. Czech J. Food Sci., 2005, 23(5), 173-183.
Rudall, K.M.; Kenchington, W. The chitin system. Biol. Rev. Camb. Philos. Soc., 1973, 40, 597-636.
Rinaudo, M. Chitin and chitosan: properties and applications. Prog. Polym. Sci., 2006, 31, 603-632.
Springer, S.A.; Gagneux, P. Glycomics: revealing the dynamic ecology and evolution of sugar molecules. J. Proteomics, 2016, 135, 90-100.
[] [PMID: 26626628]
Howarth, C.; Gleeson, P.; Attwell, D. Updated energy budgets for neural computation in the neocortex and cerebellum. J. Cereb. Blood Flow Metab., 2012, 32(7), 1222-1232.
[] [PMID: 22434069]
Kayikci, Ö.; Nielsen, J. Glucose repression in Saccharomyces cerevisiae. FEMS Yeast Res., 2015, 15(6)fov068
[] [PMID: 26205245]
Rui, L. Energy metabolism in the liver. Compr. Physiol., 2014, 4(1), 177-197.
[] [PMID: 24692138]
Duran, J.; Guinovart, J.J. Brain glycogen in health and disease. Mol. Aspects Med., 2015, 46, 70-77.
[] [PMID: 26344371]
Castrillo, J.I.; Zeef, L.A.; Hoyle, D.C.; Zhang, N.; Hayes, A.; Gardner, D.C.; Cornell, M.J.; Petty, J.; Hakes, L.; Wardleworth, L.; Rash, B.; Brown, M.; Dunn, W.B.; Broadhurst, D.; O’Donoghue, K.; Hester, S.S.; Dunkley, T.P.; Hart, S.R.; Swainston, N.; Li, P.; Gaskell, S.J.; Paton, N.W.; Lilley, K.S.; Kell, D.B.; Oliver, S.G. Growth control of the eukaryote cell: a systems biology study in yeast. J. Biol., 2007, 6(2), 4.
[] [PMID: 17439666]
Taga, T.; Miwa, Y.; Min, Z. α,β-Trehalose Monohydrate. Acta Crystallogr. C, 1997, 53(2), 234-236.
Elbein, A.D. The metabolism of α,α-trehalose. Adv. Carbohydr. Chem. Biochem., 1974, 30, 227-256.
[] [PMID: 4377836]
Crowe, J.H.; Crowe, L.M.; Chapman, D. Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science, 1984, 223(4637), 701-703.
[] [PMID: 17841031]
Elbein, A.D.; Pan, Y.T.; Pastuszak, I.; Carroll, D. New insights on trehalose: a multifunctional molecule. Glycobiology, 2003, 13(4), 17R-27R.
[] [PMID: 12626396]
Smeekens, S.; Ma, J.; Hanson, J.; Rolland, F. Sugar signals and molecular networks controlling plant growth. Curr. Opin. Plant Biol., 2010, 13(3), 274-279.
[] [PMID: 20056477]
Mardones, P.; Rubinsztein, D.C.; Hetz, C. Mystery solved: Trehalose kickstarts autophagy by blocking glucose transport. Sci. Signal., 2016, 9(416), fs2.
[] [PMID: 26905424]
DeBosch, B.J.; Heitmeier, M.R.; Mayer, A.L.; Higgins, C.B.; Crowley, J.R.; Kraft, T.E.; Chi, M.; Newberry, E.P.; Chen, Z.; Finck, B.N.; Davidson, N.O.; Yarasheski, K.E.; Hruz, P.W.; Moley, K.H. Trehalose inhibits solute carrier 2A (SLC2A) proteins to induce autophagy and prevent hepatic steatosis. Sci. Signal., 2016, 9(416), ra21.
[] [PMID: 26905426]
Kara, N.Z.; Toker, L.; Agam, G.; Anderson, G.W.; Belmaker, R.H.; Einat, H. Trehalose induced antidepressant-like effects and autophagy enhancement in mice. Psychopharmacology (Berl.), 2013, 229(2), 367-375.
