Synthesis and Biological Evaluation of Novel Osthol Derivatives as Potent Cytotoxic Agents

Author(s): Saleem Farooq*, Javid A. Banday, Aashiq Hussain, Momina Nazir, Mushtaq A. Qurishi, Abid Hamid, Surrinder Koul

Journal Name: Medicinal Chemistry

Volume 15 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Natural product, osthol has been found to have important biological and pharmacological roles particularly having inhibitory effect on multiple types of cancer.

Objective: The unmet needs in cancer therapeutics make its derivatization an important and exciting field of research. Keeping this in view, a whole new series of diverse analogues of osthol (1) were synthesized.

Method: All the newly synthesized compounds were made through modification in the lactone ring as well as in the side chain of the osthol molecule and were subjected to anti-proliferative screening through 3-(4,5-Dimethylthiazol-yl)-diphenyl tetrazoliumbromide (MTT) against four different human cancers of diverse origins viz. Colon (Colo-205), lung (A549), Leukemia (THP- 1) and breast (MCF-7) including SV40 transformed normal breast epithelial cell (fR-2).

Results: Interestingly, among the tested molecules, most of the analogs displayed better antiproliferative activity than the parent Osthol 1. However, among all the tested analogs, compound 28 exhibited the best results against leukemia (THP1) cell line with IC50 of 5µM.Compound 28 induced potent apoptotic effects and G1 phase arrest in leukemia cancer cells (THP1). The population of apoptotic cells increased from 13.8% in negative control to 26.9% at 8μM concentration of 28. Compound 28 also induced a remarkable decrease in mitochondrial membrane potential (ΛΨm) leading to apoptosis of the cancer cells.

Conclusion: A novel series of molecules derived from natural product osthol were synthesized, wherein compound 28 was found to be most effective against leukemia and with 10 fold less toxicity against normal cells. The compound induced cancer inhibition mainly through apoptosis and thus has a potential in cancer therapeutics.

Keywords: Prangos pabularia, Coumarins, Osthol, cell cycle analysis, mitochondrial membrane potential loss, natural products.

