Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Insights on the Use of Nanocarriers for Acne Alleviation

Author(s): Sandra Sherif Amer, Maha Nasr*, Wael Mamdouh and Omaima Sammour

Volume 16, Issue 1, 2019

Page: [18 - 25] Pages: 8

DOI: 10.2174/1567201815666180913144145

Price: $65

Abstract

Among the common myths in the cosmetics industry is the perception that acne only happens to teenagers, and specifically to females. However, acne is neither limited to a specific age, nor to a certain gender, it creates a stressful problem for many people. Many chemical treatments for acne were proven to be successful, but when administered as such, they showed many adverse effects, starting from itching to skin dryness and inflammation. Natural remedies have also been explored for acne treatment, and despite their safety, they suffered many stability problems attributed to their physicochemical properties, creating an obstacle for their topical delivery. Therefore, many nanocarriers were used to deliver those chemical and natural remedies topically to maximize their therapeutic potential in acne treatment. The present review discusses the different nanocarriers which were proven successful in improving the acne lesions, focusing on vesicular, lipidic, and polymeric systems.

Keywords: Acne, topical, nanocarriers, vesicular systems, lipidic systems, polymeric systems, inflammation.

Graphical Abstract
[1]
Strauss, J.S.; Krowchuk, D.P.; Leyden, J.J.; Lucky, A.W.; Shalita, A.R.; Siegfried, E.C.; Thiboutot, D.M.; Van Voorhees, A.S.; Beutner, K.A.; Sieck, C.K.; Bhushan, R. Guidelines of care for acne vulgaris management. J. Am. Acad. Dermatol., 2007, 56(4), 651-663.
[2]
Titus, S.; Hodge, J. Diagnosis and treatment of acne. Am. Fam. Phys, 2012, 86(8), 734-740.
[3]
Ramanathan, S.; Hebert, A.A. Management of acne vulgaris. J. Pediatr. Health Care, 2011, 25(5), 332-337.
[4]
Thakur, A.; Lariya, N.K.; Agarwal, A.; Tiwari, B.K.; Kharya, A.K.; Agrawal, H.; Agrawal, G.P. Nanoparticles-in-microspheres based dual drug delivery system for topical delivery of anti-acne drugs. Int. J. Adv. Res., 2013, 1(5), 176-188.
[5]
Najafi-Taher, R.; Amani, A. Nanoemulsions: Colloidal topical delivery systems for antiacne agents- A Mini-Review. Nanomed. Res. J., 2017, 2(1), 49-56.
[6]
Kumar, G.S.; Jayaveera, K.N.; Kumar, C.K.; Sanjay, U.P.; Swamy, B.M.; Kumar, D.V. Antimicrobial effects of Indian medicinal plants against acne-inducing bacteria. Trop. J. Pharm. Res., 2007, 6(2), 717-723.
[7]
Khorvash, F.; Abdi, F.; Kashani, H.H.; Naeini, F.F.; Narimani, T. Staphylococcus aureus in acne pathogenesis: A Case-Control Study. N. Am. J. Med. Sci., 2012, 4(11), 573-576.
[8]
Zu, Y.; Yu, H.; Liang, L.; Fu, Y.; Efferth, T.; Liu, X.; Wu, N. Activities of ten essential oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 cancer cells. Molecules, 2010, 15(5), 3200-3210.
[9]
Williams, H.C.; Dellavalle, R.P.; Garner, S. Acne vulgaris. Lancet, 2012, 379, 361-372.
[10]
Fox, L.; Csongradi, C.; Aucamp, M.; du Plessis, J.; Gerber, M. Treatment modalities for acne. Molecules, 2016, 21(8), 1-20.
[11]
Vallerand, I.A.; Lewinson, R.T.; Farris, M.S.; Sibley, C.D.; Ramien, M.L.; Bulloch, A.G.M.; Patten, S.B. Efficacy and adverse events of oral isotretinoin for acne: A systemic review. Br. J. Dermatol., 2018, 178(1), 76-85.
[12]
Adityan, B.; Kumari, R.; Thappa, D.V. Scoring systems in acne vulgaris. Indian J. Dermatol. Venereol. Leprol., 2009, 75(3), 323-326.
