Implantable Medical Devices and Tissue Engineering: An Overview of Manufacturing Processes and the Use of Polymeric Matrices for Manufacturing and Coating their Surfaces

Author(s): Gabriel Victor Simões Dutra, Weslany Silvério Neto, João Paulo Simões Dutra, Fabricio Machado*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 10 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Medical devices are important diagnosis and therapy tools for several diseases which include a wide range of products. Technological advances in this area have been proposed to reduce adverse complication incidences. New technologies and manufacturing processes, as well as the development of new materials or medical devices with modified surface and the use of biodegradable polymeric devices such as a substrate for cell culture in the field of tissue engineering, have attracted considerable attention in recent years by the scientific community intended to produce medical devices with superior properties and morphology. This review article focused on implantable devices, addresses the major advances in the biomedical field related to the devices manufacture processes such as 3D printing and hot melting extrusion, and the use of polymer matrices composed of copolymers, blends, nanocomposites or grafted with antiproliferative drugs for manufacturing and/or coating the devices surface.

Keywords: Medical devices, manufacturing engineering, surface modification, polymers, tissue engineering, manufacturing engineering.

[1]
W.H.O. Development of medical device policies. WHO Medical device technical series,, 2011.
[2]
Organization, W.H.O. Medical devices: managing the mismatch: an outcome of the priority medical devices project; World Health Organization: Geneva, 2010.
[3]
Sandler, N.; Salmela, I.; Fallarero, A.; Rosling, A.; Khajeheian, M.; Kolakovic, R.; Genina, N.; Nyman, J.; Vuorela, P. Towards fabrication of 3D printed medical devices to prevent biofilm formation. Int. J. Pharm., 2014, 459(1-2), 62-64.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.001] [PMID: 24239831]
[4]
Melocchi, A.; Parietti, F.; Loreti, G.; Maroni, A.; Gazzaniga, A.; Zema, L. 3D printing by fused deposition modeling (FDM) of a swellable/erodible capsular device for oral pulsatile release of drugs. J. Drug Deliv. Sci. Technol., 2015, 30(Part B), 360-367.
[http://dx.doi.org/10.1016/j.jddst.2015.07.016]
[5]
van Noort, R. The future of dental devices is digital. Dent. Mater., 2012, 28(1), 3-12.
[http://dx.doi.org/10.1016/j.dental.2011.10.014] [PMID: 22119539]
[6]
Zhu, W.; Holmes, B.; Glazer, R.I.; Zhang, L.G. 3D printed nanocomposite matrix for the study of breast cancer bone metastasis. Nanomedicine (Lond.), 2016, 12(1), 69-79.
[http://dx.doi.org/10.1016/j.nano.2015.09.010] [PMID: 26472048]
[7]
Pinnock, C.B.; Meier, E.M.; Joshi, N.N.; Wu, B.; Lam, M.T. Customizable engineered blood vessels using 3D printed inserts. Methods, 2016, 99, 20-27.
[http://dx.doi.org/10.1016/j.ymeth.2015.12.015] [PMID: 26732049]
[8]
Yanez, M.; Rincon, J.; Cortez, P.; Günther, N.; Boland, T.; Maria, C.D. Printable cellular scaffold using self-crosslinking agents. J. Imaging Sci. Technol, 2012, 56(4), 40506-1-40506-5.
[http://dx.doi.org/10.2352/J.ImagingSci.Technol.2012.56.4.040506]
[9]
Yi, H.G.; Choi, Y.J.; Kang, K.S.; Hong, J.M.; Pati, R.G.; Park, M.N.; Shim, I.K.; Lee, C.M.; Kim, S.C.; Cho, D.W. A 3D-printed local drug delivery patch for pancreatic cancer growth suppression. J. Control. Release, 2016, 238, 231-241.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.015] [PMID: 27288878]
[10]
Martelli, N.; Serrano, C.; van den Brink, H.; Pineau, J.; Prognon, P.; Borget, I.; El Batti, S. Advantages and disadvantages of 3-dimensional printing in surgery: A systematic review. Surgery, 2016, 159(6), 1485-1500.
[http://dx.doi.org/10.1016/j.surg.2015.12.017] [PMID: 26832986]
[11]
Ventola, C.L. Medical applications for 3D printing: current and projected uses. P&T, 2014, 39(10), 704-711.
[PMID: 25336867]
[12]
Lee, S.J.; Lee, D.; Yoon, T.R.; Kim, H.K.; Jo, H.H.; Park, J.S.; Lee, J.H.; Kim, W.D.; Kwon, I.K.; Park, S.A. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering. Acta Biomater., 2016, 40, 182-191.
[http://dx.doi.org/10.1016/j.actbio.2016.02.006] [PMID: 26868173]
[13]
Goole, J.; Amighi, K. 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems. Int. J. Pharm., 2016, 499(1-2), 376-394.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.071] [PMID: 26757150]
[14]
Choi, J.W.; Wicker, R.B.; Cho, S.H.; Ha, C.S.; Lee, S.H. Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography. Rapid Prototyping J., 2009, 15(1), 59-70.
[http://dx.doi.org/10.1108/13552540910925072]
[15]
Baronsky-Probst, J.; Möltgen, C.V.; Kessler, W.; Kessler, R.W. Process design and control of a twin screw hot melt extrusion for continuous pharmaceutical tamper-resistant tablet production. Eur. J. Pharm. Sci., 2016, 87, 14-21.
[http://dx.doi.org/10.1016/j.ejps.2015.09.010] [PMID: 26386253]
[16]
Goyanes, A.; Robles Martinez, P.; Buanz, A.; Basit, A.W.; Gaisford, S. Effect of geometry on drug release from 3D printed tablets. Int. J. Pharm., 2015, 494(2), 657-663.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.069] [PMID: 25934428]
[17]
Martinez-Marcos, L.; Lamprou, D.A.; McBurney, R.T.; Halbert, G.W. A novel hot-melt extrusion formulation of albendazole for increasing dissolution properties. Int. J. Pharm., 2016, 499(1-2), 175-185.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.006] [PMID: 26768722]
[18]
Sarode, A.L.; Sandhu, H.; Shah, N.; Malick, W.; Zia, H. Hot melt extrusion (HME) for amorphous solid dispersions: predictive tools for processing and impact of drug-polymer interactions on supersaturation. Eur. J. Pharm. Sci., 2013, 48(3), 371-384.
