Differentiation of Pluripotent Stem Cells into Nucleus Pulposus Progenitor Cells for Intervertebral Disc Regeneration

Author(s): Kaishun Xia, Zhe Gong, Jian Zhu, Wei Yu, Yitian Wang, Junjie Wang, Ankai Xu, Xiaopeng Zhou, Huimin Tao, Fangcai Li*, Chengzhen Liang*.

Journal Name: Current Stem Cell Research & Therapy

Volume 14 , Issue 1 , 2019

Become EABM
Become Reviewer

Abstract:

Low back pain (LBP) is one of the world’s most common musculoskeletal diseases and is frequently associated with intervertebral disc degeneration (IDD). While the main cause of IDD is commonly attributed to a reduced number of nucleus pulposus (NP) cells, current treatment strategies (both surgical and more conservative) fail to replenish NP cells or reverse the pathology. Cell replacement therapies are an attractive alternative for treating IDD. However, injecting intervertebral disc (IVD) cells, chondrocytes, or mesenchymal stem cells into various animal models of IDD indicate that transplanted cells generally fail to survive and engraft into the avascular IVD niche. Whereas pluripotent stem cells (PSCs), including induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs), hold great potential for revolutionizing regenerative medicine, current protocols for differentiating these cells into NP-like cells are inadequate. Nucleus pulposus progenitor cells (NPPCs), which are derived from the embryonic notochord, can not only survive within the harsh hypoxic environment of the IVD, but they also efficiently differentiate into NP-like cells. Here we provide an overview of the latest progress in repairing degenerated IVDs using PSCs and NPPCs. We also discuss the molecular pathways by which PSCs differentiate into NPPCs in vitro and in vivo and propose a new, in vivo IDD therapy.

Keywords: Intervertebral disc degeneration (IDD), Pluripotent stem cells (PSCs), Nucleus pulposus progenitor cells (NPPCs), Transdifferentiation, Low back pain (LBP), Nucleus pulposus (NP).