[] [PMID: 23644913]
Emanuele, E. Can trehalose prevent neurodegeneration? Insights from experimental studies. Curr. Drug Targets, 2014, 15(5), 551-557.
[] [PMID: 24568549]
Matsuda, K.; Abe, Y.; Fujioka, K. Kojibiose (2-O-alpha-D-Glucopyranosyl-D-Glucose): isolation and structure: chemical synthesis. Nature, 1957, 180(4593), 985-986.
[] [PMID: 13483573]
Watanabe, T.; Aso, K. Isolation of kojibiose from honey. Nature, 1959, 183(4677), 1740.
[] [PMID: 13666886]
Hough, J.S.; Stevens, R.; Young, T.W. Chemical and physical properties of beer In: Malting and brewing science: ; Hopped word and Beer; Chapman and Hall: New York, USA, 1982; II, pp. 776-838.
Matsuda, K. Studies on the disaccharides in koji extract and sake. V. Isolation and identification of kojibiose. Nippon Nogeikagaku Kaishi, 1959, 33, 719-723.
Verhaeghe, T.; De Winter, K.; Berland, M.; De Vreese, R.; D’hooghe, M.; Offmann, B.; Desmet, T. Converting bulk sugars into prebiotics: semi-rational design of a transglucosylase with controlled selectivity. Chem. Commun. (Camb.), 2016, 52(18), 3687-3689.
[] [PMID: 26858011]
Laparra, J.M.; Díez-Municio, M.; Herrero, M.; Moreno, F.J. Structural differences of prebiotic oligosaccharides influence their capability to enhance iron absorption in deficient rats. Food Funct., 2014, 5(10), 2430-2437.
[] [PMID: 25109275]
Moisés Laparra, J.; Díez-Municio, M.; Javier Moreno, F.; Herrero, M. Kojibiose ameliorates arachidic acid-induced metabolic alterations in hyperglycaemic rats. Br. J. Nutr., 2015, 114(9), 1395-1402.
[] [PMID: 26344377]
Díez-Municio, M.; Montilla, A.; Moreno, F.J.; Herrero, M. A sustainable biotechnological process for the efficient synthesis of kojibiose. Green Chem., 2014, 16, 2219-2226.
Van Canneyt, A. Demonstrating the necessity of enzyme engineering: towards a highly efficient process for the synthesis of kojibiose; Master of Science in Bioscience Engineering: Chemistry and Bioprocess Technology: Ghent University, Belgium, 2015.
Mandels, M.; Parrish, F.W.; Reese, E.T. Sophorose as an inducer of cellulase in Trichoderma viride. J. Bacteriol., 1962, 83(2), 400-408.
[PMID: 14469205]
Barry, V.C. Preparation, properties and mode of occurrence of Laminarin. Sci. Proc. R. Dublin Soc., 1938, 21, 615-622.
Barry, V.C. Hydrolisis of Laminarin. Isolation of a new glucose disacchide. Sci. Proc. R. Dublin Soc., 1941, 44, 423-429.
Evans, W.L.; Reynolds, D.D.; Talley, E.A. The Synthesis of Oligosaccharides. Adv. Carbohydrate. Chem., 1951, 6, 27-81.
[] [PMID: 14894347]
Haq, S.; Whelan, W.J. The chemical synthesis of polysaccharides.Part II. The chemical synthesis of nigerose. J. Chem. Soc. (Resumed), 1958, 1342-1346 .
Konishi, Y.; Shindo, K. Production of nigerose, nigerosyl glucose, and nigerosyl maltose by Acremonium sp. S4G13. Biosci. Biotechnol. Biochem., 1997, 61(3), 439-442.
[] [PMID: 9095549]
O’Sullivan, C. XXI.? On the transformation-products of starch. J. Chem. Soc., 1872, 25, 579-588.
Haskins, W.T.; Hann, R.M.; Hudson, C.S. Synthesis of Cellobiose. J. Am. Chem. Soc., 1942, 64(6), 1289-1291.