[13]
Fabbrocini, G.; Annunziata, M.C.; D’ Arco, V.; De Vita, V.; Lodi, G.; Mauriello, M.C.; Pastore, F.; Monfrecola, G. Acne scars: Pathogenesis, classification and treatment. Dermatol. Res. Pract., 2010, 2010, 1-13.
[14]
Nast, A.; Dreno, B.; Bettoli, V.; Bukvic, M.Z.; Degitz, K.; Dressler, C.; Finlay, A.Y.; Haedersal, M.; Lambert, J.; Layton, A.; Lombholt, H.B.; Lopez-Estebaranz, J.L.; Ochsendorf, F.; Oprica, C.; Rosumeck, S.; Simonart, T.; Werner, R.N.; Gollnick, H. European evidence-based (S3) guideline for the treatment of acne – update 2016 – short version. J. Eur. Acad. Dermatol. Venereol., 2016, 30, 1261-1268.
[15]
Vyas, A.; Sonker, A.K.; Gidwani, B. Carrrier-Based Drug Delivery system for treatment of acne. Sci. World J., 2014, 2014, 1-14.
[16]
Pochi, P.E.; Shalita, A.R.; Strauss, J.S.; Webster, S.B.; Cunliffe, W.J.; Irving, K.H.; Kligman, A.M.; Leyden, J.J.; Lookingbill, D.P.; Plewig, G.; Reisner, R.M.; Rodman, Jr , O.G.; Turner, M.L.; Webster, G.F. Report of the consensus conference on acne classification. J. Am. Acad. Dermatol., 1991, 24(3), 495-500.
[17]
Oakley, A. How to treat acne. BPJ, 2011, 20, 7-16.
[18]
Bseiso, E.A.; Nasr, M.; Sammour, O.; Abd El Gawad, N.A. Recent advances in topical formulation carriers of antifungal agents. Indian J. Dermatol. Venereol. Leprol., 2015, 81(5), 457-463.
[19]
Tabassum, N.; Hamdani, M. Plants used to treat skin diseases. Pharmacogn. Rev., 2014, 8(15), 52-60.
[20]
Yarnell, E.; Abascal, K. Botanical medicine for thyroid regulation. J. Altern. Complement. Med., 2006, 12(3), 107-112.
[21]
Antonio, J.R.; Antônio, C.R.; Cardeal, I.L.S.; Ballavenuto, J.M.A.; Oliveira, J.R. Nanotechnology in dermatology. An. Bras. Dermatol., 2014, 89(1), 126-136.
[22]
Shilakari, G.; Singh, D.; Asthana, A. Novel vesicular carriers for topical drug delivery and their application’s. Int. J. Pharm. Sci. Rev. Res., 2013, 21(1), 77-86.
[23]
Vinardell, M.P.; Mitjans, M. Nanocarriers for delivery of antioxidants on the skin. Cosmetics, 2015, 2, 342-354.
[24]
Maia, C.S.; Mehnert, W.; Schäfer-Korting, M. Solid lipid nanoparticles as drug carriers for topical glucocorticoids. Int. J. Pharm., 2000, 196(2), 165-167.
[25]
Stella, B.; Peira, E.; Dianzani, C.; Gallarate, M.; Battaglia, L.; Gigliotti, C.L.; Boggio, E.; Dianzani, U.; Dosio, F. Development and characterization of solid lipid nanoparticles loaded with a highly active doxorubicin derivative. Nanomaterials , 2018, 8(2), 110.
[26]
Zhang, J.; Purdon, C.H.; Smith, E.W. Solid lipid nanoparticles for topical drug delivery. Am. J. Drug Deliv., 2006, 4(4), 215-220.
[27]
Jain, A.K.; Jain, A.; Garg, N.K.; Agarwal, A.; Jain, A.; Jain, S.A.; Tyagi, R.K.; Jain, R.K.; Agrawal, H.; Agrawal, G.P. Adapalene loaded solid lipid nanoparticles gel : An effective approach for acne treatment. Colloids Surf. B Biointerfaces, 2014, 121, 222-229.
[28]
Shah, K.A.; Date, A.A.; Joshi, M.D.; Patravale, V.B. Solid lipid nanoparticles (SLN) of tretinoin: Potential in topical delivery. Int. J. Pharm., 2007, 345(1-2), 163-171.