[1]
Vos T, Flaxman AD, Naghavi M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380(9859): 2163-96.
[2]
Henriksson HB, Brisby H. Development and regeneration potential of the mammalian intervertebral disc. Cells Tissues Organs 2013; 197(1): 1-13.
[3]
Ricci JA, Stewart WF, Chee E, et al. Back pain exacerbations and lost productive time costs in United States workers. Spine (Phila Pa 1976) 2006; 31(26): 3052-60.
[4]
Martin BI, Deyo RA, Mirza SK, et al. Expenditures and health status among adults with back and neck problems. JAMA 2008; 299(6): 656-64.
[5]
Pettine KA, Murphy MB, Suzuki RK, Sand TT. Percutaneous injection of autologous bone marrow concentrate cells significantly reduces lumbar discogenic pain through 12 months. Stem Cells 2015; 33(1): 146-56.
[6]
Urban JP, Roberts S. Degeneration of the intervertebral disc. Arthritis Res Ther 2003; 5(3): 120-30.
[7]
Panjabi MM, Oxland TR, Yamamoto I, Crisco JJ. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J Bone Joint Surg Am 1994; 76(3): 413-24.
[8]
Adams MA, Roughley PJ. What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976) 2006; 31(18): 2151-61.
[9]
Ferguson SJ, Steffen T. Biomechanics of the aging spine. Eur Spine J 2003; 12(Suppl. 2): S97-S103.
[10]
Adams MA, Dolan P. Intervertebral disc degeneration: Evidence for two distinct phenotypes. J Anat 2012; 221(6): 497-506.
[11]
Cheung KM, Karppinen J, Chan D, et al. Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine (Phila Pa 1976) 2009; 34(9): 934-40.
[12]
Holm S, Maroudas A, Urban JP, Selstam G, Nachemson A. Nutrition of the intervertebral disc: solute transport and metabolism. Connect Tissue Res 1981; 8(2): 101-19.
[13]
Roberts S, Menage J, Urban JP. Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine (Phila Pa 1976) 1989; 14(2): 166-74.
[14]
Roberts S, Menage J, Duance V, Wotton S, Ayad S. 1991 Volvo Award in basic sciences. Collagen types around the cells of the intervertebral disc and cartilage end plate: an immunolocalization study. Spine (Phila Pa 1976) 1991; 16(9): 1030-8.
[15]
Bruehlmann SB, Rattner JB, Matyas JR, Duncan NA. Regional variations in the cellular matrix of the annulus fibrosus of the intervertebral disc. J Anat 2002; 201(2): 159-71.
[16]
Di Martino A, Vaccaro AR, Lee JY, Denaro V, Lim MR. Nucleus pulposus replacement: basic science and indications for clinical use. Spine (Phila Pa 1976) 2005; 30(16)(Suppl.): S16-22.
[17]
Vadala G, Russo F, Ambrosio L, Loppini M, Denaro V. Stem cells sources for intervertebral disc regeneration. World J Stem Cells 2016; 8(5): 185-201.
[18]
Gruber HE, Johnson TL, Leslie K, et al. Autologous intervertebral disc cell implantation: a model using Psammomys obesus, the sand rat. Spine 2002; 27(15): 1626-33.
[19]
Risbud MV, Shapiro IM. Notochordal cells in the adult intervertebral disc: new perspective on an old question. Crit Rev Eukaryot Gene Expr 2011; 21(1): 29-41.
[20]
Yamanaka Y, Tamplin OJ, Beckers A, Gossler A, Rossant J. Live imaging and genetic analysis of mouse notochord formation reveals regional morphogenetic mechanisms. Dev Cell 2007; 13(6): 884-96.
[21]
Sivakamasundari V, Lufkin T. Bridging the Gap: Understanding Embryonic Intervertebral Disc Development. Cell Dev Biol 2012; 1(2)
[22]
McCann MR, Tamplin OJ, Rossant J, Seguin CA. Tracing notochord-derived cells using a Noto-cre mouse: implications for intervertebral disc development. Dis Model Mech 2012; 5(1): 73-82.
[23]
Choi KS, Cohn MJ, Harfe BD. Identification of nucleus pulposus precursor cells and notochordal remnants in the mouse: implications for disk degeneration and chordoma formation. Dev Dyn 2008; 237(12): 3953-8.
[24]
Haefeli M, Kalberer F, Saegesser D, et al. The course of macroscopic degeneration in the human lumbar intervertebral disc. Spine (Phila Pa 1976) 2006; 31(14): 1522-31.
[25]
Battie MC, Videman T. Lumbar disc degeneration: Epidemiology and genetics. J Bone Joint Surg Am 2006; 88(Suppl. 2): 3-9.
[26]
Horner HA, Urban JP. 2001 Volvo Award Winner in Basic Science Studies: Effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine (Phila Pa 1976) 2001; 26(23): 2543-9.
[27]
Antoniou J, Steffen T, Nelson F, et al. The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest 1996; 98(4): 996-1003.
[28]
Butler D, Trafimow JH, Andersson GB, McNeill TW, Huckman MS. Discs degenerate before facets. Spine (Phila Pa 1976) 1990; 15(2): 111-3.
[29]
Buckwalter JA. Aging and degeneration of the human intervertebral disc. Spine 1995; 20(11): 1307-14.
[30]
Gruber HE, Hanley EJ. Analysis of aging and degeneration of the human intervertebral disc. Comparison of surgical specimens with normal controls. Spine (Phila Pa 1976) 1998; 23(7): 751-7.
[31]
Acaroglu ER, Iatridis JC, Setton LA, et al. Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus. Spine (Phila Pa 1976) 1995; 20(24): 2690-701.
[32]
