Synthesis of Chalcones and Nucleosides Incorporating [1, 3, 4]Oxadiazolenone Core and Evaluation of their Antifungal and Antibacterial Activities

Author(s): Alok K. Srivastava*, Lokesh K. Pandey

Journal Name: Current Bioactive Compounds

Volume 15 , Issue 6 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: [1, 3, 4]oxadiazolenone core containing chalcones and nucleosides were synthesized by Claisen-Schmidt condensation of a variety of benzaldehyde derivatives, obtained from oxidation of substituted 5-(3/6 substituted-4-Methylphenyl)-1, 3, 4-oxadiazole-2(3H)-one and various substituted acetophenone. The resultant chalcones were coupled with penta-O-acetylglucopyranose followed by deacetylation to get [1, 3, 4] oxadiazolenone core containing chalcones and nucleosides. Various analytical techniques viz IR, NMR, LC-MS and elemental analysis were used to confirm the structure of the synthesised compounds.The compounds were targeted against Bacillus subtilis, Staphylococcus aureus and Escherichia coli for antibacterial activity and Aspergillus flavus, Aspergillus niger and Fusarium oxysporum for antifungal activity.

Methods: A mixture of Acid hydrazides (3.0 mmol) and N, Nʹ- carbonyl diimidazole (3.3 mmol) in 15 mL of dioxane was refluxed to afford substituted [1, 3, 4]-oxadiazole-2(3H)-one. The resulted [1, 3, 4]- oxadiazole-2(3H)-one (1.42 mmol) was oxidized with Chromyl chloride (1.5 mL) in 20 mL of carbon tetra chloride and condensed with acetophenones (1.42 mmol) to get chalcones 4. The equimolar ratio of obtained chalcones 4 and β -D-1,2,3,4,6- penta-O-acetylglucopyranose in presence of iodine was refluxed to get nucleosides 5. The [1, 3, 4] oxadiazolenone core containing chalcones 4 and nucleosides 5 were tested to determined minimum inhibitory concentration (MIC) value with the experimental procedure of Benson using disc-diffusion method. All compounds were tested at concentration of 5 mg/mL, 2.5 mg/mL, 1.25 mg/mL, 0.62 mg/mL, 0.31 mg/mL and 0.15 mg/mL for antifungal activity against three strains of pathogenic fungi Aspergillus flavus (A. flavus), Aspergillus niger (A. niger) and Fusarium oxysporum (F. oxysporum) and for antibacterial activity against Gram-negative bacterium: Escherichia coli (E. coli), and two Gram-positive bacteria: Staphylococcus aureus (S. aureus) and Bacillus subtilis(B. subtilis).

Results: The chalcones 4 and nucleosides 5 were screened for antibacterial activity against E. coli, S. aureus and B. subtilis whereas antifungal activity against A. flavus, A. niger and F. oxysporum. Compounds 4a-t showed good antibacterial activity whereas compounds 5a-t containing glucose moiety showed better activity against fungi. The glucose moiety of compounds 5 helps to enter into the cell wall of fungi and control the cell growth.

Conclusion: Chalcones 4 and nucleosides 5 incorporating [1, 3, 4] oxadiazolenone core were synthesized and characterized by various spectral techniques and elemental analysis. These compounds were evaluated for their antifungal activity against three fungi; viz. A. flavus, A. niger and F. oxysporum. In addition to this, synthesized compounds were evaluated for their antibacterial activity against gram negative bacteria E. Coli and gram positive bacteria S. aureus, B. subtilis. Compounds 4a-t showed good antibacterial activity whereas 5a-t showed better activity against fungi.

Keywords: Chalcone, oxadiazolenone, antifungal activity, antibacterial activity, antimalarial, glucopyranose rings.

[1]
Ansari, F.L.; Nazir, S.; Noureen, H.; Mirza, B. Combinatorial synthesis and antibacterial evaluation of an indexed chalcone library. Chem. Biodivers., 2005, 2(12), 1656-1664.