[29]
Layegh, P.; Mosallaei, N.; Bagheri, D.; Jaafari, M.R.; Golmohammadzadeh, S. The efficacy of isotretinoin-loaded solid lipid nanoparticles in comparison to Isotrex ® on acne treatment. Nanomed. J., 2014, 1(1), 38-47.
[30]
Castro, G.A.; Oréfice, R.L.; Vilela, J.M.C.; Andrade, M.S.; Ferreira, L.A.M. Development of a new solid lipid nanoparticle formulation containing retinoic acid for topical treatment of acne. J. Microencapsul., 2007, 24(5), 395-407.
[31]
Silva, E.L.; Carneiro, G.; De Araújo, L.A. TrindadeMde, J.; Yoshida, M.I.; Oréfice, R.L.; Farias Lde, M.; De Carvalho, M.A.; Dos Santos, S.G.; Goulart, G.A.; Alves, R.J.; Ferreira, L.A. Solid lipid nanoparticles loaded with retinoic acid and lauric acid as an alternative for topical treatment of acne vulgaris. J. Nanosci. Nanotechnol., 2015, 15(1), 792-799.
[32]
Domínguez-delgado, C.L.; Rodríguez-cruz, I.M.; Escobar-chávez, J.J.; Calderón-lojero, I.O.; Quintanar-guerrero, D.; Ganem, A. Preparation and characterization of triclosan nanoparticles intended to be used for the treatment of acne. Eur. J. Pharm. Biopharm., 2011, 79(1), 102-107.
[33]
Pokharkar, V.B.; Mendiratta, C.; Kyadarkunte, A.Y.; Bhosale, S.H.; Barhate, G.A. Skin delivery aspects of benzoyl peroxide-loaded solid lipid nanoparticles for acne treatment. Ther. Deliv., 2014, 5(6), 635-652.
[34]
Vijayan, V.; Aafreen, S.; Sakthivel, S.; Reddy, K.R. Formulation and characterization of solid lipid nanoparticles loaded neem oil for topical treatment of acne. J. Acute Dis., 2013, 2(4), 282-286.
[35]
Jain, A.; Garg, N.K.; Jain, A.; Kesharwani, P.; Jain, A.K.; Nirbhavane, P.; Tyagi, R.K. A synergistic approach of adapalene-loaded nanostructured lipid carriers, and vitamin C co-administration for treating acne. Drug Dev. Ind. Pharm., 2016, 42(6), 897-905.
[36]
Kumari, S.; Pandita, D.; Poonia, N.; Lather, V. Nanostuctured lipid carriers for topical delivery of an anti-acne drug: Characterization and ex-vivo evaluation. Pharm. Nanotechnol., 2015, 3(2), 122-133.
[37]
Kelidari, H.R.; Saeedi, M.; Akbari, J.; Morteza-semnani, K.; Valizadeh, H.; Maniruzzaman, M.; Farmoudeh, A.; Nokhodchi, A. Development and optimisation of spironolactone nanoparticles for enhanced dissolution rates and stability. AAPS J., 2016, 18(5), 1469-1474.
[38]
Ghate, V.M.; Lewis, S.A.; Prabhu, P.; Dubey, A.; Patel, N. Nanostructured lipid carriers for the topical delivery of tretinoin. Eur. J. Pharm. Biopharm., 2016, 108, 253-261.
[39]
Patwekar, S.L.; Pedewad, S.R.; Gattani, S. Development and evaluation of nanostructured lipid carriers-based gel of isotretinoin. Part. Sci. Technol., 2017, 35, 1-12.
[40]
Nasr, M. Development of an optimized hyaluronic acid-based lipidic nanoemulsion co-encapsulating two polyphenols for nose to brain delivery. Drug Deliv., 2016, 23(4), 1444-1452.
[41]
Wu, X.; Guy, R.H. Applications of nanoparticles in topical drug delivery and in cosmetics. J. Drug Deliv. Sci. Technol., 2009, 19(6), 371-384.
[42]
Badruddoza, A.Z.; Gupta, A.; Myerson, A.S.; Trout, B.L.; Doyle, P.S. Low energy nanoemulsions as templates for the formulation of hydrophobic drugs. Adv. Ther., 2018, 1700020, 1-8.
[43]
Miastkowska, M.; Sikora, E.; Ogonowski, J.; Zielin, M.; Łudzik, A. The kinetic study of isotretinoin release from nanoemulsion. Colloids Surf. A., 2016, 510, 63-68.