Urban JP, Smith S, Fairbank JC. Nutrition of the intervertebral disc. Spine (Phila Pa 1976) 2004; 29(23): 2700-9.
[33]
Le Maitre CL, Freemont AJ, Hoyland JA. Accelerated cellular senescence in degenerate intervertebral discs: A possible role in the pathogenesis of intervertebral disc degeneration. Arthritis Res Ther 2007; 9(3): R45.
[34]
Le Maitre CL, Pockert A, Buttle DJ, Freemont AJ, Hoyland JA. Matrix synthesis and degradation in human intervertebral disc degeneration. Biochem Soc Trans 2007; 35(Pt 4): 652-5.
[35]
Trohatou O, Roubelakis MG. Mesenchymal stem/stromal cells in regenerative medicine: Past, present, and future. Cell Reprogram 2017; 19(4): 217-24.
[36]
Yang H, Adam RC, Ge Y, Hua ZL, Fuchs E. Epithelial-mesenchymal micro-niches govern stem cell lineage choices. Cell 2017; 169(3): 483-96.
[37]
Ohnishi H, Oda Y, Aoki T, et al. A comparative study of induced pluripotent stem cells generated from frozen, stocked bone marrow- and adipose tissue-derived mesenchymal stem cells. J Tissue Eng Regen Med 2012; 6(4): 261-71.
[38]
Sakai D, Mochida J, Iwashina T, et al. Regenerative effects of transplanting mesenchymal stem cells embedded in atelocollagen to the degenerated intervertebral disc. Biomaterials 2006; 27(3): 335-45.
[39]
Sakai D, Mochida J, Yamamoto Y, et al. Transplantation of mesenchymal stem cells embedded in Atelocollagen gel to the intervertebral disc: a potential therapeutic model for disc degeneration. Biomaterials 2003; 24(20): 3531-41.
[40]
Liang CZ, Li H, Tao YQ, et al. Dual release of dexamethasone and TGF-beta3 from polymeric microspheres for stem cell matrix accumulation in a rat disc degeneration model. Acta Biomater 2013; 9(12): 9423-33.
[41]
Colombier P, Clouet J, Boyer C, et al. TGF-beta1 and GDF5 act synergistically to drive the differentiation of human adipose stromal cells toward nucleus pulposus-like cells. Stem Cells 2016; 34(3): 653-67.
[42]
Vadala G, Sobajima S, Lee JY, et al. In vitro interaction between muscle-derived stem cells and nucleus pulposus cells. Spine J 2008; 8(5): 804-9.
[43]
Murrell W, Sanford E, Anderberg L, Cavanagh B, Mackay-Sim A. Olfactory stem cells can be induced to express chondrogenic phenotype in a rat intervertebral disc injury model. Spine J 2009; 9(7): 585-94.
[44]
Miyamoto T, Muneta T, Tabuchi T, et al. Intradiscal transplantation of synovial mesenchymal stem cells prevents intervertebral disc degeneration through suppression of matrix metalloproteinase-related genes in nucleus pulposus cells in rabbits. Arthritis Res Ther 2010; 12(6): R206.
[45]
Shoukry M, Li J, Pei M. Reconstruction of an in vitro niche for the transition from intervertebral disc development to nucleus pulposus regeneration. Stem Cells Dev 2013; 22(8): 1162-76.
[46]
Haufe SM, Mork AR. Intradiscal injection of hematopoietic stem cells in an attempt to rejuvenate the intervertebral discs. Stem Cells Dev 2006; 15(1): 136-7.
[47]
Yoshikawa T, Ueda Y, Miyazaki K, Koizumi M, Takakura Y. Disc regeneration therapy using marrow mesenchymal cell transplantation: a report of two case studies. Spine (Phila Pa 1976) 2010; 35(11): E475-80.
[48]
Orozco L, Soler R, Morera C, et al. Intervertebral disc repair by autologous mesenchymal bone marrow cells: A pilot study. Transplantation 2011; 92(7): 822-8.
[49]
Mao B, Huang S, Lu X, et al. Early development of definitive erythroblasts from human pluripotent stem cells defined by expression of glycophorin A/CD235a, CD34, and CD36. Stem Cell Rep 2016; 7(5): 869-83.
[50]
Gingold J, Zhou R, Lemischka IR, Lee DF. Modeling cancer with pluripotent stem cells. Trends Cancer 2016; 2(9): 485-94.
[51]
Lim WF, Inoue-Yokoo T, Tan KS, Lai MI, Sugiyama D. Hematopoietic cell differentiation from embryonic and induced pluripotent stem cells. Stem Cell Res Ther 2013; 4(3): 71.
[52]
Lam AQ, Freedman BS, Bonventre JV. Directed differentiation of pluripotent stem cells to kidney cells. Semin Nephrol 2014; 34(4): 445-61.
[53]
Bhattacharya S, Burridge PW, Kropp EM, et al. High efficiency differentiation of human pluripotent stem cells to cardiomyocytes and characterization by flow cytometry. J Vis Exp 2014; 91: 52010.
[54]
Sheikh H, Zakharian K, De La Torre RP, et al. In vivo intervertebral disc regeneration using stem cell-derived chondroprogenitors. J Neurosurg Spine 2009; 10(3): 265-72.
[55]
Fecek C, Yao D, Kacorri A, et al. Chondrogenic derivatives of embryonic stem cells seeded into 3D polycaprolactone scaffolds generated cartilage tissue in vivo. Tissue Eng Part A 2008; 14(8): 1403-13.
[56]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76.
[57]
Hussein SM, Nagy AA. Progress made in the reprogramming field: New factors, new strategies and a new outlook. Curr Opin Genet Dev 2012; 22(5): 435-43.
[58]
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861-72.
[59]
Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318(5858): 1917-20.
[60]