[1]
Koehn, F.E.; Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov., 2005, 4(3), 206-220.
[2]
Li, J.W.; Vederas, J.C. Drug discovery and natural products: end of an era or an endless frontier? Science, 2009, 325(5937), 161-165.
[3]
Belluti, F.; Fontana, G.; Dal Bo, L.; Carenini, N.; Giommarelli, C.; Zunino, F. Design, synthesis and anticancer activities of stilbene-coumarin hybrid compounds: Identification of novel proapoptotic agents. Bioorg. Med. Chem., 2010, 18(10), 3543-3550.
[4]
Riveiro, M.E.; Moglioni, A.; Vazquez, R.; Gomez, N.; Facorro, G.; Piehl, L.; de Celis, E.R.; Shayo, C.; Davio, C. Structural insights into hydroxycoumarin-induced apoptosis in U-937 cells. Bioorg. Med. Chem., 2008, (5), 2665-2675.
[5]
Roussaki, M.; Kontogiorgis, C.A.; Hadjipavlou-Litina, D.; Hamilakis, S.; Detsi, A. A novel synthesis of 3-aryl coumarins and evaluation of their antioxidant and lipoxygenase inhibitory activity. Bioorg. Med. Chem. Lett., 2010, 20(13), 3889-3892.
[6]
Tomohiro, N.; Yasuko, K.; Sei-Itsu, M. Inhibitory effect of esculetin on 5-lipoxygenase and leukotriene biosynthesis. Biochim. Biophys. Acta, 1983, 753(1), 130-132.
[7]
Fylaktakidou, K.C.; Hadjipavlou-Litina, D.J.; Litinas, K.E.; Nicolaides, D.N. Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Curr. Pharm. Des., 2004, 10(30), 3813-3833.
[8]
Chimenti, F.; Bizzarri, B.; Bolasco, A.; Secci, D.; Chimenti, P.; Granese, A.; Carradori, S.; Rivanera, D.; Zicari, A.; Scaltrito, M.M.; Sisto, F. Synthesis, selective anti-Helicobacter pylori activity, and cytotoxicity of novel N-substituted-2-oxo-2H-1-benzopyran-3-carboxamides. Bioorg. Med. Chem. Lett., 2010, 20(16), 4922-4926.
[9]
Kostova, I. Coumarins as inhibitors of HIV reverse transcriptase. Curr. HIV Res., 2006, 4(3), 347-363.
[10]
Chilin, A.; Battistutta, R.; Bortolato, A.; Cozza, G.; Zanatta, S.; Poletto, G.; Mazzorana, M.; Zagotto, G.; Uriarte, E.; Guiotto, A.; Pinna, L.A. Coumarin as attractive casein kinase 2 (CK2) inhibitor scaffold: an integrate approach to elucidate the putative binding motif and explain structure–activity relationships. J. Med. Chem., 2008, 51(4), 752-759.
[11]
Kurosu, H.; Maehama, T.; Okada, T.; Yamamoto, T.; Hoshino, S.I.; Fukui, Y.; Ui, M.; Hazeki, O.; Katada, T. Heterodimeric phosphoinositide 3-kinase consisting of p85 and p110β is synergistically activated by the βγ subunits of G proteins and phosphotyrosyl peptide. J. Biol. Chem., 1997, 272(39), 24252-24256.
[12]
Roche, S.; Downward, J.; Raynal, P.; Courtneidge, S.A. A function for phosphatidylinositol 3-kinase β (p85α-p110β) in fibroblasts during mitogenesis: requirement for insulin-and lysophosphatidic acid-mediated signal transduction. Mol. Cell. Biol., 1998, 18(12), 7119-7129.
[13]
You, L.; Feng, S.; An, R.; Wang, X. Osthole: a promising lead compound for drug discovery from a traditional Chinese medicine (TCM). Nat. Prod. Commun., 2009, 4(2), 297-302.
[14]
Okamoto, T.; Kobayashi, T.; Yoshida, S. Chemical aspects of coumarin compounds for the prevention of hepatocellular carcinomas. Curr. Med. Chem. Anticancer Agents, 2005, 5(1), 47-51.
[15]
You, L.; An, R.; Wang, X.; Li, Y. Discovery of novel osthole derivatives as potential anti-breast cancer treatment. Bioorg. Med. Chem. Lett., 2010, 20(24), 7426-7428.
[16]
Tang, C.H.; Yang, R.S.; Chien, M.Y.; Chen, C.C.; Fu, W.M. Enhancement of bone morphogenetic protein-2 expression and bone formation by coumarin derivatives via p38 and ERK-dependent pathway in osteoblasts. Eur. J. Pharmacol., 2008, 579(1), 40-49.
[17]
Okamoto, T.; Kobayashi, T. Synthetic derivatives of osthole for the prevention of hepatitis. Med. Chem., 2007, 3(1), 35-44.
[18]
Shokoohinia, Y.; Jafari, F.; Mohammadi, Z.; Bazvandi, L.; Hosseinzadeh, L.; Chow, N.; Bhattacharyya, P.; Farzaei, M.H.; Farooqi, A.A.; Nabavi, S.M.; Yerer, M.B. Potential anticancer properties of osthol: A comprehensive mechanistic review. Nutrients, 2018, 10(1), 36.
[19]
Shokoohinia, Y.; Khajouei, S.; Ahmadi, F.; Ghiasvand, N.; Hosseinzadeh, L. Protective effect of bioactive compounds from Echinophora cinerea against cisplatin-induced oxidative stress and apoptosis in the PC12 cell line. Iran. J. Basic Med. Sci., 2017, 20(4), 438-445.