[http://dx.doi.org/10.1016/j.ejps.2012.12.012] [PMID: 23267847]
[19]
Ding, X.; Wang, L.; Wang, S. Comparison study of numerical analysis for heat transfer and fluid flow under two different laser scan pattern during selective laser melting. Optik (Stuttg.), 2016, 127(22), 10898-10907.
[http://dx.doi.org/10.1016/j.ijleo.2016.08.123]
[20]
Riedlbauer, D.; Drexler, M.; Drummer, D.; Steinmann, P.; Mergheim, J. Modelling, simulation and experimental validation of heat transfer in selective laser melting of the polymeric material PA12. Comput. Mater. Sci., 2014, 93, 239-248.
[http://dx.doi.org/10.1016/j.commatsci.2014.06.046]
[21]
Chia, H.N.; Wu, B.M. Recent advances in 3D printing of biomaterials. J. Biol. Eng., 2015, 9(1), 4.
[http://dx.doi.org/10.1186/s13036-015-0001-4] [PMID: 25866560]
[22]
Norman, J.; Madurawe, R.D.; Moore, C.M.; Khan, M.A.; Khairuzzaman, A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv. Drug Deliv. Rev., 2017, 108, 39-50.
[http://dx.doi.org/10.1016/j.addr.2016.03.001] [PMID: 27001902]
[23]
Wu, H.; Cheng, Y.; Liu, W.; He, R.; Zhou, M.; Wu, S.; Song, X.; Chen, Y. Effect of the particle size and the debinding process on the density of alumina ceramics fabricated by 3D printing based on stereolithography. Ceram. Int., 2016, 42(15), 17290-17294.
[http://dx.doi.org/10.1016/j.ceramint.2016.08.024]
[24]
Emami, M.M.; Barazandeh, F.; Yaghmaie, F. An analytical model for scanning-projection based stereolithography. J. Mater. Process. Technol., 2015, 219, 17-27.
[http://dx.doi.org/10.1016/j.jmatprotec.2014.12.001]
[25]
Kate, L.; Gokarna, V.; Borhade, V.; Prabhu, P.; Deshpande, V.; Pathak, S.; Sharma, S.; Patravale, V. Bioavailability enhancement of atovaquone using hot melt extrusion technology. Eur. J. Pharm. Sci., 2016, 86, 103-114.
[http://dx.doi.org/10.1016/j.ejps.2016.03.005] [PMID: 26969110]
[26]
Bochmann, E.S.; Neumann, D.; Gryczke, A.; Wagner, K.G. Micro-scale prediction method for API-solubility in polymeric matrices and process model for forming amorphous solid dispersion by hot-melt extrusion. Eur. J. Pharm. Biopharm., 2016, 107, 40-48.
[http://dx.doi.org/10.1016/j.ejpb.2016.06.015] [PMID: 27349807]
[27]
Ruttert, B.; Ramsperger, M.; Mujica Roncery, L.; Lopez-Galilea, I.; Körner, C.; Theisen, W. Impact of hot isostatic pressing on microstructures of CMSX-4 Ni-base superalloy fabricated by selective electron beam melting. Mater. Des., 2016, 110, 720-727.
[http://dx.doi.org/10.1016/j.matdes.2016.08.041]
[28]
Cui, X.; Boland, T.; D’Lima, D.D.; Lotz, M.K. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat. Drug Deliv. Formul., 2012, 6(2), 149-155.
[http://dx.doi.org/10.2174/187221112800672949] [PMID: 22436025]
[29]
Genina, N.; Holländer, J.; Jukarainen, H.; Mäkilä, E.; Salonen, J.; Sandler, N. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices. Eur. J. Pharm. Sci., 2016, 90, 53-63.
[http://dx.doi.org/10.1016/j.ejps.2015.11.005] [PMID: 26545484]
[30]
Holländer, J.; Genina, N.; Jukarainen, H.; Khajeheian, M.; Rosling, A.; Mäkilä, E.; Sandler, N. Three-dimensional printed PCL-based implantable prototypes of medical devices for controlled drug delivery. J. Pharm. Sci., 2016, 105(9), 2665-2676.
[http://dx.doi.org/10.1016/j.xphs.2015.12.012] [PMID: 26906174]
[31]
Farhatnia, Y.; Pang, J.H.; Darbyshire, A.; Dee, R.; Tan, A.; Seifalian, A.M. Next generation covered stents made from nanocomposite materials: A complete assessment of uniformity, integrity and biomechanical properties. Nanomedicine (Lond.), 2016, 12(1), 1-12.
[http://dx.doi.org/10.1016/j.nano.2015.07.002] [PMID: 26238080]
[32]
Zhao, J.; Sheadel, D.A.; Xue, W. Surface treatment of polymers for the fabrication of all-polymer MEMS devices. Sens. Actuators A Phys., 2012, 187, 43-49.
[http://dx.doi.org/10.1016/j.sna.2012.08.018]
[33]
Sim, D.S.; Jeong, M.H.; Park, D.S.; Kim, J.H.; Lim, K.S.; Bae, I.H.; Zhehao, P.; Yang, H.Y.; Lee, J.H.; Hyun, D.Y.; Hong, Y.J.; Kim, J.H.; Ahn, Y.; Kang, J.C. A novel polymer-free drug-eluting stent coated with everolimus using nitrogen-doped titanium dioxide film deposition in a porcine coronary restenosis model. Int. J. Cardiol., 2016, 222, 436-440.
[http://dx.doi.org/10.1016/j.ijcard.2016.07.275] [PMID: 27505330]
[34]
Sándor, G.K. Tissue engineering: Propagating the wave of change. Ann. Maxillofac. Surg., 2013, 3(1), 1-2.