[http://dx.doi.org/10.1002/cbdv.200590135] [PMID: 17191962]
[2]
Gupta, D.; Jain, D.K. Chalcone derivatives as potential antifungal agents: Synthesis, and antifungal activity. J. Adv. Pharm. Technol. Res., 2015, 6(3), 114-117.
[http://dx.doi.org/10.4103/2231-4040.161507] [PMID: 26317075]
[3]
Zheng, Y.; Wang, X.; Gao, S.; Ma, M.; Ren, G.; Liu, H.; Chen, X. Synthesis and antifungal activity of chalcone derivatives. Nat. Prod. Res., 2015, 29(19), 1804-1810.
[http://dx.doi.org/10.1080/14786419.2015.1007973] [PMID: 25675372]
[4]
Božić, D.D.; Milenković, M.; Ivković, B.; Ćirković, I. Antibacterial activity of three newly-synthesized chalcones & synergism with antibiotics against clinical isolates of methicillin-resistant Staphylococcus aureus. Indian J. Med. Res., 2014, 140(1), 130-137.
[PMID: 25222788]
[5]
Vibhute, Y.B.; Baseer, M.A. Synthesis and activity of a new series of chalcones as antibacterial agents. Indian J. Chem., 2003, 42B, 202-205.
[http://dx.doi.org/10.1002/chin.200314102]
[6]
Gan, X.; Wang, Y.; Hu, D.; Song, B. Design, synthesis, and antiviral activity of novel chalcone derivatives containing a purine moiety. Chin. J. Chem., 2017, 35(5), 665-672.
[http://dx.doi.org/10.1002/cjoc.201600568]
[7]
Wang, Y.J.; Zhou, D.G.; He, F.C.; Chen, J.X.; Chen, Y.Z.; Gan, X.H.; Hu, D.Y.; Song, B.A. Synthesis and antiviral bioactivity of novel chalcone derivatives containing purine moiety. Chin. Chem. Lett., 2018, 29(1), 127-130.
[http://dx.doi.org/10.1016/j.cclet.2017.07.006]
[8]
Fang, X.; Yang, B.; Cheng, Z.; Zhang, P.; Yang, M. Synthesis and antimicrobial activity of novel chalcone derivatives. Res. Chem. Intermed., 2014, 40(4), 1715-1725.
[http://dx.doi.org/10.1007/s11164-013-1076-5]
[9]
Liaras, K.; Geronikaki, A.; Glamočlija, J.; Cirić, A.; Soković, M. Thiazole-based chalcones as potent antimicrobial agents. Synthesis and biological evaluation. Bioorg. Med. Chem., 2011, 19(10), 3135-3140.
[http://dx.doi.org/10.1016/j.bmc.2011.04.007] [PMID: 21524583]
[10]
Tomar, V.; Bhattacharjee, G. Kamaluddin, Kumar, A. Synthesis and antimicrobial evaluation of new chalcones containing piperazine or 2,5-dichlorothiophene moiety. Bioorg. Med. Chem. Lett., 2007, 17(19), 5321-5324.
[http://dx.doi.org/10.1016/j.bmcl.2007.08.021] [PMID: 17719779]
[11]
Shakhatreh, M.A.K.; Al-Smadi, M.L.; Khabour, O.F.; Shuaibu, F.A.; Hussein, E.I.; Alzoubi, K.H. Study of the antibacterial and antifungal activities of synthetic benzyl bromides, ketones, and corresponding chalcone derivatives. Drug Des. Devel. Ther., 2016, 10, 3653-3660.
[http://dx.doi.org/10.2147/DDDT.S116312] [PMID: 27877017]
[12]
Venkatesh, T.; Bodke, Y.D.; Kenchappa, R.; Telkar, S. Synthesis, antimicrobial and antioxidant activity of chalcone derivatives containing thiobarbitone nucleus. Med. Chem., 2016, 6(7), 440-448.