[44]
Borges, V.R.; Simon, A.; Sena, A.R.; Cabral, L.M.; de Sousa, V.P. Nanoemulsion containing dapsone for topical administration: A study of in vitro release and epidermal permeation. Int. J. Nanomed, 2013, 8, 535-544.
[45]
Sunilendu, B.R.; Kothari, J.S.; Shafiq, S.; Pancholi, J.S.; Patel, J.D.; Ravindra, M. Pharmaceutical compositions of anti-acne agents. U.S Patent 2013/0280308 A1, October 24 2013.
[46]
Prasad, S.; Mukhopadhyay, A.; Kubavat, A.; Kelkar, A.; Modi, A.; Swarnkar, B.; Bajaj, B.; Vedamurthy, M.; Sheikh, S.; Mittal, R. Efficacy and safety of a nano-emulsion gel formulation of adapalene 0.1% and clindamycin 1% combination in acne vulgaris: A randomized, open label, active-controlled, multicentric, phase IV clinical trial. Indian J. Dermatol. Venereol. Leprol., 2012, 78(4), 459-467.
[47]
Bhavsar, B.; Choksi, B.; Sanmukhani, J.; Dogra, A.; Haq, R.
Mehta, S.; Mukherjee, S.; Subramanian, V.; Sheikh, S.; Mittal, R. Clindamycin 1% nano-emulsion gel formulation for the treatment of acne vulgaris: Results of a randomized, active controlled, multicentre, phase IV clinical trial. J. Clin. Diagn. Res., 2014, 8(8), YC05-YC09.
[48]
Zhang, S.; Wu, Y.; He, B.; Luo, K.; Gu, Z. Biodegradable polymeric nanoparticles based on amphiphilic principle: Construction and application in drug delivery. Sci. China Chem., 2014, 57(4), 461-475.
[49]
Ridolfi, D.M.; Marcato, P.D.; Justo, G.Z.; Cordi, L.; Machado, D.; Durán, N. Chitosan-solid lipid nanoparticles as carriers for topical delivery of tretinoin. Colloids Surf. B Biointerfaces, 2012, 93, 36-40.
[50]
Friedman, A.J.; Phan, J.; Schairer, D.O.; Champer, J.; Qin, M.; Pirouz, A.; Blecher-Paz, K.; Oren, A.; Liu, P.T.; Modlin, R.L.; Kim, J. Antimicrobial and anti-Inflammatory activity of chitosan–alginate nanoparticles: Atargeted therapy for cutaneous pathogens. J. Invest. Dermatol., 2013, 133(5), 1231-1239.
[51]
Nasr, M.; Awad, G.A.; Mansour, S.; AlShamy, A.; Mortada, N.D. Hydrophilic versus hydrophobic porogens for engineering of poly(lactide-co-glycolide) microparticles containing risedronate sodium. Pharm. Dev. Technol., 2013, 18(5), 1078-1088.
[52]
Nasr, M.; Awad, G.A.S.; Mansour, S.; Taha, I.; AlShamy, A.; Mortada, N.D. Different modalities of NaCl osmogen in biodegradable microspheres for bone deposition of risedronate sodium by alveolar targeting. Eur. J. Pharm. Biopharm., 2011, 79(3), 601-611.
[53]
Reis, C.P.; Gomes, A.; Rijo, P.; Candeias, S.; Pinto, P.; Baptista, M.; Martinho, N.; Ascensão, L. Development and evaluation of a novel topical treatment for acne with azelaic acid-loaded nanoparticles. Microsc. Microanal., 2013, 19(5), 1141-1150.
[54]
Lamichhane, N.; Udayakumar, T.S.; D’Souza, W.D.; Simone, II, C.B.; Raghavan, S.R.; Polf, J.; Mahmood, J. Liposomes: Clinical applications and potential for image-guided drug delivery. Molecules, 2018, 23(2), 288.
[55]
Varun, T.; Sonia, A.; Bharat, P.; Patil, V. Niosomes and liposomes - vesicular approach towards transdermal drug delivery. Int. J. Pharm. Chem. Sci, 2012, 1(3), 981-993.
[56]
Akbarzadeh, A.; Rezaei-sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[57]
Egbaria, K.; Weiner, N. Liposomes as a topical drug delivery system. Adv. Drug Deliv. Rev., 1990, 5(3), 287-300.