[http://dx.doi.org/10.4103/2231-0746.110058] [PMID: 23662250]
[35]
Lalan, S.; Pomerantseva, I.; Vacanti, J.P. Tissue engineering and its potential impact on surgery. World J. Surg., 2001, 25(11), 1458-1466.
[http://dx.doi.org/10.1007/s00268-001-0131-3] [PMID: 11760750]
[36]
Amini, A.R.; Laurencin, C.T.; Nukavarapu, S.P. Bone tissue engineering: recent advances and challenges. Crit. Rev. Biomed. Eng., 2012, 40(5), 363-408.
[http://dx.doi.org/10.1615/CritRevBiomedEng.v40.i5.10] [PMID: 23339648]
[37]
Singh, R.S.; Kaur, N.; Rana, V.; Kennedy, J.F. Recent insights on applications of pullulan in tissue engineering. Carbohydr. Polym., 2016, 153, 455-462.
[http://dx.doi.org/10.1016/j.carbpol.2016.07.118] [PMID: 27561517]
[38]
Tabata, Y. Biomaterial technology for tissue engineering applications. J. R. Soc. Interface, 2009, 6(Suppl. 3), S311-S324.
[http://dx.doi.org/10.1098/rsif.2008.0448.focus] [PMID: 19324684]
[39]
Fallahiarezoudar, E.; Ahmadipourroudposht, M.; Idris, A.; Mohd Yusof, N. A review of: application of synthetic scaffold in tissue engineering heart valves. Mater. Sci. Eng. C, 2015, 48, 556-565.
[http://dx.doi.org/10.1016/j.msec.2014.12.016] [PMID: 25579957]
[40]
Kim, H-L.; Jung, G-Y.; Yoon, J-H.; Han, J-S.; Park, Y-J.; Kim, D-G.; Zhang, M.; Kim, D-J. Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Mater. Sci. Eng. C, 2015, 54, 20-25.
[http://dx.doi.org/10.1016/j.msec.2015.04.033] [PMID: 26046263]
[41]
Akbarzadeh, R.; Yousefi, A.M. Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater., 2014, 102(6), 1304-1315.
[http://dx.doi.org/10.1002/jbm.b.33101] [PMID: 24425207]
[42]
Salerno, A.; Fernández-Gutiérrez, M.; San Román del Barrio, J.; Domingo, C. Bio-safe fabrication of PLA scaffolds for bone tissue engineering by combining phase separation, porogen leaching and scCO2 drying. J. Supercrit. Fluids, 2015, 97, 238-246.
[http://dx.doi.org/10.1016/j.supflu.2014.10.029]
[43]
Hung, K-C.; Tseng, C-S.; Dai, L-G.; Hsu, S.H. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering. Biomaterials, 2016, 83, 156-168.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.019] [PMID: 26774563]
[44]
Farzadi, A.; Waran, V.; Solati-Hashjin, M.; Rahman, Z.A.A.; Asadi, M.; Osman, N.A.A. Effect of layer printing delay on mechanical properties and dimensional accuracy of 3D printed porous prototypes in bone tissue engineering. Ceram. Int., 2015, 41(7), 8320-8330.
[http://dx.doi.org/10.1016/j.ceramint.2015.03.004]
[45]
Kao, C-T.; Lin, C-C.; Chen, Y-W.; Yeh, C-H.; Fang, H-Y.; Shie, M-Y. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering. Mater. Sci. Eng. C, 2015, 56, 165-173.
[http://dx.doi.org/10.1016/j.msec.2015.06.028] [PMID: 26249577]
[46]
Bose, S.; Vahabzadeh, S.; Bandyopadhyay, A. Bone tissue engineering using 3D printing. Mater. Today, 2013, 16(12), 496-504.
[http://dx.doi.org/10.1016/j.mattod.2013.11.017]
[47]
Do, A.V.; Khorsand, B.; Geary, S.M.; Salem, A.K. 3D printing of scaffolds for tissue regeneration applications. Adv. Healthc. Mater., 2015, 4(12), 1742-1762.
[http://dx.doi.org/10.1002/adhm.201500168] [PMID: 26097108]
[48]
Bae, H.; Ahari, A.F.; Shin, H.; Nichol, J.W.; Hutson, C.B.; Masaeli, M.; Kim, S-H.; Aubin, H.; Yamanlar, S.; Khademhosseini, A. Cell-laden microengineered pullulan methacrylate hydrogels promote cell proliferation and 3D cluster formation. Soft Matter, 2011, 7(5), 1903-1911.
[http://dx.doi.org/10.1039/c0sm00697a] [PMID: 21415929]
[49]
Szymańska, E.; Winnicka, K. Stability of chitosan-a challenge for pharmaceutical and biomedical applications. Mar. Drugs, 2015, 13(4), 1819-1846.
[http://dx.doi.org/10.3390/md13041819] [PMID: 25837983]
[50]
Muthukumar, T.; Aravinthan, A.; Sharmila, J.; Kim, N.S.; Kim, J-H. Collagen/chitosan porous bone tissue engineering composite scaffold incorporated with Ginseng compound K. Carbohydr. Polym., 2016, 152, 566-574.
[http://dx.doi.org/10.1016/j.carbpol.2016.07.003] [PMID: 27516305]
[51]
Qu, X.; Xia, P.; He, J.; Li, D. Microscale electrohydrodynamic printing of biomimetic PCL/nHA composite scaffolds for bone tissue engineering. Mater. Lett., 2016, 185, 554-557.
[http://dx.doi.org/10.1016/j.matlet.2016.09.035]
[52]
Liu, M.; Zheng, H.; Chen, J.; Li, S.; Huang, J.; Zhou, C. Chitosan-chitin nanocrystal composite scaffolds for tissue engineering. Carbohydr. Polym., 2016, 152, 832-840.
[http://dx.doi.org/10.1016/j.carbpol.2016.07.042] [PMID: 27516335]
[53]
Atila, D.; Keskin, D.; Tezcaner, A. Crosslinked pullulan/cellulose acetate fibrous scaffolds for bone tissue engineering. Mater. Sci. Eng. C, 2016, 69, 1103-1115.