Cocinero, E.J.; Gamblin, D.P.; Davis, B.G.; Simons, J.P. The building blocks of cellulose: the intrinsic conformational structures of cellobiose, its epimer, lactose, and their singly hydrated complexes. J. Am. Chem. Soc., 2009, 131(31), 11117-11123.
[] [PMID: 19722675]
Lippmann, E.O. Die chemie der zuckerarten. Vieweg Braunschweig, 1904, 2, 1504-1520.
Montgomery, E.M.; Weakley, F.B.; Hilbert, G.E. Isolation of 6-[α-D-Glucopyranosyl]-D-glucose (Isomaltose) from Enzymic Hydrolyzates of Starch. J. Am. Chem. Soc., 1949, 71(5), 1682-1687.
Moncrieff, A.A. Sucrose and isomaltose intolerance in siblings. Proc. R. Soc. Med., 1964, 57(9), 838-840.
[] [PMID: 14208041]
Marcadier, J.L.; Boland, M.; Scott, C.R.; Issa, K.; Wu, Z.; McIntyre, A.D.; Hegele, R.A.; Geraghty, M.T.; Lines, M.A. Congenital sucrase-isomaltase deficiency: identification of a common Inuit founder mutation. CMAJ, 2015, 187(2), 102-107.
[] [PMID: 25452324]
Hudson, C.S.; Johnson, J.M. The rotatory powers of some new derivatives of gentiobiose. J. Am. Chem. Soc., 1917, 39(6), 1272-1277.
Helferich, B. Synthese der Gentiobiose. Naturwissenschaften, 1926, 14(29), 677-678.
Dumville, J.C.; Fry, S.C. Gentiobiose: a novel oligosaccharin in ripening tomato fruit. Planta, 2003, 216(3), 484-495.
[] [PMID: 12520341]
Takeo, K.; Matsuzaki, S. A simple preparation of a-nigerose octaacetate and b-nigerotriose hendecaacetate by the acetolysis of an alkali-soluble D-glycan from the fruit body of Laetiporus sulphureus. Carbohydr. Res., 1983, 113, 281-289.
Gouffi, K.; Pica, N.; Pichereau, V.; Blanco, C. Disaccharides as a new class of nonaccumulated osmoprotectants for Sinorhizobium meliloti. Appl. Environ. Microbiol., 1999, 65(4), 1491-1500.
[PMID: 10103242]
Nutrition and Food Security Programme. WHO Regional Office for Europe., 2003. Available at:. (Accessed Date: September 2, 2016)
Edwards, C.H.; Rossi, M.; Corpe, C.P.; Butterworth, P.J.; Ellis, P.R. The role of sugars and sweeteners in food, diet and health: Alternatives for the future. Trends Food Sci. Technol., 2016, 56, 158-166.
Sugar and Sweeteners Guide - All Suiteness List. Available at:. (Accessed August 5, 2016)
Saulo, A.A. Sugars and Sweeteners in Foods, Food Safety and Technology; Cooperative Extension Service/CTAHR 2005.
Birch, G.G. Modulation of sweet taste. Biofactors, 1999, 9(1), 73-80.
[] [PMID: 10221159]
Bassoli, A.; Drew, M.G.B.; Hattotuwagama, C.K.; Merlini, L.; Morini, G.; Wilden, G.R.H. Quantitative structure-activity relationships of sweet isovanillyl derivatives. Quan-titative Structure-Activity Relationships, 2001, 20(1), 3-16.
Oertly, E.; Myers, R.G. A new theory relating constitution to taste. Simple relations between the constitution of aliphatic compounds and their sweet taste. J. Am. Chem. Soc., 1919, 41(6), 855-867.
Shallenberger, R.S.; Acree, T.E. Molecular theory of sweet taste. Nature, 1967, 216(5114), 480-482.
[] [PMID: 6057249]
Kier, L.B. A molecular theory of sweet taste. J. Pharm. Sci., 1972, 61(9), 1394-1397.