[13]
Rücker, H.; Al-Rifai, N.; Rascle, A.; Gottfried, E.; Brodziak-Jarosz, L.; Gerhäuser, C.; Dick, T.P.; Amslinger, S. Enhancing the anti-inflammatory activity of chalcones by tuning the Michael acceptor site. Org. Biomol. Chem., 2015, 13(10), 3040-3047.
[http://dx.doi.org/10.1039/C4OB02301C] [PMID: 25622264]
[14]
Vogel, S.; Barbic, M.; Jürgenliemk, G.; Heilmann, J. Synthesis, cytotoxicity, anti-oxidative and anti-inflammatory activity of chalcones and influence of A-ring modifications on the pharmacological effect. Eur. J. Med. Chem., 2010, 45(6), 2206-2213.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.060] [PMID: 20153559]
[15]
Hsieh, H.K.; Tsao, L.T.; Wang, J.P.; Lin, C.N. Synthesis and anti-inflammatory effect of chalcones. J. Pharm. Pharmacol., 2000, 52(2), 163-171.
[http://dx.doi.org/10.1211/0022357001773814] [PMID: 10714946]
[16]
Hiba Iqbal, H.; Prabhakar, V.; Sangith, A.; Chandrika, B.; Balasubramanian, R. Synthesis, anti-inflammatory and antioxidant activity of ring-A-monosubstituted chalcone derivatives. Med. Chem. Res., 2014, 23(10), 4383-4394.
[http://dx.doi.org/10.1007/s00044-014-1007-z]
[17]
Yadav, N.; Dixit, S.K.; Bhattacharya, A.; Mishra, L.C.; Sharma, M.; Awasthi, S.K.; Bhasin, V.K. Antimalarial activity of newly synthesized chalcone derivatives in vitro. Chem. Biol. Drug Des., 2012, 80(2), 340-347.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01383.x] [PMID: 22429524]
[18]
Syahri, J.; Yuanita, E.; Nurohmah, B.A.; Armunanto, R.; Purwono, B. Chalcone analogue as potent anti-malarial compounds against Plasmodium falciparum: Synthesis, biological evaluation, and docking simulation study. Asian Pac. J. Trop. Biomed., 2017, 7(8), 675-679.
[http://dx.doi.org/10.1016/j.apjtb.2017.07.004]
[19]
Domínguez, J.N.; de Domínguez, N.G.; Rodrigues, J.; Acosta, M.E.; Caraballo, N.; León, C. Synthesis and antimalarial activity of urenyl Bis-chalcone in vitro and in vivo. J. Enzyme Inhib. Med. Chem., 2013, 28(6), 1267-1273.
[http://dx.doi.org/10.3109/14756366.2012.733383] [PMID: 23094691]
[20]
Rao, A.S. Atlas, Synthesis and analgesic activity of some chalcones. Asian J. Chem., 2011, 23(10), 4373-4376.
[21]
Chamakuri, K.; Muppavarapu, S.M.; Yellu, N.R. Synthesis and analgesic and anti-inflammatory activities of 7-azaindazole chalcone derivatives. Med. Chem. Res., 2016, 25(10), 2392-2398.
[http://dx.doi.org/10.1007/s00044-016-1671-2]
[22]
Heidari, M.R.; Foroumadi, A.; Amirabadi, A.; Samzadeh-Kermani, A.; Azimzadeh, B.S.; Eskandarizadeh, A. Evaluation of anti-inflammatory and analgesic activity of a novel rigid 3, 4-dihydroxy chalcone in mice. Ann. N. Y. Acad. Sci., 2009, 1171(1), 399-406.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04904.x] [PMID: 19723082]
[23]
Jin, C.; Liang, Y.J.; He, H.; Fu, L. Synthesis and antitumor activity of novel chalcone derivatives. Biomed. Pharmacother., 2013, 67(3), 215-217.
