Lithium - Pharmacological and Toxicological Aspects: The Current State of the Art

Author(s): Branislava Medić*, Marko Stojanović, Bojan V. Stimec, Nevena Divac, Katarina Savić Vujović, Radan Stojanović, Mirjana Čolović, Danijela Krstić, Milica Prostran

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 3 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Lithium is the smallest monovalent cation with many different biological effects. Although lithium is present in the pharmacotherapy of psychiatric illnesses for decades, its precise mechanism of action is still not clarified. Today lithium represents first-line therapy for bipolar disorders (because it possesses both antimanic and antidepressant properties) and the adjunctive treatment for major depression (due to its antisuicidal effects). Beside, lithium showed some protective effects in neurological diseases including acute neural injury, chronic degenerative conditions, Alzheimer's disease as well as in treating leucopenia, hepatitis and some renal diseases. Recent evidence suggested that lithium also possesses some anticancer properties due to its inhibition of Glycogen Synthase Kinase 3 beta (GSK3β) which is included in the regulation of a lot of important cellular processes such as: glycogen metabolism, inflammation, immunomodulation, apoptosis, tissue injury, regeneration etc.

Although recent evidence suggested a potential utility of lithium in different conditions, its broader use in clinical practice still trails. The reason for this is a narrow therapeutic index of lithium, numerous toxic effects in various organ systems and some clinically relevant interactions with other drugs. Additionally, it is necessary to perform more preclinical as well as clinical studies in order to a precise therapeutic range of lithium, as well as its detailed mechanism of action. The aim of this review is to summarize the current knowledge concerning the pharmacological and toxicological effects of lithium.

Keywords: Lithium, pharmacological effects, mechanism of action of lithium, mechanism of action of lithium in the brain, lithium in preclinical and clinical studies, adverse effects of lithium, drug interactions with lithium.

[1]
Gitlin, M. Lithium side effects and toxicity: prevalence and management strategies. Int. J. Bipolar Disord., 2016, 4(1), 27.
[http://dx.doi.org/10.1186/s40345-016-0068-y] [PMID: 27900734]
[2]
Oruch, R.; Elderbi, M.A.; Khattab, H.A.; Pryme, I.F.; Lund, A. Lithium: a review of pharmacology, clinical uses, and toxicity. Eur. J. Pharmacol., 2014, 740, 464-473.
[http://dx.doi.org/10.1016/j.ejphar.2014.06.042] [PMID: 24991789]
[3]
Severus, W.E.; Kleindienst, N.; Seemüller, F.; Frangou, S.; Möller, H.J.; Greil, W. What is the optimal serum lithium level in the long-term treatment of bipolar disorder--a review? Bipolar Disord., 2008, 10(2), 231-237.
[http://dx.doi.org/10.1111/j.1399-5618.2007.00475.x] [PMID: 18271901]
[4]
Malhi, G.S.; Tanious, M.; Bargh, B.; Das, P.; Berk, M. Safe and effective use of lithium. Aust. Prescr., 2013, 36, 18-21.
[http://dx.doi.org/10.18773/austprescr.2013.008]
[5]
Mason, R.W.; McQueen, E.G.; Keary, P.J.; James, N.M. Pharmacokinetics of lithium: elimination half-time, renal clearance and apparent volume of distribution in schizophrenia. Clin. Pharmacokinet., 1978, 3(3), 241-246.
[http://dx.doi.org/10.2165/00003088-197803030-00004] [PMID: 657687]
[6]
Forlenza, O.V.; De-Paula, V.J.; Diniz, B.S. Neuroprotective effects of lithium: implications for the treatment of Alzheimer’s disease and related neurodegenerative disorders. ACS Chem. Neurosci., 2014, 5(6), 443-450.
[http://dx.doi.org/10.1021/cn5000309] [PMID: 24766396]
[7]
Moore, G.J.; Bebchuk, J.M.; Wilds, I.B.; Chen, G.; Manji, H.K. Lithium-induced increase in human brain grey matter. Lancet, 2000, 356(9237), 1241-1242.
[http://dx.doi.org/10.1016/S0140-6736(00)02793-8] [PMID: 11072948]
[8]
Petrini, M.; Azzarà, A. Lithium in the treatment of neutropenia. Curr. Opin. Hematol., 2012, 19(1), 52-57.
[http://dx.doi.org/10.1097/MOH.0b013e32834da93b] [PMID: 22123660]
[9]
Jiang, Y.; Bao, H.; Ge, Y.; Tang, W.; Cheng, D.; Luo, K.; Gong, G.; Gong, R. Therapeutic targeting of GSK3β enhances the Nrf2 antioxidant response and confers hepatic cytoprotection in hepatitis C. Gut, 2015, 64(1), 168-179.