[] [PMID: 5068944]
Nofre, C.; Tinti, J-M. Sweetners reception in man: the multipoint attachment theory. Food Chem., 1996, 56(3), 263-274.
Cygankiewicz, A.I.; Maslowska, A.; Krajewska, W.M. Molecular basis of taste sense: involvement of GPCR receptors. Crit. Rev. Food Sci. Nutr., 2014, 54(6), 771-780.
[] [PMID: 24345047]
Zhao, G.Q.; Zhang, Y.; Hoon, M.A.; Chandrashekar, J.; Erlenbach, I.; Ryba, N.J.; Zuker, C.S. The receptors for mammalian sweet and umami taste. Cell, 2003, 115(3), 255-266.
[] [PMID: 14636554]
Chandrashekar, J.; Hoon, M.A.; Ryba, N.J.P.; Zuker, C.S. The receptors and cells for mammalian taste. Nature, 2006, 444(7117), 288-294.
[] [PMID: 17108952]
Liman, E.R.; Zhang, Y.V.; Montell, C. Peripheral coding of taste. Neuron, 2014, 81(5), 984-1000.
[] [PMID: 24607224]
Yoshida, R.; Ninomiya, Y. Taste information derived from T1R-expressing taste cells in mice. Biochem. J., 2016, 473(5), 525-536.
[] [PMID: 26912569]
Nie, Y.; Vigues, S.; Hobbs, J.R.; Conn, G.L.; Munger, S.D. Distinct contributions of T1R2 and T1R3 taste receptor subunits to the detection of sweet stimuli. Curr. Biol., 2005, 15(21), 1948-1952.
[] [PMID: 16271873]
Xu, H.; Staszewski, L.; Tang, H.; Adler, E.; Zoller, M.; Li, X. Different functional roles of T1R subunits in the heteromeric taste receptors. Proc. Natl. Acad. Sci. USA, 2004, 101(39), 14258-14263.
[] [PMID: 15353592]
Fernstrom, J.D.; Munger, S.D.; Sclafani, A.; de Araujo, I.E.; Roberts, A.; Molinary, S. Mechanisms for sweetness. J. Nutr., 2012, 142(6), 1134S-1141S.
[] [PMID: 22573784]
Belitz, H-D.; Grosch, W.; Schieberle, P. Food chemistry, 4th ed; Springer-Verlag: Heidelberg, 2009.
Crum-Brown, A.; Fraser, T.R. On the connection between chemical constitution and physiological action. part i. on the physiological action of the salts of the ammonium bases, derived from strychnia, brucia, thebaia, codeia, morphia, and nicotia. Philos. Trans. R. Soc. Lond., 1868, 25, 151-203.
Deutsch, E.W.; Hansch, C. Dependence of relative sweetness on hydrophobic bonding. Nature, 1966, 211(5044), 75.
[] [PMID: 5967471]
Walters, D.E. Using models to understand and design sweeteners. J. Chem. Educ., 1995, 72, 680-683.
Barker, J.S.; Hattotuwagama, C.K.; Drew, M.G.B. Computational studies of sweet-tasting molecules. Pure Appl. Chem., 2002, 74, 1207-1217.
OECD. Guidance Document on the Validation of (Quantitative) Structure-Activity Relationships Models; Organisation for Economic Cooperation and Development, 2007.
Perkins, R.; Fang, H.; Tong, W.; Welsh, W.J. Quantitative structure-activity relationship methods: perspectives on drug discovery and toxicology. Environ. Toxicol. Chem., 2003, 22(8), 1666-1679.
[] [PMID: 12924569]
Yamaguchi, S.; Yoshikawa, T.; Ikeda, S.; Ninomiya, T. Studies on the taste of some sweet substances. Part I. Measurement of the relative sweetness Part II. Interrelationships among them. Agric. Biol. Chem., 1970, 34(2), 181-197.
Moskowitz, H.R. Ratio scales of sugar sweetness. Percept. Psychophys., 1970, 7(5), 315-320.