[http://dx.doi.org/10.1016/j.biopha.2010.12.010] [PMID: 23478573]
[24]
Bandgar, B.P.; Jalde, S.S.; Adsul, L.K.; Shringare, S.N.; Lonikar, S.V.; Gacche, R.N.; Dhole, N.A.; Nile, S.H.; Shirfule, A.L. Synthesis of new olefin chalcone derivatives as antitumor, antioxidant and antimicrobial agents. Med. Chem. Res., 2012, 21(12), 4512-4522.
[http://dx.doi.org/10.1007/s00044-012-9979-z]
[25]
Sharma, R.; Kumar, R.; Kodwani, R.; Kapoor, S.; Khare, A.; Bansal, R.; Khurana, S.; Singh, S.; Thomas, J.; Roy, B.; Phartyal, R.; Saluja, S.; Kumar, S. A review on mechanisms of anti-tumor activity of chalcones. Anticancer. Agents Med. Chem., 2015, 16(2), 200-211.
[http://dx.doi.org/10.2174/1871520615666150518093144] [PMID: 25980813]
[26]
Kumar, S.K.; Hager, E.; Pettit, C.; Gurulingappa, H.; Davidson, N.E.; Khan, S.R. Design, synthesis, and evaluation of novel boronic-chalcone derivatives as antitumor agents. J. Med. Chem., 2003, 46(14), 2813-2815.
[http://dx.doi.org/10.1021/jm030213+] [PMID: 12825923]
[27]
Echeverria, C.; Santibañez, J.F.; Donoso-Tauda, O.; Escobar, C.A.; Ramirez-Tagle, R. Structural antitumoral activity relationships of synthetic chalcones. Int. J. Mol. Sci., 2009, 10(1), 221-231.
[http://dx.doi.org/10.3390/ijms10010221] [PMID: 19333443]
[28]
Gupta, R.A.; Kaskhedikar, S.G. Synthesis, antitubercular activity, and QSAR analysis of substituted nitroaryl analogs: Chalcone, pyrazole, isoxazole, and pyrimidines. Med. Chem. Res., 2013, 22(8), 3863-3880.
[http://dx.doi.org/10.1007/s00044-012-0385-3]
[29]
Faldu, V.J.; Gothalia, V.K.; Shah, V.H. Characterisation and antitubercular activity of synthesized pyrimidine derivatives via chalcones. Indian J. Chem., 2015, 54B, 391-398.
[30]
Lin, Y.M.; Zhou, Y.; Flavin, M.T.; Zhou, L.M.; Nie, W.; Chen, F.C. Chalcones and flavonoids as anti-tuberculosis agents. Bioorg. Med. Chem., 2002, 10(8), 2795-2802.
[http://dx.doi.org/10.1016/S0968-0896(02)00094-9] [PMID: 12057669]
[31]
Ohkura, N.; Ohnishi, K.; Taniguchi, M.; Nakayama, A.; Usuba, Y.; Fujita, M.; Fujii, A.; Ishibashi, K.; Baba, K.; Atsumi, G. Anti-platelet effects of chalcones from Angelica keiskei Koidzumi (Ashitaba) in vivo. Pharmazie, 2016, 71(11), 651-654.
[PMID: 29441970]
[32]
Lin, C-N.; Hsieh, H-K. Ko, H.-H.; Hsu, M.-F.; Lin, H.-C.; Chang, Y.-L.; Chung, M.-I.; Kang, J.-J.; Wang, J.-P.; Teng, C.-M. Chalcones as potent antiplatelet agents and calcium channel blockers. Drug Dev. Res., 2001, 53(1), 9-14.
[http://dx.doi.org/10.1002/ddr.1163]
[33]
Ko, H-H.; Hsieh, H-K.; Liu, C-T.; Lin, H-C.; Teng, C-M.; Lin, C-N. Structure-activity relationship studies on chalcone derivatives: Potent inhibition of platelet aggregation. J. Pharm. Pharmacol., 2004, 56(10), 1333-1337.