[http://dx.doi.org/10.1136/gutjnl-2013-306043] [PMID: 24811996]
[10]
Sartori, H.E. Lithium orotate in the treatment of alcoholism and related conditions. Alcohol, 1986, 3(2), 97-100.
[http://dx.doi.org/10.1016/0741-8329(86)90018-2] [PMID: 3718672]
[11]
Grunze, H.; Kasper, S.; Goodwin, G.; Bowden, C.; Möller, H.J. The World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for the biological treatment of bipolar disorders, part III: maintenance treatment. World J. Biol. Psychiatry, 2004, 5(3), 120-135.
[http://dx.doi.org/10.1080/15622970410029924] [PMID: 15346536]
[12]
Yatham, L.N.; Kennedy, S.H.; Parikh, S.V.; Schaffer, A.; Beaulieu, S.; Alda, M.; O’Donovan, C.; Macqueen, G.; McIntyre, R.S.; Sharma, V.; Ravindran, A.; Young, L.T.; Milev, R.; Bond, D.J.; Frey, B.N.; Goldstein, B.I.; Lafer, B.; Birmaher, B.; Ha, K.; Nolen, W.A.; Berk, M. Canadian network for mood and anxiety treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) collaborative update of CANMAT guidelines for the management of patients with bipolar disorder: update 2013. Bipolar Disord., 2013, 15(1), 1-44.
[http://dx.doi.org/10.1111/bdi.12025] [PMID: 23237061]
[13]
Bschor, T. Lithium in the treatment of major depressive disorder. Drugs, 2014, 74(8), 855-862.
[http://dx.doi.org/10.1007/s40265-014-0220-x] [PMID: 24825489]
[14]
Cipriani, A.; Hawton, K.; Stockton, S.; Geddes, J.R. Lithium in the prevention of suicide in mood disorders: updated systematic review and meta-analysis. BMJ, 2013, 346, f3646.
[http://dx.doi.org/10.1136/bmj.f3646] [PMID: 23814104]
[15]
Bedford, J.J.; Weggery, S.; Ellis, G.; McDonald, F.J.; Joyce, P.R.; Leader, J.P.; Walker, R.J. Lithium-induced nephrogenic diabetes insipidus: renal effects of amiloride. Clin. J. Am. Soc. Nephrol., 2008, 3(5), 1324-1331.
[http://dx.doi.org/10.2215/CJN.01640408] [PMID: 18596116]
[16]
Kortenoeven, M.L.; Li, Y.; Shaw, S.; Gaeggeler, H.P.; Rossier, B.C.; Wetzels, J.F.; Deen, P.M. Amiloride blocks lithium entry through the sodium channel thereby attenuating the resultant nephrogenic diabetes insipidus. Kidney Int., 2009, 76(1), 44-53.
[http://dx.doi.org/10.1038/ki.2009.91] [PMID: 19367330]
[17]
Kitanaka, N.; Hall, F.S.; Uhl, G.R.; Kitanaka, J. Lithium pharmacology and a potential role of lithium on methamphetamine abuse and dependence. Curr Drug Res Rev, 2019, 11(2), 85-91.
[http://dx.doi.org/10.2174/2589977511666190620141824] [PMID: 31875781]
[18]
Suwalsky, M.; Fierro, P.; Villena, F.; Sotomayor, C.P. Effects of lithium on the human erythrocyte membrane and molecular models. Biophys. Chem., 2007, 129(1), 36-42.
[http://dx.doi.org/10.1016/j.bpc.2007.05.003] [PMID: 17532553]
[19]
Grandjean, E.M.; Aubry, J.M. Lithium: updated human knowledge using an evidence-based approach. Part II: Clinical pharmacology and therapeutic monitoring. CNS Drugs, 2009, 23(4), 331-349.
[http://dx.doi.org/10.2165/00023210-200923040-00005] [PMID: 19374461]
[20]
Young, L.T.; Li, P.P.; Kish, S.J.; Siu, K.P.; Warsh, J.J. Postmortem cerebral cortex Gs alpha-subunit levels are elevated in bipolar affective disorder. Brain Res., 1991, 553(2), 323-326.
[http://dx.doi.org/10.1016/0006-8993(91)90843-K] [PMID: 1933291]
[21]
Peces, R.; Pobes, A. Effectiveness of haemodialysis with high-flux membranes in the extracorporeal therapy of life-threatening acute lithium intoxication. Nephrol. Dial. Transplant., 2001, 16(6), 1301-1303.
[http://dx.doi.org/10.1093/ndt/16.6.1301-a] [PMID: 11390745]
[22]
Borrás Blasco, J.; Murcia López, A.; Romero Crespo, I.; Sirvent Pedreño, A.; Navarro Ruiz, A. [Acute intoxication with sustained-release lithium carbonate tablets. A propos of a case Farm. Hosp., 2005, 29(2), 140-143.