Peng, M.; Hautus, M.J.; Oey, I.; Silcock, P. Is there a generalized sweetness sensitivity for an individual? A psychophysical investigation of inter-individual differences in detectability and discriminability for sucrose and fructose. Physiol. Behav., 2016, 165, 239-248.
[] [PMID: 27497921]
Bolboacă, S.D.; Jäntschi, L. Modelling the property of compounds from structure: statistical methods for models validation. Environ. Chem. Lett., 2008, 6, 175-181.
Bolboacă, S.D.; Jäntschi, L. Quantitative structure-activity relationships: linear regression modelling and validation strategies by example. Int. J. Math. Meth. Models Biosci., 2013, 2(1) 1309089
Spillane, W.J.; Coyle, C.M.; Feeney, B.G.; Thompson, E.F. Development of structure-taste relationships for thiazolyl-, benzothiazolyl-, and thiadiazolylsulfamates. J. Agric. Food Chem., 2009, 57(12), 5486-5493.
[] [PMID: 19456131]
Rojas, C.; Ballabio, D.; Consonni, V.; Tripaldi, P.; Mauri, A.; Todeschini, R. Quantitative structure–activity relationships to predict sweet and non-sweet tastes. Theor. Chem. Acc., 2016, 135, 66.
Vepuri, S.B.; Tawari, N.R.; Degani, M.S. Quantitative structure - activity relationship study of some aspartic acid analogues to correlate and predict their sweetness potency. QSAR Comb. Sci., 2007, 26(2), 204-214.
Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors; Wiley-VCH: Germany, 2008.
Katritzky, A.R.; Petrukhin, R.; Perumal, S.; Karelson, M.; Prakash, I.; Desai, N. A QSPR study of sweetness potency using the CODESSA program. Croat. Chem. Acta, 2002, 75(2), 475-502.
Harsa, A.M.; Harsa, T.E.; Bolboacă, S.D.; Diudea, M.V. QSAR in flavonoids by similarity cluster prediction. Curr Comput Aided Drug Des, 2014, 10(2), 115-128.
[] [PMID: 24724899]
Jäntschi, L.; Bolboacă, S.D. Szeged matrix property indices as descriptors to characterize fullerenes. An. Univ. Ovidius Constanta Ser. Chim., 2016, 27(2), 73-80.
Bolboacă, S.D.; Jäntschi, L.; Diudea, M.V. Molecular design and QSARs/QSPRs with molecular descriptors family. Curr Comput Aided Drug Des, 2013, 9(2), 195-205.
[] [PMID: 23700993]
Bolboacă, S.D.; Jäntschi, L. Structure-activity relationships of taxoids: a molecular descriptors family approach. Arch. Med. Sci., 2008, 4(1), 7-15.
Bolboacă, S.D.; Marta, M.M.; Jäntschi, L. Binding affinity of triphenyl acrylonitriles to estrogen receptors: quantitative structure-activity relationships. Folia Med. (Plovdiv), 2010, 52(3), 37-45.
[] [PMID: 21053672]
Bolboacă, S.D.; Marta, M.M.; Stoenoiu, C.E.; Jäntschi, L. Molecular descriptors family on vertex cutting: relationships between acelazolamide structures and their inhibitory activity. Appl. Med. Inform., 2009, 25(3-4), 65-74.
Jäntschi, L.; Bolboacă, S.D.; Furdui, C.M. Characteristic and counting polynomials: modelling nonane isomers properties. Mol. Simul., 2009, 35(3), 220-227.
Joiţa, D-M.; Jäntschi, L. Extending the characteristic polynomial for characterization of C20 fullerene congeners. Mathematics, 2017, 5(4), 84.
Bolboacă, S.D.; Jäntschi, L. Nano-quantitative structure-property relationship modeling on C42 fullerene isomers. J. Chem., 2016. 20161791756
Winkler, D.A. The role of quantitative structure--activity relationships (QSAR) in biomolecular discovery. Brief. Bioinform., 2002, 3(1), 73-86.
[] [PMID: 12002226]
Goel, A.; Gajula, K.; Gupta, R.; Rai, B. In-silico prediction of sweetness using structure-activity relationship models. Food Chem., 2018, 253, 127-131.