[http://dx.doi.org/10.1211/0022357044247] [PMID: 15482650]
[34]
Saxena, H.O.; Faridi, U.; Kumar, J.K.; Luqman, S.; Darokar, M.P.; Shanker, K.; Chanotiya, C.S.; Gupta, M.M.; Negi, A.S. Synthesis of chalcone derivatives on steroidal framework and their anticancer activities. Steroids, 2007, 72(13), 892-900.
[http://dx.doi.org/10.1016/j.steroids.2007.07.012] [PMID: 17850837]
[35]
Karthikeyan, C.; Moorthy, N.S.; Ramasamy, S.; Vanam, U.; Manivannan, E.; Karunagaran, D.; Trivedi, P. Advances in chalcones with anticancer activities. Recent Patents Anticancer Drug Discov., 2015, 10(1), 97-115.
[http://dx.doi.org/10.2174/1574892809666140819153902] [PMID: 25138130]
[36]
Achanta, G.; Modzelewska, A.; Feng, L.; Khan, S.R.; Huang, P. A boronic-chalcone derivative exhibits potent anticancer activity through inhibition of the proteasome. Mol. Pharmacol., 2006, 70(1), 426-433.
[http://dx.doi.org/10.1124/mol.105.021311] [PMID: 16636137]
[37]
Mahapatra, D.K.; Bharti, S.K.; Asati, V. Anti-cancer chalcones: Structural and molecular target perspectives. Eur. J. Med. Chem., 2015, 98, 69-114.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.004] [PMID: 26005917]
[38]
Rasool, A.; Panda, R.; Kachroo, M. Synthesis of some new chalcone derivatives and evaluation of their Anticancer activity. Int. J. Drug Dev. & Res., 2013, 5(3), 309-315.
[39]
Wani, Z.A.; Pathania, A.S.; Mahajan, G.; Behl, A.; Mintoo, M.J.; Guru, S.K.; Viswanath, A.; Malik, F.; Kamal, A.; Mondhe, D.M. Anticancer activity of a novel quinazolinone-chalcone derivative through cell cycle arrest in pancreatic cancer cell line. J. Solid Tumors, 2015, 5(2), 73-85.
[http://dx.doi.org/10.5430/jst.v5n2p73]
[40]
Coskun, D.; Tekin, S.; Sandal, S.; Coskun, M.F. Synthesis, characterization, and anticancer activity of new benzofuran substituted chalcones. J. Chem., 2016, 7678486, 1-8.
[http://dx.doi.org/10.1155/2016/7678486]
[41]
Bhale, P.S.; Chavan, H.V.; Dongare, S.B.; Shringare, S.N.; Mule, Y.B.; Choudhari, P.B.; Bandgar, B.P. Synthesis, characterization and evaluation of 1,3-bisindolyl-2-propen-1- one derivatives as potent anti-breast cancer agents. Curr. Bioact. Compd., 2018, 14(3), 299-308.
[http://dx.doi.org/10.2174/1573407213666170428112855]
[42]
Choudhary, A.N.; Kumar, A. Juy. V. Design, Synthesis and Evaluation of Chalcone Derivatives as Anti- inflammatory, antioxidant and antiulcer agents. Lett. Drug Des. Discov., 2012, 9(5), 479-488.
[http://dx.doi.org/10.2174/157018012800389368]
[43]
Sashidhara, K.V.; Avula, S.R.; Mishra, V.; Palnati, G.R.; Singh, L.R.; Singh, N.; Chhonker, Y.S.; Swami, P.; Bhatta, R.S.; Palit, G. Identification of quinoline-chalcone hybrids as potential antiulcer agents. Eur. J. Med. Chem., 2015, 89, 638-653.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.068] [PMID: 25462272]
[44]
Poonam Shukla, P.; Pratap, R.; Singh, S.; Rahuja, N.; Prasad, A.K.; Shrivastava, A.K. In silco molecular modeling of chalcone based aryloxyethylamines as antihyperglycemic agents. Med. Chem., 2017, 7(7), 226-234.