[20]
Kuo, P.L.; Hsu, Y.L.; Chang, C.H.; Chang, J.K. Osthole-mediated cell differentiation through bone morphogenetic protein-2/p38 and extracellular signal-regulated kinase 1/2 pathway in human osteoblast cells. J. Pharmacol. Exp. Ther., 2005, 314(3), 1290-1299.
[21]
Li, X.X.; Hara, I.; Matsumiya, T. Effects of osthole on postmenopausal osteoporosis using ovariectomized rats; comparison to the effects of estradiol. Biol. Pharm. Bull., 2002, 25(6), 738-742.
[22]
Hamelers, I.H.; Van Schaik, R.F.; Sussenbach, J.S.; Steenbergh, P.H. 17β-Estradiol responsiveness of MCF-7 laboratory strains is dependent on an autocrine signal activating the IGF type I receptor. Cancer Cell Int., 2003, 3(1), 10.
[23]
Zhang, L.; Jiang, G.; Yao, F.; He, Y.; Liang, G.; Zhang, Y.; Hu, B.; Wu, Y.; Li, Y.; Liu, H. Growth inhibition and apoptosis induced by osthole, a natural coumarin, in hepatocellular carcinoma. PLoS One, 2012, 7(5), e37865.
[24]
Xu, X.M.; Zhang, Y.; Qu, D.; Feng, X.W.; Chen, Y.; Zhao, L. Osthole suppresses migration and invasion of A549 human lung cancer cells through inhibition of matrix metalloproteinase-2 and matrix metallopeptidase-9 in vitro. Mol. Med. Rep., 2012, 6(5), 1018-1022.
[25]
Siskos, E.P.; Mazomenos, B.E.; Konstantopoulou, M.A. Isolation and identification of insecticidal components from Citrus aurantium fruit peel extract. J. Agric. Food Chem., 2008, 56(14), 5577-5581.
[26]
Rosselli, S.; Maggio, A.; Bellone, G.; Formisano, C.; Basile, A.; Cicala, C.; Alfieri, A.; Mascolo, N.; Bruno, M. Antibacterial and anticoagulant activities of coumarins isolated from the flowers of Magydaris tomentosa. Planta Med., 2007, 73(02), 116-120.
[27]
Okamoto, T.; Kobayashi, T. Synthetic derivatives of osthole for the prevention of hepatitis. Med. Chem., 2007, 3(1), 35-44.
[28]
Kawaii, S.; Tomono, Y.; Ogawa, K.; Sugiura, M.; Yano, M.; Yoshizawa, Y.; Ito, C.; Furukawa, H. Antiproliferative effect of isopentenylated coumarins on several cancer cell lines. Anticancer Res., 2000, 21(3B), 1905-1911.
[29]
Guo, Q.; Cao, H.; Qi, X.; Li, H.; Ye, P.; Wang, Z.; Wang, D.; Sun, M. Research Progress in reversal of tumor multi-drug resistance via natural products. Anticancer. Agents Med. Chem., 2017, 17(11), 1466-1476.
[30]
Chou, S.Y.; Hsu, C.S.; Wang, K.T.; Wang, M.C.; Wang, C.C. Antitumor effects of Osthol from Cnidium monnieri: an in vitro and in vivo study. Phytother. Res., 2007, 21(3), 226-230.
[31]
Yang, D.; Gu, T.; Wang, T.; Tang, Q.; Ma, C. Effects of osthole on migration and invasion in breast cancer cells. Biosci. Biotechnol. Biochem., 2010, 74(7), 1430-1434.
[32]
Farooq, S.; Hussain, A.; Hamid, A.; Qurishi, M.A.; Koul, S. Click chemistry inspired synthesis and bioevaluation of novel triazolyl derivatives of Osthol as potent cytotoxic agents. Eur. J. Med. Chem., 2014, 84, 545-554.
[33]
Tripathi, V.K.; Singh, J.; Ara, T.; Koul, S.; Farooq, S.; Kaul, A. Synthesis and biological evaluation of novel isoxazoles and triazoles linked 6-hydroxycoumarin as potent cytotoxic agents. Bioorg. Med. Chem. Lett., 2014, 24(17), 4243-4246.
[34]
Farooq, S.; Dangroo, N.A.; Priya, D.; Banday, J.A.; Sangwan, P.L.; Qurishi, M.A.; Koul, S.; Saxena, A.K. Isolation, cytotoxicity evaluation and HPLC-quantification of the chemical constituents from Prangos pabularia. PLoS One, 2014, 9(10), e108713.
[35]
Kostova, I.; Raleva, S.; Genova, P.; Argirova, R. Structure-activity relationships of synthetic coumarins as HIV-1 inhibitors. Bioinorg. Chem. Appl., 2006, 22, 274.
[36]
You, L.; Feng, S.; An, R.; Wang, X. Osthole: a promising lead compound for drug discovery from a traditional Chinese medicine (TCM). Nat. Prod. Commun., 2009, 4(2), 297-302.
[37]
Okamoto, T.; Kobayashi, T.; Yoshida, S. Chemical aspects of coumarin compounds for the prevention of hepatocellular carcinomas. Curr. Med. Chem. Anticancer Agents, 2005, 5(1), 47-51.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 2
Year: 2019
Page: [138 - 149]
Pages: 12
DOI: 10.2174/1573406414666180911161047
Price: $65

Article Metrics

PDF: 38
HTML: 8