Time and Size-dependent Biogenically Synthesized Nanoparticles Using Fungus Fusarium Oxysporum: A Review on their Preparation, Characterization and Biological Activities

Author(s): Khushbu Gupta, Tejpal Singh Chundawat*

Journal Name: Nanoscience & Nanotechnology-Asia

Volume 10 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

In recent time, green synthesis of Metal Nanoparticles (MNPs) is the latest developing technology and received exceptional interest because it is simple, eco-friendly, pollutant-free, nontoxic, and a low-cost approach. Green route of biogenic synthesis of metal nanoparticles via microbes (bacteria, fungi, virus, yeast, algae etc.) has the potential to deliver clean manufacturing technology. Fungi are in the great use for the synthesis of nanoparticles and are more advantageous as compared with other microorganisms in several ways. Fungi grow in the form of a group of mycelia, which helps them to withstand flow pressure and agitation and various other conditions to which microbes are subjected to in a bioreactor, used for large-scale production. This review has its major focus on fungus Fusarium oxysporum, which is capable of synthesizing a large number of different types of nanoparticles such as titanium, magnesium, platinum, silver, gold, zirconium, and strontium, titania and silica oxide and many more. Biogenically synthesized nanoparticles are characterized by different techniques and exhibited biological activity. The fungi with metabolic capabilities can effectively synthesize a large number of nanoparticles both extracellularly and intracellularly. The biologically synthesized nanoparticles have wide ranges of applications especially in agricultural and medicinal industries.

Keywords: Nanoparticles, Fusarium oxysporum, potato dextrose agar, scanning electron microscopy, size, antibacterial activity.

[1]
Penn, S.G.; He, L.; Natan, M.J. Nanoparticles for bioanalysis. Curr. Opin. Chem. Biol., 2003, 7(5), 609-615.
[2]
Salata, O.V. Applications of nanoparticles in biology and medicine. J. Nanobiotechnology, 2004, 2(1), 3.
[3]
Deitch, E.A.; Marino, A.A.; Malakanok, V.; Albright, J.A. Silver nylon cloth: In vitro and in vivo evaluation of antimicrobial activity. J. Trauma, 1987, 27(3), 301-304.
[4]
Weber, A.P.; Seipenbusch, M.; Kasper, G. Size effects in the catalytic activity of unsupported metallic nanoparticles. ‎. J. Nanopart. Res., 2003, 5(3-4), 293-298.
[5]
Haes, A.J.; Van Duyne, R.P. A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc., 2002, 124(35), 10596-10604.
[6]
Moghaddam, B.A.; Namvar, F.; Moniri, M.; Md. Tahir, P.; Azizi, S.; Mohamad, R. Nanoparticles biosynthesized by fungi and yeast: A review of their preparation, properties, and medical applications. Molecules, 2015, 20(9), 16540-16565.
[7]
Zielonka, A.; Klimek-Ochab, M. Fungal synthesis of size-defined nanoparticles, Advances in natural sciences. Nanosci. Nanotechnol., 2017, 8(4) 043001
[8]
Huang, H.; Yang, X. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: A green method. . Carbohydr. Res., 2004, 339(15), 2627-2631.
[9]
Silver, S.; Phung, L.T.; Silver, G. Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J. Ind. Microbiol. Biotechnol., 2006, 33(7), 627-634.
[10]
Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as new generation of antimicrobials. . Biotechnol. Adv., 2009, 27(1), 76-83.
[11]
Gordon, T.R.; Martyn, R.D. The evolutionary biology of Fusarium oxysporum. Annu. Rev. Phytopathol., 1997, 35(1), 111-128.
[12]
Stewart, J.E.; Kim, M.S.; James, R.L.; Dumroese, R.K.; Klopfenstein, N.B. Molecular characterization of Fusarium oxysporum and Fusarium commune isolates from a conifer nursery. Phytopathology, 2006, 96(10), 1124-1133.
[13]
Sastry, M.; Ahmad, A.; Khan, M.I.; Kumar, R. Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr. Sci., 2003, 85(2), 162-170.
[14]
Ortoneda, M.; Guarro, J.; Madrid, M.P.; Caracuel, Z.; Roncero, M.I.G.; Mayayo, E.; Di Pietro, A. Fusarium oxysporum as a multihost model for the genetic dissection of fungal virulence in plants and mammals. Infect. Immun., 2004, 72(3), 1760-1766.
[15]
Kar, P.K.; Murmu, S.; Saha, S.; Tandon, V.; Acharya, K. Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus Nigrospora oryzae. PLoS One, 2014, 9(1) e84693
[16]
Castro-Longoria, E.; Vilchis-Nestor, A.R.; Avalos-Borja, M. Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf. B Biointerfaces, 2011, 83(1), 42-48.
[17]
Volesky, B.; Holan, Z.R. Biosorption of heavy metals. Biotechnol. Prog., 1995, 11(3), 235-250.
[18]
Ahmad, A.; Senapati, S.; Khan, M.I.; Kumar, R.; Ramani, R.; Srinivas, V.; Sastry, M. Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology, 2003, 14(7), 824.
[19]
Hamley, I.W. Nanotechnology with soft materials. Angew. Chem. Int. Ed., 2003, 42(15), 1692-1712.
[20]
Umer, A.; Naveed, S.; Ramzan, N.; Rafique, M.S. Selection of a suitable method for the synthesis of copper nanoparticles. Nano, 2012, 7(05) 1230005
[21]
Kashyap, P.L.; Kumar, S.; Srivastava, A.K.; Sharma, A.K. Myconanotechnology in agriculture: A perspective. World J. Microbiol. Biotechnol., 2013, 29(2), 191-207.
[22]
Kumar, R.; Liu, D.; Zhang, L. Advances in proteinous biomaterials. J. Biobased Mater. Bioenergy, 2008, 2(1), 1-24.
[23]
Saravanan, M.; Nanda, A. Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloids Surf. B, 2010, 77(2), 214-218.
[24]
Jain, N.; Bhargava, A.; Majumdar, S.; Tarafdar, J.; Panwar, J. Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: A mechanism perspective. Nanoscale, 2011, 3(2), 635-641.
[25]
Soni, N.; Prakash, S. Factors affecting the geometry of silver nanoparticles synthesis in Chrysosporium tropicum and Fusarium oxysporum. Am. J. Nanotechnol, 2011, 2(1), 112-121.
[26]
Sunkar, S.; Nachiyar, C.V. Endophytic fungi mediated extracellular silver nanoparticles as effective antibacterial agents. Int. J. Pharm. Pharm. Sci., 2013, 5(2), 95-100.
[27]
Alghuthaymi, M.A.; Almoammar, H.; Rai, M.; Said-Galiev, E.; Abd-Elsalam, K.A. Myconanoparticles: Synthesis and their role in phytopathogens management. Biotechnol. Biotechnol. Equip., 2015, 29(2), 221-236.
[28]
Mukherjee, P.; Senapati, S.; Mandal, D.; Ahmad, A.; Khan, M.I.; Kumar, R.; Sastry, M. Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem, 2002, 3(5), 461-463.
[29]
Ahmad, A.; Mukherjee, P.; Mandal, D.; Senapati, S.; Khan, M.I.; Kumar, R.; Sastry, M. Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus Fusarium oxysporum. J. Am. Chem. Soc., 2002, 124(41), 12108-12109.
[30]
Ahmad, A.; Mukherjee, P.; Mandal, D.; Senapati, S.; Khan, M.I.; Kumar, R.; Sastry, M. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B Biointerfaces, 2003, 28(4), 313-318.
[31]
Rautarary, D.; Sanyal, A.; Adyanthaya, D.S.; Ahmad, A.; Sastry, M. Biological synthesis of Strontium Carbonate Crystals using the fungus Fusarium oxysporum. Langmuir, 2004, 20(16), 6827-6833.
[32]
Bansal, V.; Rautaray, D.; Ahmad, A.; Sastry, M. Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J. Mater. Chem., 2004, 14(22), 3303-3305.
[33]
Durán, N.; Marcato, P.D.; Alves, O.L.; De Souza, G.I.H.; Esposito, E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotechnology, 2005, 3(1), 8.
[34]
Bansal, V.; Rautaray, D.; Bharde, A. Ahire, k.; Sanyal, A.; Ahmad, A.; Sastry, M. Fungus mediated biosynthesis of silica and titania particles. J. Mater. Chem., 2005, 15(26), 2583-2589.
[35]
Senapati, S.; Ahmad, A.; Khan, M.I.; Sastry, M.; Kumar, R. Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. Small, 2005, 1(5), 517-520.
[36]
Bharde, A.; Rautaray, D.; Bansal, V.; Ahmad, A.; Sarkar, I.; Yusuf, S.M.; Sanyal, M.; Sastry, M. Extracellular biosynthesis of magnetite using fungi. Small, 2006, 2(1), 135-141.
[37]
Bansal, V.; Poddar, P.; Ahmad, A.; Sastry, M. Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J. Am. Chem. Soc., 2006, 128(36), 11958-11963.
[38]
Riddin, T.L.; Gericke, M.; Whiteley, C.G. Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum sp. lycopersici using response surface methodology. Nanotechnology, 2006, 17(14), 3482-3489.
[39]
Kumar, S.A.; Abyaneh, M.K.; Gosavi, S.W.; Kulkarni, S.K.; Pasricha, R.; Ahmad, A.; Khan, M.I. Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol. Lett., 2007, 29(3), 439-445.
[40]
Mohammadian, A.; Shojaosadati Rezaee, M.H. Fusarium oxysporum mediates photogeneration of silver nanoparticles. Sci. Iran., 2007, 14(4), 323-326.
[41]
Kumar, S.A.; Ansary, A.A.; Ahmad, A.; Khan, M.I. Extracellular biosynthesis of CdSe quantum dots by the fungus Fusarium oxysporum. J. Biomed. Nanotechnol., 2007, 3(2), 190-194.
[42]
Karbasian, M.; Atyabi, S.M.; Siadat, S.D.; Momen, S.B.; Norouzian, D. Optimizing nanosilver formation by Fusarium oxysporum PTCC 5115 employing response surface methodology. AJABS, 2008, 3(1), 433-437.
[43]
Govender, Y.; Riddin, T.; Gericke, M.; Whiteley, C.G. Bioreduction of platinum salts into nanoparticles: A mechanistic perspective. Biotechnol. Lett., 2009, 31(1), 95-100.
[44]
Khosravi, A.; Shojaosadati, S.A. Evaluation of silver nanoparticles produced by fungus Fusarium oxysporum. Int. J. Nanotechnol., 2009, 6(10-11), 973-983.
[45]
Soni, N.; Prakash, S. Factors affecting the geometry of silver nanoparticles synthesis in Chrysosporium tropicum and Fusarium oxysporum. Amer. J. Nanotechnol., 2011, 2(1), 112-121.
[46]
Korbekandia, H.; Asharia, Z.; Iravanib, S.; Abbasi, S. Optimization of biological synthesis of silver nanoparticles using Fusarium oxysporum. IJPR, 2013, 12(3), 289-298.
[47]
Syed, A.; Ahmad, A. Extracellular biosynthesis of platinum nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B Biointerfaces, 2012, 97(1), 27-31.
[48]
Syed, A.; Ahmad, A. Extracellular biosynthesis of CdTe quantum dots by the fungus Fusarium oxysporum and their anti-bacterial activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2013, 106, 41-47.
[49]
Selvi, K.V.; Sivakumar, T. Isolation and characterization of silver nanoparticles from Fusarium oxysporum. Int. J. Curr. Microbiol. Appl. Sci., 2012, 1(1), 56-62.
[50]
Birla, S.S.; Gaikwad, S.C.; Gade, A.K.; Rai, M.K. Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions. Sci. World J., 2013, 2013(2013), 1-12.
[51]
Gholami-Shabani, M.; Akbarzadeh, A.; Norouzian, D.; Amini, A.; Gholami-Shabani, Z.; Imani, A.; Razzaghi-Abyaneh, M. Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum. Appl. Biochem. Biotechnol., 2014, 172(8), 4084-4098.
[52]
Husseiny, S.M.; Salah, A.T.; Anter, A.H. Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. BJBAS, 2015, 4(3), 225-231.
[53]
Longhi, C.; Santos, J.P.; Morey, A.T.; Marcato, P.D.; Duran, N.; Pinge-Filho, P.; Nakazato, G.; Yamada-Ogattal, S.F.; Yamauchi, L.M. Combination of fluconazole with silver nanoparticles produced by Fusarium oxysporum improves antifungal effect against planktonic cells and biofilm of drug-resistant Candida albicans. Med. Mycol., 2015, 54(4), 428-432.
[54]
Khan, N.T.; Jameel, J. Optimization of reaction parameters for silver nanoparticles synthesis from Fusarium oxysporum and determination of silver nanoparticles concentration. J. Mater. Sci. Eng., 2016, 5(283), 2169-0022.
[55]
Hamedi, S.; Ghaseminezhad, M.; Shokrollahzadeh, S.; Shojaosadati, S.A. Controlled biosynthesis of silver nanoparticles using nitrate reductase enzyme induction of filamentous fungus and their antibacterial evaluation. Artif. Cells Nanomed. Biotechnol., 2017, 45(8), 1588-1596.
[56]
Yamaguchi, T.; Tsuruda, Y.; Furukawa, T.; Negishi, L.; Imura, Y.; Sakuda, S.; Yoshimura, E.; Suzuk Khan, M. Synthesis of CdSe Quantum Dots Using Fusarium oxysporum. Materials, 2016, 9(10), 855.
[57]
Khan, N.T.; Jameel, M.; Jameel, J. Silver nanoparticles biosynthesis by Fusarium oxysporum and determination of its antimicrobial potency. Nanomed. Biother. Discov, 2017, 7(1), 1.
[58]
Ansary, A.A.; Uddin, I.; Khan, M.I. Biomimetic synthesis of cdse nanoparticles with potential bioimaging application. IJPSR, 2017, 8(6), 2526-2532.
[59]
Cardenas, D.I.S.; Gomez-Ramirez, M.; Rojas-Avelizapa, N.G. Vidales- Hurtado, M.A. Synthesis of cadmium sulfide nanoparticles by biomass of Fusarium oxysporum f. sp. Lycopersici. . J. Nanopart. Res., 2017, 46, 179-191.
[60]
Mohammed, A.E.; Baz, F.F.B.; Albrahim, J.S. Calligonum comosum and Fusarium sp. extracts as bio-mediator in silver nanoparticles formation: Characterization, antioxidant and antibacterial capability. 3 Biotech., 2018, 8(1), 72.
[61]
Pourali, P.; Yahyaei, B.; Afsharnezhad, S. Bio-synthesis of gold nanoparticles by Fusarium oxysporum and assessment of their conjugation possibility with two types of β-lactam antibiotics without any additional linkers. Microbiology, 2018, 87(2), 229-237.
[62]
Ahmed, A.A.; Hamzah, H.; Maaroof, M. Analyzing formation of silver nanoparticles from the filamentous fungus Fusarium oxysporum and their antimicrobial activity. Turk. J. Biol., 2018, 42(1), 54-62.
[63]
Gitanjali, H.; Ashok, C. Synthesis, characterization and stability of gold nanoparticles using the fungus Fusarium oxysporum and its impact on seed germination. Int. J. Res. Sci. Res., 2015, 6(3), 3181-3185.
[64]
Sunitha, A.; Issac, R.S.R.; Sweetly, G.; Sornalekshmi, S.; Arsula, R. Praseetha. Evaluation of antimicrobial activity of biosynthesized iron and silver nanoparticles using the fungi Fusarium oxysporum and Actinomycetes sp. Human Pathog., 2013, 5(1), 39-45.
[65]
Basavaraja, S.; Balaji, S.D.; Lagashetty, A.; Rajasab, A.H.; Venkataraman, A. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater. Res. Bull., 2008, 43(5), 1164-1170.
[66]
Ingle, A.; Gade, A.; Pierrat, S.; Sonnichsen, C.; Rai, M. Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr. Nanosci., 2008, 4(2), 141-144.
[67]
Sriramulu, M.; Sumathi, S. A mini review on fungal based synthesis of silver nanoparticles and their antimicrobial activity. Chemtech, 2017, 10(1), 367-377.
[68]
Abkhoo, J.; Panjehkeh, N. Evaluation of antifungal activity of silver nanoparticles on Fusarium oxysporum. Int. J. Infect, 2017, 4(2), 1-3.
[69]
Marikani, K.; Sangareswari, U.K.; Suganya, P.; Ganesan, R.; Rajarathinam, K. Biobased approach for the synthesis, characterization, optimization and application of silica nanoparticles by fungus Fusarium oxysporum. Pharmaceut. Biol. Evaluat., 2016, 2(6), 223-233.
[70]
Yadav, A.; Biswas, P.; Kundu, A. Synthesis of nanoparticles using fungus Fusarium oxysporum. J. Andaman Sci. Asso., 2013, 18(2), 197-204.
[71]
Sabri, M.A.; Umer, A.; Awan, G.H.; Hassan, M.F.; Hasnain, A. Selection of suitable biological method for the synthesis of silver nanoparticles. Nanomater. Nanotechnol., 2016, 6, 29.
[72]
Ganapathy, S.; Siva, K. Bio-synthesis, characterisation and application of titanium oxide nanoparticles by Fusarium oxysporum. Int. J. Life Sci. Res, 2016, 4(1), 69-75.
[73]
Omar, S.A.; Dawood, D.H. Using soil fungus, Fusarium oxysporum for green synthesis of silver nanoparticles and evaluation of their antimicrobial effects. J. Agric. Chem. Biotechn, 2016, 7(11), 275-281.
[74]
Gheorghe, B.A.; Stelica, C.; Relu, Z.C.; Maria, O. The biological growth parameters of the Fusarium oxysporum f. sp. glycines fungus. Rom. Biotechnol. Lett., 2015, 20(6), 10921-10928.
[75]
Khan, R.H.; Yasmeen, K.; Kishor, K. Biological synthesis and characterization of silver nanoparticles from Fusarium oxysporum. Der. Pharm. Sin., 2014, 5(5), 112-117.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 10
ISSUE: 2
Year: 2020
Page: [95 - 108]
Pages: 14
DOI: 10.2174/2210681208666180911105559
Price: $25

Article Metrics

PDF: 11
HTML: 9