[http://dx.doi.org/10.1016/j.msec.2016.08.015] [PMID: 27612808]
[54]
Yu, J.; Chen, F.; Wang, X.; Dong, N.; Lu, C.; Yang, G.; Chen, Z. Synthesis and characterization of MMP degradable and maleimide cross-linked PEG hydrogels for tissue engineering scaffolds. Polym. Degrad. Stabil., 2016, 133, 312-320.
[http://dx.doi.org/10.1016/j.polymdegradstab.2016.09.008]
[55]
Jana, S.; Tefft, B.J.; Spoon, D.B.; Simari, R.D. Scaffolds for tissue engineering of cardiac valves. Acta Biomater., 2014, 10(7), 2877-2893.
[http://dx.doi.org/10.1016/j.actbio.2014.03.014] [PMID: 24675108]
[56]
Ghanbari, H.; Kidane, A.G.; Burriesci, G.; Ramesh, B.; Darbyshire, A.; Seifalian, A.M. The anti-calcification potential of a silsesquioxane nanocomposite polymer under in vitro conditions: potential material for synthetic leaflet heart valve. Acta Biomater., 2010, 6(11), 4249-4260.
[http://dx.doi.org/10.1016/j.actbio.2010.06.015] [PMID: 20601232]
[57]
Del Gaudio, C.; Gasbarroni, P.L.; Romano, G.P. Experimental investigations on the fluid-mechanics of an electrospun heart valve by means of particle image velocimetry. J. Mech. Behav. Biomed. Mater., 2016, 64, 229-239.
[http://dx.doi.org/10.1016/j.jmbbm.2016.07.030] [PMID: 27521817]
[58]
Bezuidenhout, D.; Williams, D.F.; Zilla, P. Polymeric heart valves for surgical implantation, catheter-based technologies and heart assist devices. Biomaterials, 2015, 36, 6-25.
[http://dx.doi.org/10.1016/j.biomaterials.2014.09.013] [PMID: 25443788]
[59]
Lam, M.T.; Wu, J.C. Biomaterial applications in cardiovascular tissue repair and regeneration. Expert Rev. Cardiovasc. Ther., 2012, 10(8), 1039-1049.
[http://dx.doi.org/10.1586/erc.12.99] [PMID: 23030293]
[60]
Manji, R.A.; Ekser, B.; Menkis, A.H.; Cooper, D.K.C. Bioprosthetic heart valves of the future. Xenotransplantation, 2014, 21(1), 1-10.
[http://dx.doi.org/10.1111/xen.12080] [PMID: 24444036]
[61]
Parvin Nejad, S.; Blaser, M.C.; Santerre, J.P.; Caldarone, C.A.; Simmons, C.A. Biomechanical conditioning of tissue engineered heart valves: Too much of a good thing? Adv. Drug Deliv. Rev., 2016, 96, 161-175.
[http://dx.doi.org/10.1016/j.addr.2015.11.003] [PMID: 26555371]
[62]
Fahrenholtz, M.M.; Wen, S.; Grande-Allen, K.J. Development of a heart valve model surface for optimization of surface modifications. Acta Biomater., 2015, 26, 64-71.
[http://dx.doi.org/10.1016/j.actbio.2015.08.021] [PMID: 26296937]
[63]
Jahnavi, S.; Kumary, T.V.; Bhuvaneshwar, G.S.; Natarajan, T.S.; Verma, R.S. Engineering of a polymer layered bio-hybrid heart valve scaffold. Mater. Sci. Eng. C, 2015, 51, 263-273.
[http://dx.doi.org/10.1016/j.msec.2015.03.009] [PMID: 25842134]
[64]
Alves, P.; Cardoso, R.; Correia, T.R.; Antunes, B.P.; Correia, I.J.; Ferreira, P. Surface modification of polyurethane films by plasma and ultraviolet light to improve haemocompatibility for artificial heart valves. Colloids Surf. B Biointerfaces, 2014, 113, 25-32.
[http://dx.doi.org/10.1016/j.colsurfb.2013.08.039] [PMID: 24060927]
[65]
Hirt, M.N.; Hansen, A.; Eschenhagen, T. Cardiac tissue engineering: state of the art. Circ. Res., 2014, 114(2), 354-367.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.300522] [PMID: 24436431]
[66]
Chen, Q-Z.; Harding, S.E.; Ali, N.N.; Lyon, A.R.; Boccaccini, A.R. Biomaterials in cardiac tissue engineering: Ten years of research survey. Mater. Sci. Eng. Rep., 2008, 59(1–6), 1-37.
[http://dx.doi.org/10.1016/j.mser.2007.08.001]
[67]
Woodcock, E.A.; Matkovich, S.J. Cardiomyocytes structure, function and associated pathologies. Int. J. Biochem. Cell Biol., 2005, 37(9), 1746-1751.
[http://dx.doi.org/10.1016/j.biocel.2005.04.011] [PMID: 15950518]
[68]
Breckwoldt, K.; Weinberger, F.; Eschenhagen, T. Heart regeneration. Biochim. Biophys. Acta, 2016, 1863(7 Pt B), 1749-1759.
[http://dx.doi.org/10.1016/j.bbamcr.2015.11.010] [PMID: 26597703]
[69]
Alrefai, M.T.; Murali, D.; Paul, A.; Ridwan, K.M.; Connell, J.M.; Shum-Tim, D. Cardiac tissue engineering and regeneration using cell-based therapy. Stem Cells Cloning, 2015, 8, 81-101.
[PMID: 25999743]
[70]
Ravichandran, R.; Venugopal, J.R.; Sundarrajan, S.; Mukherjee, S.; Sridhar, R.; Ramakrishna, S. Expression of cardiac proteins in neonatal cardiomyocytes on PGS/fibrinogen core/shell substrate for Cardiac tissue engineering. Int. J. Cardiol., 2013, 167(4), 1461-1468.