[] [PMID: 29502811]
Takahashi, Y.; Miyashita, Y.; Tanaka, Y.; Abe, H.; Sasaki, S. A consideration for structure-taste correlations of perillartines using pattern-recognition techniques. J. Med. Chem., 1982, 25(10), 1245-1248.
[] [PMID: 7143365]
Jäntschi, L.; Bolboacă, S.D.; Sestraş, R.E. A study of genetic algorithm evolution on the lipophilicity of polychlorinated biphenyls. Chem. Biodivers., 2010, 7(8), 1978-1989.
[] [PMID: 20730961]
Drew, M.G.B.; Wilden, G.R.H.; Spillane, W.J.; Walsh, R.M.; Ryder, C.A.; Simmie, J.M. Quantitative structure-activity relationship studies of sulfamates RNHSO3Na: distinction between sweet, sweet-bitter, and bitter molecules. J. Agric. Food Chem., 1998, 46(8), 3016-3026.
Miyashita, Y.; Takahashi, Y.; Takayama, C.; Sumi, K.; Nakatsuka, K.; Ohkubo, T.; Abe, H.; Sasaki, S. Structure-taste correlation of L-aspartyl dipeptides using SIMCA method. J. Med. Chem., 1986, 29(6), 906-912.
[] [PMID: 3712380]
Katritzky, A.R.; Petrukhin, R.; Tatham, D.; Basak, S.; Benfenati, E.; Karelson, M.; Maran, U. Interpretation of quantitative structure-property and -activity relationships. J. Chem. Inf. Comput. Sci., 2001, 41(3), 679-685.
[] [PMID: 11410046]
Zhong, M.; Chong, Y.; Nie, X.; Yan, A.; Yuan, Q. Prediction of sweetness by multilinear regression analysis and support vector machine. J. Food Sci., 2013, 78(9), S1445-S1450.
[] [PMID: 23915005]
Kelly, D.P.; Spillane, W.J.; Newell, J. Development of structure-taste relationships for monosubstituted phenylsulfamate sweeteners using classification and regression tree (CART) analysis. J. Agric. Food Chem., 2005, 53(17), 6750-6758.
[] [PMID: 16104795]
Nunes, C.A.; Freitas, M.P. aug-MIA-QSPR study of guanidine derivative sweeteners. Eur. Food Res. Technol., 2013, 237(4), 565-570.
Barigye, S.J.; Duarte, M.H.; Nunes, C.A.; Freitas, M.P. MIA-plot: a graphical tool for viewing descriptor contributions in MIA-QSAR. Advances, 2016, 55(6), 49604-49612.
Roy, K.; Chakraborty, P.; Mitra, I.; Ojha, P.K.; Kar, S.; Das, R.N. Some case studies on application of “r(m)2” metrics for judging quality of quantitative structure-activity relationship predictions: emphasis on scaling of response data. J. Comput. Chem., 2013, 34(12), 1071-1082.
[] [PMID: 23299630]
Gramatica, P.; Sangion, A. A historical excursus on the statistical validation parameters for QSAR models: a clarification concerning metrics and terminology. J. Chem. Inf. Model., 2016, 56(6), 1127-1131.
[] [PMID: 27218604]
Roy, K.; Mitra, I. On the use of the metric rm2 as an effective tool for validation of QSAR models in computational drug design and predictive toxicology. Mini Rev. Med. Chem., 2012, 12(6), 491-504.
[] [PMID: 22587764]
Rogers, D.R.; Hopfinger, A.J. Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure property relationships. J. Chem. Inf. Comput. Sci., 1994, 34, 854-866.
Roy, K.; Ambure, P. The “double cross-validation” software tool for MLR QSAR model development. Chemom. Intell. Lab. Syst., 2016, 159, 108-126.
Bolboacă, S.D.; Jäntschi, L. Predictivity approach for quantitative structure-property models. Application for blood-brain barrier permeation of diverse drug-like compounds. Int. J. Mol. Sci., 2011, 12(7), 4348-4364.