[45]
Gutteridge, C.E.; Vo, J.V.; Tillett, C.B.; Vigilante, J.A.; Dettmer, J.R.; Patterson, S.L.; Werbovetz, K.A.; Capers, J.; Nichols, D.A.; Bhattacharjee, A.K.; Gerena, L. Antileishmanial and antimalarial chalcones: Synthesis, efficacy and cytotoxicity of pyridinyl and naphthalenyl analogs. Med. Chem., 2007, 3(2), 115-119.
[http://dx.doi.org/10.2174/157340607780059530] [PMID: 17348849]
[46]
Rao, G.E.; Rahaman, S.A.; Rani, A.P. Synthesis, characterization and biological evolution of nitrogenous heterocyclic ring containing chalcones. Int. J. Pharm. Sci. Rev. Res., 2017, 43(2), 200-207.
[47]
Kumari, S.; Paliwal, S.K.; Chauhan, R. An improved protocol for the synthesis of chalcones containing pyrazole with potential antimicrobial and antioxidant activity. Curr. Bioact. Compd., 2018, 14(1), 39-47.
[http://dx.doi.org/10.2174/1573407212666161101152735]
[48]
Wilhelm, A.; Kendrekar, P.; Noreljaleel, A.E.M.; Abay, E.T.; Bonnet, S.L.; Wiesner, L.; de Kock, C.; Swart, K.J.; van der Westhuizen, J.H. Synthesis and in vitro antiplasmodial activity of aminoalkylated chalcones and analogues. J. Nat. Prod., 2015, 78(8), 1848-1858.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00114] [PMID: 26235033]
[49]
Smith, N.M.; Soh, P.; Asokananthan, N.; Norret, M.; Stewart, G.A.; Raston, C.L. Immunomodulatory effects of functionalised chalcones on pro-inflammatory cytokine release from lung epithelial cells. New J. Chem., 2009, 33, 1869-1873.
[http://dx.doi.org/10.1039/b909172f]
[50]
Khare, R.K.; Srivastava, A.K.; Singh, H. Synthesis and fungicidal activity of some 6-aryl-2-(-β-D-glucopyranosyl)-3-oxo-2,3-dihydro-1,3,4-oxadiazolo [3,2-b]-1,2,4,6-thiatriazine-1,1-dioxides. Indian J. Chem., 2005, 44B, 163.
[http://dx.doi.org/10.1002/chin.200519217]
[51]
Srivastava, A.K.; Khare, R.K.; Singh, H. Synthesis and fungicidal activity of some 3-(5-aryl-1,3,4-thiadiazol-2-yl)-1- (β-D-glucopyranosyl)-5-alkyl- 2-thio-4-imidazolidinones. Indian J. Chem., 2007, 46B, 875.
[52]
Srivastava, A.K.; Pandey, L.K.; Pandey, O.P.; Verma, S. Synthesis and fungicidal activity of some 8-aryl-3-(-D-glucopyranosyl)-4-oxo-4H,5H-1,2,4-triazolo-[4,3-b]-1,4,2,6-dithiadiazine-1,1-dioxides. Indian J. Chem., 2015, 54B, 682.
[53]
Abdelal, A.M.; El-Emam, A.A.; Moustafa, M.A. Nucleosides: Synthesis of some new naphthimidazole ribonucleosides as potential antibacterial agents. J. Chin. Chem. Soc. (Taipei), 1992, 39(3), 257-261.