[http://dx.doi.org/10.1016/j.ijcard.2012.04.045] [PMID: 22564386]
[71]
Chun, Y.W.; Balikov, D.A.; Feaster, T.K.; Williams, C.H.; Sheng, C.C.; Lee, J.B.; Boire, T.C.; Neely, M.D.; Bellan, L.M.; Ess, K.C.; Bowman, A.B.; Sung, H.J.; Hong, C.C. Combinatorial polymer matrices enhance in vitro maturation of human induced pluripotent stem cell-derived cardiomyocytes. Biomaterials, 2015, 67, 52-64.
[http://dx.doi.org/10.1016/j.biomaterials.2015.07.004] [PMID: 26204225]
[72]
Barabadi, Z.; Azami, M.; Sharifi, E.; Karimi, R.; Lotfibakhshaiesh, N.; Roozafzoon, R.; Joghataei, M.T.; Ai, J. Fabrication of hydrogel based nanocomposite scaffold containing bioactive glass nanoparticles for myocardial tissue engineering. Mater. Sci. Eng. C, 2016, 69, 1137-1146.
[http://dx.doi.org/10.1016/j.msec.2016.08.012] [PMID: 27612811]
[73]
Zachman, A.L.; Wang, X.; Tucker-Schwartz, J.M.; Fitzpatrick, S.T.; Lee, S.H.; Guelcher, S.A.; Skala, M.C.; Sung, H-J. Uncoupling angiogenesis and inflammation in peripheral artery disease with therapeutic peptide-loaded microgels. Biomaterials, 2014, 35(36), 9635-9648.
[http://dx.doi.org/10.1016/j.biomaterials.2014.08.011] [PMID: 25154665]
[74]
O’Grady, N.P.; Alexander, M.; Burns, L.A.; Dellinger, E.P.; Garland, J.; Heard, S.O.; Lipsett, P.A.; Masur, H.; Mermel, L.A.; Pearson, M.L.; Raad, I.I.; Randolph, A.G.; Rupp, M.E.; Saint, S. Summary of recommendations: guidelines for the prevention of intravascular catheter-related infections. Clin. Infect. Dis., 2011, 52(9), 1087-1099.
[http://dx.doi.org/10.1093/cid/cir138] [PMID: 21467014]
[75]
Steffensen, S.L.; Vestergaard, M.H.; Groenning, M.; Alm, M.; Franzyk, H.; Nielsen, H.M. Sustained prevention of biofilm formation on a novel silicone matrix suitable for medical devices. Eur. J. Pharm. Biopharm., 2015, 94, 305-311.
[http://dx.doi.org/10.1016/j.ejpb.2015.05.014] [PMID: 26028273]
[76]
Stenger, M.; Klein, K.; Grønnemose, R.B.; Klitgaard, J.K.; Kolmos, H.J.; Lindholt, J.S.; Alm, M.; Thomsen, P.; Andersen, T.E. Co-release of dicloxacillin and thioridazine from catheter material containing an interpenetrating polymer network for inhibiting device-associated Staphylococcus aureus infection. J. Control. Release, 2016, 241, 125-134.
[http://dx.doi.org/10.1016/j.jconrel.2016.09.018] [PMID: 27663229]
[77]
Cooper, I.R.; Pollini, M.; Paladini, F. The potential of photo-deposited silver coatings on Foley catheters to prevent urinary tract infections. Mater. Sci. Eng. C, 2016, 69, 414-420.
[http://dx.doi.org/10.1016/j.msec.2016.07.004] [PMID: 27612730]
[78]
Thomas, R.; Soumya, K.R.; Mathew, J.; Radhakrishnan, E.K. Inhibitory effect of silver nanoparticle fabricated urinary catheter on colonization efficiency of Coagulase Negative Staphylococci. J. Photochem. Photobiol. B, 2015, 149, 68-77.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.04.034] [PMID: 26048526]
[79]
Guadarrama-Zempoalteca, Y.; Díaz-Gómez, L.; Meléndez-Ortiz, H.I.; Concheiro, A.; Alvarez-Lorenzo, C.; Bucio, E. Lysozyme immobilization onto PVC catheters grafted with NVCL and HEMA for reduction of bacterial adhesion. Radiat. Phys. Chem., 2016, 126, 1-8.
[http://dx.doi.org/10.1016/j.radphyschem.2016.04.023]
[80]
Lim, K.; Chua, R.R.Y.; Bow, H.; Tambyah, P.A.; Hadinoto, K.; Leong, S.S.J. Development of a catheter functionalized by a polydopamine peptide coating with antimicrobial and antibiofilm properties. Acta Biomater., 2015, 15, 127-138.
[http://dx.doi.org/10.1016/j.actbio.2014.12.015] [PMID: 25541344]
[81]
Wang, J.; Liu, Q.; Tian, Y.; Jian, Z.; Li, H.; Wang, K. Biodegradable hydrophilic polyurethane PEGU25 loading antimicrobial peptide Bmap-28: a sustained-release membrane able to inhibit bacterial biofilm formation in vitro. Sci. Rep., 2015, 5(8634), 8634.
[http://dx.doi.org/10.1038/srep08634] [PMID: 25727362]
[82]
Raman, N.; Lee, M-R.; Rodríguez López, A.L.; Palecek, S.P.; Lynn, D.M. Antifungal activity of a β-peptide in synthetic urine media: Toward materials-based approaches to reducing catheter-associated urinary tract fungal infections. Acta Biomater., 2016, 43, 240-250.
[http://dx.doi.org/10.1016/j.actbio.2016.07.016] [PMID: 27422198]
[83]
Meléndez-Ortiz, H.I.; Alvarez-Lorenzo, C.; Concheiro, A.; Jiménez-Páez, V.M.; Bucio, E. Modification of medical grade PVC with N-vinylimidazole to obtain bactericidal surface. Radiat. Phys. Chem., 2016, 119, 37-43.
[http://dx.doi.org/10.1016/j.radphyschem.2015.09.014]
[84]
Zuñiga-Zamorano, I.; Meléndez-Ortiz, H.I.; Costoya, A.; Alvarez-Lorenzo, C.; Concheiro, A.; Bucio, E. Poly(vinyl chloride) catheters modified with pH-responsive poly(methacrylic acid) with affinity for antimicrobial agents. Radiation Physics and Chemistry, 2018, 142, 107-114.