[58]
Kulkarni, S.B.; Betageri, G.V.; Singh, M. Factors affecting microencapsulation of drugs in liposomes. J. Microencapsul., 1995, 12(3), 229-246.
[59]
Nasr, M.; Mansour, S.; Mortada, N.D.; ElShamy, A.A. Vesicular aceclofenac systems: A comparative study between liposomes and niosomes. J. Microencapsul., 2008, 25(7), 499-512.
[60]
Argan, N.; Harikumar, S.L. Nirmala. Topical liposomal gel: A novel drug delivery system. Int. J. Res. Pharm. Chem., 2012, 2(2), 383-391.
[61]
Bhalerao, S.S.; Raje, H.A. Preparation, optimization, characterization, and stability studies of salicylic acid liposomes. Drug Dev. Ind. Pharm., 2003, 29(4), 451-467.
[62]
Kaur, N.; Puri, R.; Jain, S.K. Drug-cyclodextrin-vesicles dual carrier approach for skin targeting of anti-acne agent. AAPS PharmSciTech, 2010, 11(2), 528-537.
[63]
Rahman, S.A.; Abdelmalak, N.S.; Badawi, A.; Elbayoumy, T.; Sabry, N.; El Ramly, A. Tretinoin-loaded liposomal formulations: from lab to comparative clinical study in acne patients. Drug Deliv., 2016, 23(4), 1184-1193.
[64]
Skalko, N.; Cajkovac, M.; Jalsenjak, I. Liposomes with clindamycin hydrochloride in the therapy of acne vulgaris. Int. J. Pharm., 1992, 85(1-3), 97-101.
[65]
Honzak, L.; Sentjurc, M. Development of liposome encapsulated clindamycin for treatment of acne vulgaris. Pflugers Arch., 2000, 440(Suppl. 1), R044-R045.
[66]
Chorachoo, J.; Amnuaikit, T.; Voravuthikunchai, S.P. Liposomal encapsulated rhodomyrtone: A novel antiacne drug. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-7.
[67]
Yang, D.; Pornpattananangkul, D.; Nakatsuji, T.; Chan, M.; Carson, D.; Huang, C.M.; Zhang, L. The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes. Biomaterials, 2009, 30(30), 6035-6040.
[68]
Fluhr, J.W.; Barsom, O.; Gehring, W.; Gloor, M. Antibacterial efficacy of benzoyl peroxide in phospholipid liposomes. A vehicle-controlled, comparative study in patients with papulopustular acne. Dermatology, 1999, 198(3), 273-277.
[69]
Xu, H.; Delling, M.; Jun, J.C.; Clapham, D.E. Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat. Neurosci., 2006, 9(5), 628-635.
[70]
Kumar, R.; Singh, B.; Bakshi, G.; Katare, O.P. Development of liposomal systems of finasteride for topical applications: design, characterization, and in vitro evaluation. Pharm. Dev. Technol., 2007, 12(6), 591-601.
[71]
Verma, A.K.; Bindal, M.C. A vital role of niosomes on controlled and novel drug delivery. Indian J. Nov. Drug Deliv., 2011, 3(4), 238-246.
[72]
Sunilkumar, M.R. AdlinJinoNesalin, J.; Tamizh Mani, T. Niosome asanovel drug delivery system-review. Int. Res. J. Pharm. App. Sci, 2015, 5(3), 1-7.
[73]
Sankhyan, A.; Pawar, P. Recent trends in niosome as vesicular drug delivery system. J. Appl. Pharm. Sci., 2012, 2(6), 20-32.
[74]
Vyas, J.; Vyas, P.; Raval, D.; Paghdar, P. Development of topical niosomal gel of benzoyl peroxide. Int. Sch. Res. Notices. Nanotechnol, 2011, 2011, 1-6.
[75]
Qureshi, S.R.; Sahni, Y.P.; Singh, S.K.; Bhat, M.A.; Dar, A.A.; Quadri, S.A. Nanotechnology based drug delivery system. J. Pharm. Res. Opin., 2011, 1, 161-165.
[76]
Shilakari, G.; Singh, D.; Asthana, A. Novel vesicular carriers for topical drug delivery and their application’s. Int. J. Pharm. Sci. Rev. Res., 2013, 21(1), 77-86.