[PMID: 16013937]
[23]
Can, A.; Schulze, T.G.; Gould, T.D. Molecular actions and clinical pharmacogenetics of lithium therapy. Pharmacol. Biochem. Behav., 2014, 123, 3-16.
[http://dx.doi.org/10.1016/j.pbb.2014.02.004] [PMID: 24534415]
[24]
Gershon, S.; Chengappa, K.N.; Malhi, G.S. Lithium specificity in bipolar illness: a classic agent for the classic disorder. Bipolar Disord., 2009, 11(Suppl. 2), 34-44.
[http://dx.doi.org/10.1111/j.1399-5618.2009.00709.x] [PMID: 19538684]
[25]
Rybakowski, J.; Drogowska, J.; Abramowicz, M.; Chłopocka-Woźniak, M.; Czekalski, S. [The effect of long-term lithium treatment on kidney function Psychiatr. Pol., 2012, 46(4), 627-636.
[PMID: 23214164]
[26]
Murru, A.; Popovic, D.; Pacchiarotti, I.; Hidalgo, D.; León-Caballero, J.; Vieta, E. Management of adverse effects of mood stabilizers. Curr. Psychiatry Rep., 2015, 17(8), 603.
[http://dx.doi.org/10.1007/s11920-015-0603-z] [PMID: 26084665]
[27]
Aprahamian, I.; Santos, F.S.; dos Santos, B.; Talib, L.; Diniz, B.S.; Radanovic, M.; Gattaz, W.F.; Forlenza, O.V. Long-term, low-dose lithium treatment does not impair renal function in the elderly: a 2-year randomized, placebo-controlled trial followed by single-blind extension. J. Clin. Psychiatry, 2014, 75(7), e672-e678.
[http://dx.doi.org/10.4088/JCP.13m08741] [PMID: 25093483]
[28]
Avissar, S.; Murphy, D.L.; Schreiber, G. Magnesium reversal of lithium inhibition of beta-adrenergic and muscarinic receptor coupling to G proteins. Biochem. Pharmacol., 1991, 41(2), 171-175.
[http://dx.doi.org/10.1016/0006-2952(91)90473-I] [PMID: 1846545]
[29]
Mota de Freitas, D.; Castro, M.M.C.A.; Geraldes, C.F. Is competition between Li+ and Mg2+ the underlying theme in the proposed mechanisms for the pharmacological action of lithium salts in bipolar disorder? Acc. Chem. Res., 2006, 39(4), 283-291.
[http://dx.doi.org/10.1021/ar030197a] [PMID: 16618096]
[30]
Yoshikawa, T.; Honma, S. Lithium lengthens circadian period of cultured brain slices in area specific manner. Behav. Brain Res., 2016, 314, 30-37.
[http://dx.doi.org/10.1016/j.bbr.2016.07.045] [PMID: 27478137]
[31]
Bauer, M.; Gitlin, M. What is lithium and how does it work? In: The essential guide to lithium treatment; Springer International Publishing, 2016; Vol. 3, pp. 33-43.
[http://dx.doi.org/10.1007/978-3-319-31214-9_4]
[32]
Wang, H-Y.; Friedman, E. Effects of lithium on receptor-mediated activation of G proteins in rat brain cortical membranes. Neuropharmacology, 1999, 38(3), 403-414.
[http://dx.doi.org/10.1016/S0028-3908(98)00197-X] [PMID: 10219978]
[33]
Birch, N.J. Letter: Lithium and magnesium-dependent enzymes. Lancet, 1974, 2(7886), 965-966.
[http://dx.doi.org/10.1016/S0140-6736(74)91187-8] [PMID: 4138334]
[34]
Singh, N.; Halliday, A.C.; Thomas, J.M.; Kuznetsova, O.V.; Baldwin, R.; Woon, E.C.; Aley, P.K.; Antoniadou, I.; Sharp, T.; Vasudevan, S.R.; Churchill, G.C. A safe lithium mimetic for bipolar disorder. Nat. Commun., 2013, 4, 1332-1338.
[http://dx.doi.org/10.1038/ncomms2320] [PMID: 23299882]
[35]
Spiegelberg, B.D.; Dela Cruz, J.; Law, T-H.; York, J.D. Alteration of lithium pharmacology through manipulation of phosphoadenosine phosphate metabolism. J. Biol. Chem., 2005, 280(7), 5400-5405.
[http://dx.doi.org/10.1074/jbc.M407890200] [PMID: 15583009]
[36]
Meisel, J.D.; Kim, D.H. Inhibition of lithium-sensitive phosphatase BPNT-1 causes selective neuronal dysfunction in C. elegans. Curr. Biol., 2016, 26(14), 1922-1928.