[http://dx.doi.org/10.1016/j.radphyschem.2017.02.008]
[85]
Phuengkham, H.; Nasongkla, N. Development of antibacterial coating on silicone surface via chlorhexidine-loaded nanospheres. J. Mater. Sci. Mater. Med., 2015, 26(2), 78-1.
[http://dx.doi.org/10.1007/s10856-015-5418-2]
[86]
Dave, R.N.; Joshi, H.M.; Venugopalan, V.P. Novel biocatalytic polymer-based antimicrobial coatings as potential ureteral biomaterial: preparation and in vitro performance evaluation. Antimicrob. Agents Chemother., 2011, 55(2), 845-853.
[http://dx.doi.org/10.1128/AAC.00477-10] [PMID: 21135190]
[87]
Levering, V.; Cao, C.; Shivapooja, P.; Levinson, H.; Zhao, X.; López, G.P. Urinary catheter capable of repeated on-demand removal of infectious biofilms via active deformation. Biomaterials, 2016, 77, 77-86.
[http://dx.doi.org/10.1016/j.biomaterials.2015.10.070] [PMID: 26584348]
[88]
Milo, S.; Thet, N.T.; Liu, D.; Nzakizwanayo, J.; Jones, B.V.; Jenkins, A.T.A. An in-situ infection detection sensor coating for urinary catheters. Biosens. Bioelectron., 2016, 81, 166-172.
[http://dx.doi.org/10.1016/j.bios.2016.02.059] [PMID: 26945183]
[89]
Islas, L.; Alvarez-Lorenzo, C.; Magariños, B.; Concheiro, A.; del Castillo, L.F.; Burillo, G. Singly and binary grafted poly(vinyl chloride) urinary catheters that elute ciprofloxacin and prevent bacteria adhesion. Int. J. Pharm., 2015, 488(1-2), 20-28.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.036] [PMID: 25891254]
[90]
Brisbois, E.J.; Davis, R.P.; Jones, A.M.; Major, T.C.; Bartlett, R.H.; Meyerhoff, M.E.; Handa, H. Reduction in thrombosis and bacterial adhesion with 7 day implantation of S-Nitroso-N-acetylpenicillamine (SNAP)-Doped Elast-eon E2As catheters in sheep. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(8), 1639-1645.
[http://dx.doi.org/10.1039/C4TB01839G] [PMID: 25685358]
[91]
Brisbois, E.J.; Major, T.C.; Goudie, M.J.; Meyerhoff, M.E.; Bartlett, R.H.; Handa, H. Attenuation of thrombosis and bacterial infection using dual function nitric oxide releasing central venous catheters in a 9day rabbit model. Acta Biomater., 2016, 44, 304-312.
[http://dx.doi.org/10.1016/j.actbio.2016.08.009] [PMID: 27506125]
[92]
Wo, Y.; Li, Z.; Brisbois, E.J.; Colletta, A.; Wu, J.; Major, T.C.; Xi, C.; Bartlett, R.H.; Matzger, A.J.; Meyerhoff, M.E. Origin of long-term storage stability and nitric oxide release behavior of carbosil polymer doped with S-Nitroso-N-acetyl-D-penicillamine. ACS Appl. Mater. Interfaces, 2015, 7(40), 22218-22227.
[http://dx.doi.org/10.1021/acsami.5b07501] [PMID: 26393943]
[93]
Kimura, T.; Morimoto, T.; Nakagawa, Y.; Kawai, K.; Miyazaki, S.; Muramatsu, T.; Shiode, N.; Namura, M.; Sone, T.; Oshima, S.; Nishikawa, H.; Hiasa, Y.; Hayashi, Y.; Nobuyoshi, M.; Mitudo, K. Very late stent thrombosis and late target lesion revascularization after sirolimus-eluting stent implantation: five-year outcome of the j-Cypher Registry. Circulation, 2012, 125(4), 584-591.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.046599] [PMID: 22203694]
[94]
Sethi, A.; Bahekar, A.; Bhuriya, R.; Bajaj, A.; Kovacs, D.; Ahmed, A.; Khosla, S. Drug-eluting stents versus bare metal stents in ST elevation myocardial infarction at a follow-up of three years or longer: A meta-analysis of randomized trials. Exp. Clin. Cardiol., 2012, 17(4), 169-174.
[PMID: 23592929]
[95]
Witecka, A.; Yamamoto, A.; Idaszek, J.; Chlanda, A.; Święszkowski, W. Influence of biodegradable polymer coatings on corrosion, cytocompatibility and cell functionality of Mg-2.0Zn-0.98Mn magnesium alloy. Colloids Surf. B Biointerfaces, 2016, 144, 284-292.
[http://dx.doi.org/10.1016/j.colsurfb.2016.04.021] [PMID: 27100855]
[96]
Zhu, J-Z.; Xiong, X-W.; Du, R.; Jing, Y-J.; Ying, Y.; Fan, X-M.; Zhu, T-Q.; Zhang, R-Y. Hemocompatibility of drug-eluting coronary stents coated with sulfonated poly (styrene-block-isobutylene-block-styrene). Biomaterials, 2012, 33(33), 8204-8212.
[http://dx.doi.org/10.1016/j.biomaterials.2012.07.066] [PMID: 22898183]
[97]
Koppara, T.; Sakakura, K.; Pacheco, E.; Cheng, Q.; Zhao, X.; Acampado, E.; Finn, A.V.; Barakat, M.; Maillard, L.; Ren, J.; Deshpande, M.; Kolodgie, F.D.; Joner, M.; Virmani, R. Preclinical evaluation of a novel polyphosphazene surface modified stent. Int. J. Cardiol., 2016, 222, 217-225.
[http://dx.doi.org/10.1016/j.ijcard.2016.07.181] [PMID: 27497098]
[98]
Satzl, S.; Henn, C.; Christoph, P.; Kurz, P.; Stampfl, U.; Stampfl, S.; Thomas, F.; Radeleff, B.; Berger, I.; Grunze, M.; Richter, G.M. The efficacy of nanoscale poly[bis(trifluoroethoxy) phosphazene] (PTFEP) coatings in reducing thrombogenicity and late in-stent stenosis in a porcine coronary artery model. Invest. Radiol., 2007, 42(5), 303-311.