[] [PMID: 21845082]
Bolboacă, S.D.; Jäntschi, L. Sensitivity, specificity, and accuracy of predictive models on phenols toxicity. J. Comput. Sci., 2014, 5(3), 345-350.
Raffa, L. [Study on relationship between chemical structure and sweet taste] Farmaco, Sci., 1957, 12(3), 188-193.
Hamor, G.H. Correlation of chemical structure and taste in the saccharin series. Science, 1961, 134(3488), 1416-1417.
[] [PMID: 13904220]
Mazur, R.H.; Schlatter, J.M.; Goldkamp, A.H. Structure-taste relationships of some dipeptides. J. Am. Chem. Soc., 1969, 91(10), 2684-2691.
[] [PMID: 5784944]
Rojas, C.; Duchowicz, P.R.; Diez, R.P.; Tripaldi, P. Applications of quantitative structure-relative sweetness relationships in food chemistry in: Chemometrics Applications and Research: QSAR in Medicinal Chemistry. Mercader, A.G.; Duchowicz, P.R; Sivakumar, P.M., Ed.; Apple Academic Press CRC Press Taylor Francis Group, 2016, pp. 317-339.
Singh, R.K.; Khan, M.A.; Singh, P.P. Rating of sweetness by molar refractivity and ionization potential: QSAR study of sucrose and guanidine derivatives. S. Afr. J. Chem., 2014, 67, 12-20.
Rorabacher, D.B. Statistical treatment for rejection of deviant values: critical values of Dixon’s‘ Q′ parameter and related subrange ratios at the 95% confidence level. Anal. Chem., 1991, 63(2), 139-146.
Grubbs, F.E. Sample criteria for testing outlying observations. Ann. Appl. Stat., 1950, 21(1), 27-58.
Rosner, B. Percentage Points for a Generalized ESD many-outlier procedure. Technometrics, 1983, 25(2), 165-172.
Iglewicz, B.; Hoaglin, D. In: How to Detect and Handle Outliers; ASQC Quality Press: Milwaukee, WI, Vol. 16, 1993.
Wang, L.; Yang, Z.; Lu, F.; Liu, J.; Song, Y.; Li, D. Cucurbitane glycosides derived from mogroside IIE: structure-taste relationships, antioxidant activity, and acute toxicity. Molecules, 2014, 19(8), 12676-12689.
[] [PMID: 25140446]
Rojas, C.; Tripaldi, P.; Duchowicz, P.R. A new QSPR study on relative sweetness. International Journal of Quantitative Structure-Property Relationships, 2016, 1(1), 78-92.
Bolboacă, S.D. Assessment of random assignment in training and test sets using generalized cluster analysis technique. Appl. Med. Inform., 2010, 28(2), 9-14.
Yang, X.; Chong, Y.; Yan, A.; Chen, J. In-silico prediction of sweetness of sugars and sweeteners. Food Chem., 2011, 128, 653-658.
Roy, K.; Kar, S.; Narayan Das, R. Statistical methods in QSAR/QSPR In: A Primer on QSAR/QSPR Modeling;; Roy, K.; Kar, S.; Narayan Das, R., Eds.; SpringerBriefs in Molecular Science, 2015; pp. 37-59.
Pérez-Garrido, A.; Helguera, A.M.; Borges, F.; Cordeiro, M.N.; Rivero, V.; Escudero, A.G. Two new parameters based on distances in a receiver operating characteristic chart for the selection of classification models. J. Chem. Inf. Model., 2011, 51(10), 2746-2759.
[] [PMID: 21923162]
Gardner, C.; Wylie-Rosett, J.; Gidding, S.S.; Steffen, L.M.; Johnson, R.K.; Reader, D.; Lichtenstein, A.H. American Heart Association Nutrition Committee of the Council on Nutrition, Physical Activity and Metabolism, Council on Arteriosclerosis, Thrombosis and Vascular Biology, Council on Cardiovascular Disease in the Young; American Diabetes Association. Nonnutritive sweeteners: current use and health perspectives: a scientific statement from the American Heart Association and the American Diabetes Association. Diabetes Care, 2012, 35(8), 1798-1808.