[http://dx.doi.org/10.1002/jccs.199200044]
[54]
Amer, H.H.; El-Kousy, S.M.; Salama, W.M.; Sheleby, A.H-H. Synthesis and antimicrobial activity of new synthesized benzimidazole derivatives and their acyclic nucleoside analogues. Org. Chem. Curr. Res, 2016, 5(1), 1-8.
[http://dx.doi.org/10.4172/2161-0401.1000159]
[55]
Miura, S.; Yoshimura, Y.; Endo, M.; Machida, H.; Matsuda, A.; Tanaka, M.; Sasaki, T. Antitumor activity of a novel orally effective nucleoside, 1-(2-deoxy-2-fluoro-4-thio-beta-D-arabinofuranosyl)cytosine. Cancer Lett., 1998, 129(1), 103-110.
[http://dx.doi.org/10.1016/S0304-3835(98)00089-5] [PMID: 9714341]
[56]
Lim, M.H.; Kim, H.O.; Moon, H.R.; Chun, M.W.; Jeong, L.S. Synthesis of novel D-2′-deoxy-2′-C-difluoromethylene-4′-thiocytidine as a potential antitumor agent. Org. Lett., 2002, 4(4), 529-531.
[http://dx.doi.org/10.1021/ol017112v] [PMID: 11843583]
[57]
Weitman, S.; Marty, J.; Jolivet, J.; Locas, C.; Von Hoff, D.D. The new dioxolane, (-)-2′-deoxy-3′-oxacytidine (BCH-4556, troxacitabine), has activity against pancreatic human tumor xenografts. Clin. Cancer Res., 2000, 6(4), 1574-1578.
[PMID: 10778991]
[58]
Yoshimura, Y.; Kitano, K.; Yamada, K.; Sakata, S.; Miura, S.; Ashida, N.; Machida, H. Synthesis and biological activities of 2′-deoxy-2′-fluoro-4′-thioarabinofuranosylpyrimidine and -purine nucleosides. Bioorg. Med. Chem., 2000, 8(7), 1545-1558.
[http://dx.doi.org/10.1016/S0968-0896(00)00065-1] [PMID: 10976503]
[59]
Chong, Y.; Choo, H.; Choi, Y.; Mathew, J.; Schinazi, R.F.; Chu, C.K. Stereoselective synthesis and antiviral activity of D-2′,3′-didehydro-2′,3′-dideoxy-2′-fluoro-4′-thionucleosides. J. Med. Chem., 2002, 45(22), 4888-4898.
[http://dx.doi.org/10.1021/jm020246+] [PMID: 12383014]
[60]
Srivastava, A.K.; Verma, S.; Srivastava, S. Synthesis and biological activity of some novel chalcone derivatives containing [1, 3, 4] oxadiazole-2(3H)-thione. Res. J. Recent Sci., 2015, 4, 74-79.
[61]
Benson, H.J. Microbial Applications, 5th ed. ; W. C. Brown Publications: Boston, USA; . , 1990.
[62]
Vincent, J.C.; Vincent, H.W. Filter paper modification of the Oxford cup penicillin determination. Proc. Soc. Exp. Biol. Med., 1944, 55, 162-164.
[http://dx.doi.org/10.3181/00379727-55-14502]
[63]
Choudhari, H.K.; Siddikia, A.A.; Manohara, Y.D. Design and synthesis of novel oxadiazole and diphenyl ether hydrazone derivatives of coumarin as potential antibacterial agents. Curr. Bioact. Compd., 2017, 13, 318-325.
[http://dx.doi.org/10.2174/1573407213666161128121435]
[64]
Xu, W-H.; Li, X.C. Antifungal compounds from Piper species. Curr. Bioact. Compd., 2011, 7(4), 262-267.
[http://dx.doi.org/10.2174/157340711798375822] [PMID: 24307889]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 6
Year: 2019
Page: [665 - 679]
Pages: 15
DOI: 10.2174/1573407214666180911130110
Price: $65

Article Metrics

PDF: 21
HTML: 3
EPUB: 1
PRC: 1