[http://dx.doi.org/10.1097/01.rli.0000261439.90760.9d] [PMID: 17414526]
[99]
Wang, J.; He, Y.; Maitz, M.F.; Collins, B.; Xiong, K.; Guo, L.; Yun, Y.; Wan, G.; Huang, N. A surface-eroding poly(1,3-trimethylene carbonate) coating for fully biodegradable magnesium-based stent applications: toward better biofunction, biodegradation and biocompatibility. Acta Biomater., 2013, 9(10), 8678-8689.
[http://dx.doi.org/10.1016/j.actbio.2013.02.041] [PMID: 23467041]
[100]
Gu, X.; Mao, Z.; Ye, S-H.; Koo, Y.; Yun, Y.; Tiasha, T.R.; Shanov, V.; Wagner, W.R. Biodegradable, elastomeric coatings with controlled anti-proliferative agent release for magnesium-based cardiovascular stents. Colloids Surf. B Biointerfaces, 2016, 144, 170-179.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.086] [PMID: 27085049]
[101]
Bian, H.; Zhou, S.; Liang, X.; Li, Q.; Han, W. In vitro study of poly(ethylene carbonate) as a drug-eluting stent coating. Prog. Nat. Sci., 2012, 22(4), 295-302.
[http://dx.doi.org/10.1016/j.pnsc.2012.06.002]
[102]
Unger, F.; Westedt, U.; Hanefeld, P.; Wombacher, R.; Zimmermann, S.; Greiner, A.; Ausborn, M.; Kissel, T. Poly(ethylene carbonate): a thermoelastic and biodegradable biomaterial for drug eluting stent coatings? J. Control. Release, 2007, 117(3), 312-321.
[http://dx.doi.org/10.1016/j.jconrel.2006.11.003] [PMID: 17207879]
[103]
Zamani, M.; Prabhakaran, M.P.; Varshosaz, J.; Mhaisalkar, P.S.; Ramakrishna, S. Electrosprayed Montelukast/poly (lactic-co-glycolic acid) particle based coating: A new therapeutic approach towards the prevention of in-stent restenosis. Acta Biomater., 2016, 42, 316-328.
[http://dx.doi.org/10.1016/j.actbio.2016.07.007] [PMID: 27397493]
[104]
Campelo, C.S.; Lima, L.D.; Rebêlo, L.M.; Mantovani, D.; Beppu, M.M.; Vieira, R.S. In vitro evaluation of anti-calcification and anti-coagulation on sulfonated chitosan and carrageenan surfaces. Mater. Sci. Eng. C, 2016, 59, 241-248.
[http://dx.doi.org/10.1016/j.msec.2015.10.020] [PMID: 26652370]
[105]
Wu, C.; An, Q.; Li, D.; Wang, J.; He, L.; Huang, C.; Li, Y.; Zhu, W.; Mo, X. A novel heparin loaded poly(l-lactide-co-caprolactone) covered stent for aneurysm therapy. Mater. Lett., 2014, 116, 39-42.
[http://dx.doi.org/10.1016/j.matlet.2013.10.018]
[106]
Chew, B.H.; Lange, D.; Paterson, R.F.; Hendlin, K.; Monga, M.; Clinkscales, K.W.; Shalaby, S.W.; Hadaschik, B.A. Next generation biodegradable ureteral stent in a yucatan pig model. J. Urol., 2010, 183(2), 765-771.
[http://dx.doi.org/10.1016/j.juro.2009.09.073] [PMID: 20022028]
[107]
Fu, W.J.; Wang, Z.X.; Li, G.; Cui, F.Z.; Zhang, Y.; Zhang, X. Comparison of a biodegradable ureteral stent versus the traditional double-J stent for the treatment of ureteral injury: an experimental study. Biomed. Mater., 2012, 7(6), 065002
[http://dx.doi.org/10.1088/1748-6041/7/6/065002] [PMID: 23047290]
[108]
Barros, A.A.; Oliveira, C.; Lima, E.; Duarte, A.R.C.; Reis, R.L. Gelatin-based biodegradable ureteral stents with enhanced mechanical properties. Appl. Mater. Today, 2016, 5, 9-18.
[http://dx.doi.org/10.1016/j.apmt.2016.07.006]
[109]
Barros, A.A.; Browne, S.; Oliveira, C.; Lima, E.; Duarte, A.R.C.; Healy, K.E.; Reis, R.L. Drug-eluting biodegradable ureteral stent: New approach for urothelial tumors of upper urinary tract cancer. Int. J. Pharm., 2016, 513(1-2), 227-237.
[http://dx.doi.org/10.1016/j.ijpharm.2016.08.061] [PMID: 27590593]
[110]
Affairs, P.D.U.N.D.E.S. World Contraceptive Use 2011; United Nations: New York, 2011.
[111]
Wu, J.P.; Pickle, S. Extended use of the intrauterine device: a literature review and recommendations for clinical practice. Contraception, 2014, 89(6), 495-503.
[http://dx.doi.org/10.1016/j.contraception.2014.02.011] [PMID: 24679478]
[112]
ACOG Practice Bulletin No. 121: Long-acting reversible contraception: Implants and intrauterine devices. Obstet. Gynecol., 2011, 118(1), 184-196.
[http://dx.doi.org/10.1097/AOG.0b013e318227f05e] [PMID: 21691183]
[113]
Trussell, J. Contraceptive failure in the United States. Contraception, 2011, 83(5), 397-404.
[http://dx.doi.org/10.1016/j.contraception.2011.01.021] [PMID: 21477680]
[114]
Allen, C.; Kolehmainen, C. Intrauterine devices and other forms of contraception: thinking outside the pack. Med. Clin. North Am., 2015, 99(3), 505-520.
[http://dx.doi.org/10.1016/j.mcna.2015.01.005] [PMID: 25841597]
[115]
Wright, R.L.; Frost, C.J.; Turok, D.K. Experiences of advanced practitioners with inserting the copper intrauterine device as emergency contraception. Womens Health Issues, 2016, 26(5), 523-528.