[] [PMID: 22778165]
Clemens, R.A.; Jones, J.M.; Kern, M.; Lee, S-Y.; Mayhew, E.J.; Slavin, J.L.; Zivanovic, S. Functionality of sugars in foods and health. Compr. Rev. Food Sci. Food Saf., 2016, 15(3), 433-470.
Bellisle, F.; Drewnowski, A. Intense sweeteners, energy intake and the control of body weight. Eur. J. Clin. Nutr., 2007, 61(6), 691-700.
[] [PMID: 17299484]
Fagherazzi, G.; Vilier, A.; Saes Sartorelli, D.; Lajous, M.; Balkau, B.; Clavel-Chapelon, F. Consumption of artificially and sugar-sweetened beverages and incident type 2 diabetes in the Etude Epidemiologique aupres des femmes de la Mutuelle Generale de l’Education Nationale-European Prospective Investigation into Cancer and Nutrition cohort. Am. J. Clin. Nutr., 2013, 97(3), 517-523.
[] [PMID: 23364017]
Huang, M.; Quddus, A.; Stinson, L.; Shikany, J.M.; Howard, B.V.; Kutob, R.M.; Lu, B.; Manson, J.E.; Eaton, C.B. Artificially sweetened beverages, sugar-sweetened beverages, plain water, and incident diabetes mellitus in postmenopausal women: the prospective Women’s Health Initiative observational study. Am. J. Clin. Nutr., 2017, 106(2), 614-622.
[] [PMID: 28659294]
Jäntschi, L.; Bolboacă, S.D. Performances of shannon’s entropy statistic in assessment of distribution of data. An. Univ. Ovidius Constanta Ser. Chim., 2017, 28(2), 30-42.
Jäntschi, L.; Balint, D.; Pruteanu, L.L.; Bolboacă, S.D. Elemental factorial study on one-cage pentagonal face nanostructure congeners. Materials Discovery, 2016, 5, 14-21.
Jäntschi, L.; Bálint, D.; Bolboacă, S.D. Multiple linear regressions by maximizing the likelihood under assumption of generalized Gauss-Laplace distribution of the error. Comput. Math. Methods Med., 2016, 2016 8578156
[] [PMID: 28090215]
Jäntschi, L.; Pruteanu, L.L.; Cozma, A.C.; Bolboacă, S.D. Inside of the linear relation between dependent and independent variables. Comput. Math. Methods Med., 2015, 2015 360752
[] [PMID: 26101543]
Putz, M.V.; Lacrămă, A-M. Introducing spectral structure activity relationship (S-SAR) analysis. Application to ecotoxicology. Int. J. Mol. Sci., 2007, 8, 363-391.
Putz, M.V.; Ori, O.; Cataldo, F.; Putz, A-M. Parabolic reactivity “coloring” molecular topology: application to carcinogenic PAHs. Curr. Org. Chem., 2013, 17(23), 2816-2830.
Putz, M.V.; Putz, A-M. DFT Chemical reactivity driven by biological activity: applications for the toxicological fate of chlorinated PAHs In: Applications of Density Functional Theory to Biological and Bioinorganic Chemistry; Putz M., Mingos D. (eds); Structure and Bonding, Springer: Berlin, Heidelberg., 2013; 150, pp. 181-231.
Diudea, M.V.; Stefu, M.; John, P.E.; Graovac, A. Generalized operations on maps. Croat. Chem. Acta, 2006, 79(3), 355-362.
Diudea, M.V.; Vizitiu, A.E.; Janezic, D. Cluj and related polynomials applied in correlating studies. J. Chem. Inf. Model., 2007, 47(3), 864-874.
[] [PMID: 17439203]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 18 February, 2020
Page: [5 - 22]
Pages: 18
DOI: 10.2174/0929867325666180926144401
Price: $65

Article Metrics

PDF: 26