Chen J, Lee EJ, Jing L, et al. Differentiation of mouse induced pluripotent stem cells (iPSCs) into nucleus pulposus-like cells in vitro. PLOS One 2013; 8(9): e75548.
[61]
Liu Y, Rahaman MN, Bal BS. Modulating notochordal differentiation of human induced pluripotent stem cells using natural nucleus pulposus tissue matrix. PLOS One 2014; 9(7): e100885.
[62]
Liu Y, Fu S, Rahaman MN, Mao JJ, Bal BS. Native nucleus pulposus tissue matrix promotes notochordal differentiation of human induced pluripotent stem cells with potential for treating intervertebral disc degeneration. J Biomed Mater Res A 2015; 103(3): 1053-9.
[63]
Liu K, Chen Z, Luo XW, et al. Determination of the potential of induced pluripotent stem cells to differentiate into mouse nucleus pulposus cells in vitro. Genet Mol Res 2015; 14(4): 12394-405.
[64]
Zhu Y, Liang Y, Zhu H, et al. The generation and functional characterization of induced pluripotent stem cells from human intervertebral disc nucleus pulposus cells. Oncotarget 2017; 8(26): 42700-11.
[65]
Tang R, Jing L, Willard VP, et al. Differentiation of human induced pluripotent stem cells into nucleus pulposus-like cells. Stem Cell Res Ther 2018; 9(1): 61.
[66]
Risbud MV, Guttapalli A, Tsai TT, et al. Evidence for skeletal progenitor cells in the degenerate human intervertebral disc. Spine (Phila Pa 1976) 2007; 32(23): 2537-44.
[67]
Blanco JF, Graciani IF, Sanchez-Guijo FM, et al. Isolation and characterization of mesenchymal stromal cells from human degenerated nucleus pulposus: comparison with bone marrow mesenchymal stromal cells from the same subjects. Spine (Phila Pa 1976) 2010; 35(26): 2259-65.
[68]
Liu LT, Huang B, Li CQ, et al. Characteristics of stem cells derived from the degenerated human intervertebral disc cartilage endplate. PLOS One 2011; 6(10): e26285.
[69]
Erwin WM, Islam D, Inman RD, Fehlings MG, Tsui FW. Notochordal cells protect nucleus pulposus cells from degradation and apoptosis: Implications for the mechanisms of intervertebral disc degeneration. Arthritis Res Ther 2011; 13(6): R215.
[70]
Sakai D, Nakamura Y, Nakai T, et al. Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc. Nat Commun 2012; 3: 1264.
[71]
Tekari A, Chan SC, Sakai D, Grad S, Gantenbein B. Angiopoietin-1 receptor Tie2 distinguishes multipotent differentiation capability in bovine coccygeal nucleus pulposus cells. Stem Cell Res Ther 2016; 7(1): 75.
[72]
Liu MH, Cui YH, Zhou Y. Cellular mechanical properties reflect the differentiation potential of nucleus pulposus-derived progenitor cells. Am J Transl Res 2016; 8(10): 4446-54.
[73]
Erwin WM, Islam D, Eftekarpour E, et al. Intervertebral disc-derived stem cells: implications for regenerative medicine and neural repair. Spine (Phila Pa 1976) 2013; 38(3): 211-6.
[74]
Han B, Wang HC, Li H, et al. Nucleus pulposus mesenchymal stem cells in acidic conditions mimicking degenerative intervertebral discs give better performance than adipose tissue-derived mesenchymal stem cells. Cells Tissues Organs 2014; 199(5-6): 342-52.
[75]
Tao YQ, Liang CZ, Li H, et al. Potential of co-culture of nucleus pulposus mesenchymal stem cells and nucleus pulposus cells in hyperosmotic microenvironment for intervertebral disc regeneration. Cell Biol Int 2013; 37(8): 826-34.
[76]
Tao Y, Zhou X, Liang C, et al. TGF-beta3 and IGF-1 synergy ameliorates nucleus pulposus mesenchymal stem cell differentiation towards the nucleus pulposus cell type through MAPK/ERK signaling. Growth Factors 2015; 33(5-6): 326-36.
[77]
Li H, Tao Y, Liang C, et al. Influence of hypoxia in the intervertebral disc on the biological behaviors of rat adipose- and nucleus pulposus-derived mesenchymal stem cells. Cells Tissues Organs 2013; 198(4): 266-77.
[78]
Choi KS, Harfe BD. Hedgehog signaling is required for formation of the notochord sheath and patterning of nuclei pulposi within the intervertebral discs. Proc Natl Acad Sci USA 2011; 108(23): 9484-9.
[79]
Behrens A, Haigh J, Mechta-Grigoriou F, et al. Impaired intervertebral disc formation in the absence of Jun. Development 2003; 130(1): 103-9.
[80]
Sawada A, Kiyonari H, Ukita K, et al. Redundant roles of Tead1 and Tead2 in notochord development and the regulation of cell proliferation and survival. Mol Cell Biol 2008; 28(10): 3177-89.
[81]
Smits P, Lefebvre V. Sox5 and Sox6 are required for notochord extracellular matrix sheath formation, notochord cell survival and development of the nucleus pulposus of intervertebral discs. Development 2003; 130(6): 1135-48.
[82]
Barrionuevo F, Taketo MM, Scherer G, Kispert A. Sox9 is required for notochord maintenance in mice. Dev Biol 2006; 295(1): 128-40.
[83]
Andersson GB. Epidemiological features of chronic low-back pain. Lancet 1999; 354(9178): 581-5.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 14
ISSUE: 1
Year: 2019
Page: [57 - 64]
Pages: 8
DOI: 10.2174/1574888X13666180918095121
Price: $65

Article Metrics

PDF: 45
HTML: 7