[http://dx.doi.org/10.1016/j.whi.2016.04.007] [PMID: 27264913]
[116]
Hubacher, D.; Reyes, V.; Lillo, S.; Pierre-Louis, B.; Zepeda, A.; Chen, P.L.; Croxatto, H. Preventing copper intrauterine device removals due to side effects among first-time users: randomized trial to study the effect of prophylactic ibuprofen. Hum. Reprod., 2006, 21(6), 1467-1472.
[http://dx.doi.org/10.1093/humrep/del029] [PMID: 16484309]
[117]
Arancibia, V.; Peña, C.; Allen, H.E.; Lagos, G. Characterization of copper in uterine fluids of patients who use the copper T-380A intrauterine device. Clin. Chim. Acta, 2003, 332(1-2), 69-78.
[http://dx.doi.org/10.1016/S0009-8981(03)00124-4] [PMID: 12763282]
[118]
Pereda, M.D.; Farina, S.B.; Fernández Lorenzo, M. Is the early fragmentation of intrauterine devices caused by stress corrosion cracking? Acta Biomater., 2009, 5(8), 3240-3246.
[http://dx.doi.org/10.1016/j.actbio.2009.04.033] [PMID: 19447217]
[119]
Tang, Y.; Xia, X.; Wang, Y.; Xie, C. Study on the mechanical properties of Cu/LDPE composite IUDs. Contraception, 2011, 83(3), 255-262.
[http://dx.doi.org/10.1016/j.contraception.2010.07.015] [PMID: 21310288]
[120]
Ramakrishnan, R.; B, B.; Aprem, A.S. Controlled release of copper from an intrauterine device using a biodegradable polymer. Contraception, 2015, 92(6), 585-588.
[http://dx.doi.org/10.1016/j.contraception.2015.08.014] [PMID: 26363430]
[121]
Chen, Y.; Luo, Y.; Jia, Z.; Jia, D.; Wang, J. Preparation and characterization of polyurethane/nanocopper composites and their application in intrauterine devices. J. Nanomater., 2013, 2013, 1-5.
[http://dx.doi.org/10.1155/2013/782139]
[122]
Xu, X.X.; Ding, M.H.; Zhang, J.X.; Zheng, W.; Li, L.; Zheng, Y.F. A novel copper/polydimethiylsiloxane nanocomposite for copper-containing intrauterine contraceptive devices. J. Biomed. Mater. Res. B Appl. Biomater., 2013, 101(8), 1428-1436.
[http://dx.doi.org/10.1002/jbm.b.32962] [PMID: 24106056]
[123]
Qi, C.; Xia, X.; Zhang, W.; Xie, C.; Cai, S. Indomethacin/Cu/LDPE porous composite for medicated copper intrauterine devices with controlled release performances. Compos. Sci. Technol., 2012, 72(3), 428-434.
[http://dx.doi.org/10.1016/j.compscitech.2011.12.004]
[124]
Khandekar, R.; Sudhan, A.; Jain, B.K.; Deshpande, M.; Dole, K.; Shah, M.; Shah, S. Impact of cataract surgery in reducing visual impairment: a review. Middle East Afr. J. Ophthalmol., 2015, 22(1), 80-85.
[http://dx.doi.org/10.4103/0974-9233.148354] [PMID: 25624679]
[125]
Zhang, M.L.; Hirunyachote, P.; Jampel, H. Combined surgery versus cataract surgery alone for eyes with cataract and glaucoma. Cochrane Database Syst. Rev., 2015, (7), CD008671
[http://dx.doi.org/10.1002/14651858.CD008671.pub3] [PMID: 26171900]
[126]
Kohnen, T.; Baumeister, M.; Kook, D.; Klaproth, O.K.; Ohrloff, C. Cataract surgery with implantation of an artificial lens. Dtsch. Arztebl. Int., 2009, 106(43), 695-702.
[http://dx.doi.org/10.3238/arztebl.2009.0695] [PMID: 19946433]
[127]
Chamerski, K.; Lesniak, M.; Sitarz, M.; Stopa, M.; Filipecki, J. An investigation of the effect of silicone oil on polymer intraocular lenses by means of PALS, FT-IR and Raman spectroscopies. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 167, 96-100.
[http://dx.doi.org/10.1016/j.saa.2016.05.036] [PMID: 27261889]
[128]
Huang, Q.; Cheng, G.P-M.; Chiu, K.; Wang, G-Q. Surface modification of intraocular lenses. Chin. Med. J. (Engl.), 2016, 129(2), 206-214.
[http://dx.doi.org/10.4103/0366-6999.173496] [PMID: 26830993]
[129]
Haldar, R.S.; Chauhan, R.; Kapoor, K.; Niyogi, U.K. Development of a hydrophobic polymer composition with improved biocompatibility for making foldable intraocular lenses. Opt. Mater., 2014, 36(7), 1165-1176.
[http://dx.doi.org/10.1016/j.optmat.2014.02.022]
[130]
González-Chomón, C.; Braga, M.E.M.; de Sousa, H.C.; Concheiro, A.; Alvarez-Lorenzo, C. Antifouling foldable acrylic IOLs loaded with norfloxacin by aqueous soaking and by supercritical carbon dioxide technology. Eur. J. Pharm. Biopharm., 2012, 82(2), 383-391.
[http://dx.doi.org/10.1016/j.ejpb.2012.07.007] [PMID: 22846620]
[131]
Bouledjouidja, A.; Masmoudi, Y.; Sergent, M.; Trivedi, V.; Meniai, A.; Badens, E. Drug loading of foldable commercial intraocular lenses using supercritical impregnation. Int. J. Pharm., 2016, 500(1-2), 85-99.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.016] [PMID: 26780123]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 10
Year: 2020
Page: [1580 - 1599]
Pages: 20
DOI: 10.2174/0929867325666180914110119
Price: $65

Article Metrics

PDF: 32
HTML: 5
EPUB: 1
PRC: 2