[77]
Budhiraja, A.; Dhingra, G. Development and characterization of a novel antiacne niosomal gel of rosmarinic acid. Drug Deliv., 2015, 22(6), 723-730.
[78]
Gupta, A.; Singh, S.; Kotla, N.G.; Webster, T.J. Formulation and evaluation of a topical niosomal gel containing a combination of benzoyl peroxide and tretinoin for antiacne activity. Int. J. Nanomedicine, 2015, 10, 171-182.
[79]
Verma, P.; Pathak, K. Therapeutic and cosmeceutical potential of ethosomes: An overview. J. Adv. Pharm. Technol. Res., 2010, 1(3), 274-282.
[80]
Yu, Z.; Lv, H.; Han, G.; Ma, K. Ethosomes loaded with cryptotanshinone for acne treatment through topical gel formulation. PLoS One, 2016, 11(7), e0159967.
[81]
Esposito, E.; Menegatti, E.; Cortesi, R. Ethosomes and liposomes as topical vehicles for azelaic acid: a preformulation study. J. Cosmet. Sci., 2004, 55(3), 253-264.
[82]
El Zaafarany, G.M.; Awad, G.A.; Holayel, S.M.; Mortada, N.D. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int. J. Pharm., 2010, 397(1-2), 164-172.
[83]
Fadel, M.; Samy, N.; Nasr, M.; Alyoussef, A.A. Topical colloidal indocyanine green-mediated photodynamic therapy for treatment of basal cell carcinoma. Pharm. Dev. Technol., 2017, 22(4), 545-550.
[84]
Rajan, R.; Jose, S.; Mukund, V.P.B.; Vasudevan, D.T. Transferosomes – A vesicular transdermal delivery system for enhanced drug permeation. J. Adv. Pharm. Technol. Res., 2011, 2(3), 138-143.
[85]
Hua, S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front. Pharmacol., 2015, 6(219), 1-5.
[86]
Park, H.; Lee, J.; Jeong, S.; Im, B.N.; Kim, M.K.; Yang, S.G.; Na, K. Lipase-sensitive transfersomes based on photosensitizer/ polymerizable lipid conjugate for selective antimicrobial photodynamic therapy of acne. Adv. Health. Mater., 2016, 5(24), 3139-3147.
[87]
Fadel, M.; Kassab, K.; Samy, N.; Thabet, S. Indocyanine green transferosomal hydrogel with enhanced stability and skin permeation for treatment of acne vulgaris: In vitro and clinical study. Eur. J. Biomed. Pharm. Sci, 2015, 2(1), 20-36.
[88]
Gupta, M.; Prajapati, R.N.; Irchhaiya, R.; Singh, N.; Prajapati, S.K. Novel clindamycin loaded transfersomes formulation for effective management of acne. World. Res. J. Pharm. Res, 2017, 6(6), 765-773.
[89]
Caddeo, C.; Manconi, M.; Sinico, C.; Valenti, D.; Celia, C.; Monduzzi, M.; Fadda, A.M. Penetration enhancer-containing vesicles: Does the penetration enhancer structure affect topical drug delivery? Curr. Drug Targets, 2015, 16(3), 1438-1447.
[90]
Bseiso, E.A.; Nasr, M.; Sammour, O.A.; Abd El Gawad, N.A. Novel nail penetration enhancer containing vesicles “nPEVs” for treatment of onychomycosis. Drug Deliv., 2016, 23(8), 2813-2819.
[91]
Barakat, S.S.; Nasr, M.; Ahmed, R.F.; Badawy, S.S.; Mansour, S. Intranasally administered in situ gelling nanocomposite system of dimenhydrinate: preparation, characterization and pharmacodynamic applicability in chemotherapy induced emesis model. Sci. Rep., 2017, 7(1), 9910.
[92]
Bsieso, E.A.; Nasr, M.; Moftah, N.H.; Sammour, O.A.; Abd El Gawad, N.A. Could nanovesicles containing a penetration enhancer clinically improve the therapeutic outcome in skin fungal diseases? Nanomedicine (Lond.), 2015, 10(13), 2017-2031.
[93]
Bavarsad, N.; Akhgari, A.; Seifmanesh, S.; Salimi, A.; Rezaie, A. Statistical optimization of tretinoin-loaded penetration-enhancer vesicles (PEV) for topical delivery. DARUJ. Pharm. Sci, 2016, 24(7), 1-12.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy