Cordycepin Downregulates Cdk-2 to Interfere with Cell Cycle and Increases Apoptosis by Generating ROS in Cervical Cancer Cells: in vitro and in silico Study

Author(s): Mousumi Tania, Jakaria Shawon, Kazi Saif, Rudolf Kiefer, Mahdi Safaei Khorram, Mohammad A. Halim*, Md. Asaduzzaman Khan*

Journal Name: Current Cancer Drug Targets

Volume 19 , Issue 2 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Graphical Abstract:


Background: Cordycepin is a small molecule from medicinal mushroom Cordyceps, which has been reported for anticancer properties.

Objective: In this study, we have focused on the investigation of cordycepin effect on cervical cancer cells with further clarification of possible molecular mechanism.

Method: We have used cell viability and cell counting assay for cytotoxic effect of cordycepin, flow cytometric assay of apoptosis and cell cycle, and quantitative PCR (qPCR) and Western blotting for the determination of target gene expression. Molecular docking and Molecular dynamics simulation were used for in silico analysis of cordycepin affinity to target protein(s).

Results: Treatment of cordycepin controlled SiHa and HeLa cervical cancer cell growth, increased the rate of their apoptosis, and interfered with cell cycle, specifically elongated S-phase. qPCR results indicated that there was a downregulation of cell cycle proteins CDK-2, CYCLIN-A2 and CYCLIN-E1 in mRNA level by cordycepin treatment but no significant change was observed in pro-apoptotic or antiapoptotic proteins. The intracellular reactive oxygen species (ROS) level in cordycepin treated cells was increased significantly, implying that apoptosis might be induced by ROS. Western blot analysis confirmed significant decrease of Cdk-2 and mild decrease of Cyclin-E1 and Cyclin-A2 by cordycepin, which might be responsible for regulating cell cycle. Molecular docking indicated high binding affinity of cordycepin against Cdk-2. Molecular dynamics simulation further confirmed that the docked pose of cordycepin-Cdk-2 complex remained within the binding pocket for 10 ns.

Conclusion: Our study suggests that cordycepin is effective against cervical cancer cells, and regulating cell cycle via cell cycle proteins, especially downregulating Cdk-2, and inducing apoptosis by generating ROS are among the mechanisms of anticancer activities of cordycepin.

Keywords: Cordycepin, cervical cancer, apoptosis, reactive oxygen species, cell cycle, Cdk-2.0007U

Rong, C.; Feng, Y.; Ye, Z. Notch is a critical regulator in cervical cancer by regulating Numb splicing. Oncol. Lett., 2017, 13, 2465-2470.
Lan, K.; Zhao, Y.; Fan, Y.; Ma, B.; Yang, S.; Liu, Q.; Linghu, H.; Wang, H. Sulfiredoxin May Promote Cervical Cancer Metastasis via Wnt/β-Catenin Signaling Pathway. Int. J. Mol. Sci., 2017, 18, 917.
Smith, R.A.; Andrews, K.S.; Brooks, D.; Fedewa, S.A.; Manassaram-Baptiste, D.; Saslow, D.; Brawley, O.W.; Wender, R.C. Cancer screening in the United States, 2017: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J. Clin., 2017, 67, 100-121.
Wang, W.; Li, Y.; Liu, N.; Gao, Y.; Li, L. MiR-23b controls ALDH1A1 expression in cervical cancer stem cells. BMC Cancer, 2017, 17, 292. a
Gu, J.; Hao, C.; Yan, X.; Xuan, S. Applied analysis of ultrasound-guided ilioinguinal and iliohypogastric nerve blocks in the radical surgery of aged cervical cancer. Oncol. Lett., 2017, 13, 1637-1640.
Zhang, M.; Zhang, H.; Yu, Y.; Huang, H.; Li, G.; Xu, C. Synergistic effects of a novel lipid-soluble extract from Pinelliapedatisecta Schott and cisplatin on human cervical carcinoma cell lines through the regulation of DNA damage response signaling pathway. Oncol. Lett., 2017, 13, 2121-2128.
Mizuno, T. Medicinal effects and utilization of Cordyceps (Fr.) Link (Ascomycetes) and Isaria Fr. (Mitosporic fungi) Chinese caterpillar fungi, “Tohukaso. Int. J. Med. Mushrooms, 1999, 1, 251-256.
Khan, M.A.; Tania, M.; Zhang, D.; Chen, H. Cordyceps Mushroom: A Potent Anticancer Nutraceutical. The Open Nutr. J., 2010, 3, 179-183.
Yoshikawa, N.; Nakamura, K.; Yamaguchi, Y.; Kagota, S.; Shinozuka, K.; Kunitomo, M. Antitumour activity of cordycepin in mice. Clin. Exp. Pharmacol. Physiol., 2004, 31, 51-53.
Kim, H.G.; Shrestha, B.; Lim, S.Y.; Yoon, D.H.; Chang, W.C.; Shin, D.J.; Han, S.K.; Park, S.M.; Park, J.H.; Park, H.I.; Sung, J.M.; Jang, Y.; Chung, N.; Hwang, K.C.; Kim, T.W. Cordycepin inhibits lipopolysaccharide-induced inflammation by the suppression of NF-kappaB through Akt and p38 inhibition in RAW 264.7 macrophage cells. Eur. J. Pharmacol., 2006, 545, 192-199.
Wu, W.C.; Hsiao, J.R.; Lian, Y.Y.; Lin, C.Y.; Huang, B.M. The apoptotic effect of cordycepin on human OEC-M1 oral cancer cell line. Cancer Chemother. Pharmacol., 2007, 60, 103-111.
Tuli, H.S.; Sharma, A.K.; Sandhu, S.S.; Kashyap, D. Cordycepin: a bioactive metabolite with therapeutic potential. Life Sci., 2013, 93, 863-869.
Nakamura, K.; Shinozuka, K.; Yoshikawa, N. Anticancer and antimetastatic effects of cordycepin, an active component of Cordyceps sinensis. J. Pharmacol. Sci., 2015, 127, 53-56.
Khan, M.A.; Tania, M.; Wei, C.; Mei, Z.; Fu, S.; Cheng, J.; Xu, J.; Fu, J. Thymoquinone inhibits cancer metastasis by downregulating TWIST1 expression to reduce epithelial to mesenchymal transition. Oncotarget, 2015, 6, 19580-19591.
Khan, M.A.; Chen, H.C.; Wan, X.X.; Tania, M.; Xu, A.H.; Chen, F.Z.; Zhang, D.Z. Regulatory effects of resveratrol on antioxidant enzymes: a mechanism of growth inhibition and apoptosis induction in cancer cells. Mol. Cells, 2013, 35, 219-225.
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; et al. Gaussian 09, Revision A.02. Gaussian Inc Wallingford CT 34:Wallingford CT. 2009. doi: 10.1159/000348293
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31, 455-461.
DeLano, WL. The PyMOL Molecular Graphics System. Schrödinger LLC wwwpymolorg Version 1. 2002. Retrieved: doi: citeulike-article-id:240061 (23/10/ 2017)
Dassault Systèmes, B.I.O.V.I.A. Discovery Studio Modeling Environment. Release 4.1; San Diego: Dassault Systèmes, 2015.
Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput., 2015, 11, 3696-3713.
Krieger, F.; Fierz, B.; Bieri, O.; Drewello, M.; Kiefhaber, T. Dynamics of unfolded polypeptide chains as model for the earliest steps in protein folding. J. Mol. Biol., 2003, 332, 265-274.
Krieger, E.; Darden, T.; Nabuurs, S.B.; Finkelstein, A.; Vriend, G. Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins, 2004, 57, 678-683.
Tom, D.; Darrin, Y.; Lee, P. Particle mesh Ewald: An Nṡlog(N) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98, 10089-10092.
Chen, Y.Y.; Chou, P.Y.; Chien, Y.C.; Wu, C.H.; Wu, T.S.; Sheu, M.J. Ethanol extracts of fruiting bodies of Antrodia cinnamomea exhibit anti-migration action in human adenocarcinoma CL1-0 cells through the MAPK and PI3K/AKT signaling pathways. Phytomedicine, 2012, 19, 768-778.
Nakamura, K.; Konoha, K.; Yoshikawa, N.; Yamaguchi, Y.; Kagota, S.; Shinozuka, K.; Kunitomo, M. Effect of cordycepin (3′-deoxyadenosine) on hematogenic lung metastatic model mice. In Vivo, 2005, 19, 137-141.
Sato, A.; Yoshikawa, N.; Kubo, E.; Kakuda, M.; Nishiuchi, A.; Kimoto, Y.; Takahashi, Y.; Kagota, S.; Shinozuka, K.; Nakamura, K. Inhibitory effect of cordycepin on experimental hepatic metastasis of B16-F0 mouse melanoma cells. In Vivo, 2013, 27, 729-732.
Yoshikawa, N.; Kunitomo, M.; Kagota, S.; Shinozuka, K.; Nakamura, K. Inhibitory effect of cordycepin on hematogenic metastasis of B16-F1 mouse melanoma cells accelerated by adenosine-5′-diphosphate. Anticancer Res., 2009, 29, 3857-3860.
Zhang, P.; Huang, C.; Fu, C.; Tian, Y.; Hu, Y.; Wang, B.; Strasner, A.; Song, Y.; Song, E. Cordycepin (3′-deoxyadenosine) suppressed HMGA2, Twist1 and ZEB1-dependent melanoma invasion and metastasis by targeting miR-33b. Oncotarget, 2015, 6, 9834-9853.
Chaicharoenaudomrung, N.; Jaroonwitchawan, T.; Noisa, P. Cordycepin induces apoptotic cell death of human brain cancer through the modulation of autophagy. Toxicol. In Vitro, 2017, 46, 113-121.
Shao, L.W.; Huang, L.H.; Yan, S.; Jin, J.D.; Ren, S.Y. Cordycepin induces apoptosis in human liver cancer HepG2 cells through extrinsic and intrinsic signaling pathways. Oncol. Lett., 2016, 12, 995-1000.
Hwang, J.H.; Park, S.J.; Ko, W.G.; Kang, S.M.; Lee, D.B.; Bang, J.; Park, B.J.; Wee, C.B.; Kim, D.J.; Jang, I.S.; Ko, J.H. Cordycepin induces human lung cancer cell apoptosis by inhibiting nitric oxide mediated ERK/Slug signaling pathway. Am. J. Cancer Res., 2017a, 7, 417-432.
Joo, J.C.; Hwang, J.H.; Jo, E.; Kim, Y.R.; Kim, D.J.; Lee, K.B.; Park, S.J.; Jang, I.S. Cordycepin induces apoptosis by caveolin-1-mediated JNK regulation of Foxo3a in human lung adenocarcinoma. Oncotarget, 2017, 8, 12211-12224.
Wang, Z.; Wu, X.; Liang, Y.N.; Wang, L.; Song, Z.X.; Liu, J.L.; Tang, Z.S. Cordycepin Induces Apoptosis and Inhibits Proliferation of Human Lung Cancer Cell Line H1975 via Inhibiting the Phosphorylation of EGFR. Molecules, 2016, 21, E1267.
Yu, X.; Ling, J.; Liu, X.; Guo, S.; Lin, Y.; Liu, X.; Su, L. Cordycepin induces autophagy-mediated c-FLIPL degradation and leads to apoptosis in human non-small cell lung cancer cells. Oncotarget, 2017, 8, 6691-6699.
Hwang, I.H.; Oh, S.Y.; Jang, H.J.; Jo, E.; Joo, J.C.; Lee, K.B.; Yoo, H.S.; Lee, M.Y.; Park, S.J.; Jang, I.S. Cordycepin promotes apoptosis in renal carcinoma cells by activating the MKK7-JNK signaling pathway through inhibition of c-FLIPL expression. PLoS One, 2017b, 12, e0186489.
Cao, H.L.; Liu, Z.J.; Chang, Z. Cordycepin induces apoptosis in human bladder cancer cells via activation of A3 adenosine receptors. Tumour Biol., 2017, 39, 1010428317706915.
Wang, C.W.; Hsu, W.H.; Tai, C.J. Antimetastatic effects of cordycepin mediated by the inhibition of mitochondrial activity and estrogen-related receptor α in human ovarian carcinoma cells. Oncotarget, 2017b, 8, 3049-3058.
Nasser, M.I.; Masood, M.; Wei, W.; Li, X.; Zhou, Y.; Liu, B.; Li, J.; Li, X. Cordycepin induces apoptosis in SGC-7901 cells through mitochondrial extrinsic phosphorylation of PI3K/Akt by generating ROS. Int. J. Oncol., 2017, 50, 911-919.
van den Heuvel, S.; Harlow, E. Distinct roles for cyclin-dependent kinases in cell cycle control. Science, 1993, 262, 2050-2054.
Hu, B. Mitra, J.; van den Heuvel, S.; Enders, G.H. S and G2 phase roles for Cdk-2 revealed by inducible expression of a dominant-negative mutant in human cells. Mol. Cell. Biol., 2001, 21, 2755-2766.
Liao, Y.; Ling, J.; Zhang, G.; Liu, F.; Tao, S.; Han, Z.; Chen, S.; Chen, Z.; Le, H. Cordycepin induces cell cycle arrest and apoptosis by inducing DNA damage and up-regulation of p53 in Leukemia cells. Cell Cycle, 2015, 14, 761-771.
Seong da, B.; Hong, S.; Muthusami, S.; Kim, W.D.; Yu, J.R.; Park, W.Y. Cordycepin increases radiosensitivity in cervical cancer cells by overriding or prolonging radiation-induced G2/M arrest. Eur. J. Pharmacol., 2016, 771, 77-83.
Siev, M.; Weinberg, R.; Penman, S. The selective interruption of nucleolar RNA synthesis in HeLa cells by cordycepin. J. Cell Biol., 1969, 41, 510-520.
Bissantz, C.; Kuhn, B.; Stahl, M. A medicinal chemist’s guide to molecular interactions. J. Med. Chem., 2010, 53, 5061-5084.
Hunter, C.A. Quantifying intermolecular interactions: guidelines for the molecular recognition toolbox. Angew. Chem. Int. Ed. Engl., 2004, 43, 5310-5324.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [152 - 159]
Pages: 8
DOI: 10.2174/1568009618666180905095356
Price: $65

Article Metrics

PDF: 39