[http://dx.doi.org/10.1016/j.cub.2016.05.050] [PMID: 27397889]
[37]
Ryves, W.J.; Harwood, A.J. Lithium inhibits glycogen synthase kinase-3 by competition for magnesium. Biochem. Biophys. Res. Commun., 2001, 280(3), 720-725.
[http://dx.doi.org/10.1006/bbrc.2000.4169] [PMID: 11162580]
[38]
Beurel, E.; Jope, R.S. The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog. Neurobiol., 2006, 79(4), 173-189.
[http://dx.doi.org/10.1016/j.pneurobio.2006.07.006] [PMID: 16935409]
[39]
Juhaszova, M.; Zorov, D.B.; Kim, S-H.; Pepe, S.; Fu, Q.; Fishbein, K.W.; Ziman, B.D.; Wang, S.; Ytrehus, K.; Antos, C.L.; Olson, E.N.; Sollott, S.J. Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J. Clin. Invest., 2004, 113(11), 1535-1549.
[http://dx.doi.org/10.1172/JCI19906] [PMID: 15173880]
[40]
Beals, C.R.; Sheridan, C.M.; Turck, C.W.; Gardner, P.; Crabtree, G.R. Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science, 1997, 275(5308), 1930-1934.
[http://dx.doi.org/10.1126/science.275.5308.1930] [PMID: 9072970]
[41]
Beurel, E.; Michalek, S.M.; Jope, R.S. Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3). Trends Immunol., 2010, 31(1), 24-31.
[http://dx.doi.org/10.1016/j.it.2009.09.007] [PMID: 19836308]
[42]
Hardt, S.E.; Sadoshima, J. Glycogen synthase kinase-3beta: a novel regulator of cardiac hypertrophy and development. Circ. Res., 2002, 90(10), 1055-1063.
[http://dx.doi.org/10.1161/01.RES.0000018952.70505.F1] [PMID: 12039794]
[43]
McQuillin, A.; Rizig, M.; Gurling, H.M. A microarray gene expression study of the molecular pharmacology of lithium carbonate on mouse brain mRNA to understand the neurobiology of mood stabilization and treatment of bipolar affective disorder. Pharmacogenet. Genomics, 2007, 17(8), 605-617.
[http://dx.doi.org/10.1097/FPC.0b013e328011b5b2] [PMID: 17622937]
[44]
Jope, R.S. Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes. Trends Pharmacol. Sci., 2003, 24(9), 441-443.
[http://dx.doi.org/10.1016/S0165-6147(03)00206-2] [PMID: 12967765]
[45]
Keltner, N.U.; Steele, D. Antimanic drugs in: Psychiatric Nursing; Elsevier, 2015, pp. 172-181.
[46]
Ullrich, A.; Baierl, P.; ten Bruggencate, G. Extracellular potassium in rat cerebellar cortex during acute and chronic lithium application. Brain Res., 1980, 192(1), 287-290.
[http://dx.doi.org/10.1016/0006-8993(80)91031-8] [PMID: 6247022]
[47]
Ullrich, A.; Steinberg, R.; Baierl, P.; ten Bruggencate, G. Changes in extracellular potassium and calcium in rat cerebellar cortex related to local inhibition of the sodium pump. Pflugers Arch., 1982, 395(2), 108-114.
[http://dx.doi.org/10.1007/BF00584722] [PMID: 6294590]
[48]
Freland, L.; Beaulieu, J.M. Inhibition of GSK3 by lithium, from single molecules to signaling networks. Front. Mol. Neurosci., 2012, 5, 14.
[http://dx.doi.org/10.3389/fnmol.2012.00014] [PMID: 22363263]
[49]
Schreiber, G.; Avissar, S. Regulators of G-protein-coupled receptor-G-protein coupling: antidepressants mechanism of action. Expert Rev. Neurother., 2007, 7(1), 75-84.
[http://dx.doi.org/10.1586/14737175.7.1.75] [PMID: 17187499]
[50]
Newman, M.E.; Drummer, D.; Lerer, B. Single and combined effects of desimipramine and lithium on serotonergic receptor number and second messenger function in rat brain. J. Pharmacol. Exp. Ther., 1990, 252(2), 826-831.
[PMID: 2138225]
[51]
Callado, L.F.; Meana, J.J.; Grijalba, B.; Pazos, A.; Sastre, M.; García-Sevilla, J.A. Selective increase of alpha2A-adrenoceptor agonist binding sites in brains of depressed suicide victims. J. Neurochem., 1998, 70(3), 1114-1123.
[http://dx.doi.org/10.1046/j.1471-4159.1998.70031114.x] [PMID: 9489732]
[52]
González-Maeso, J.; Rodríguez-Puertas, R.; Meana, J.J.; García-Sevilla, J.A.; Guimón, J. Neurotransmitter receptor-mediated activation of G-proteins in brains of suicide victims with mood disorders: selective supersensitivity of alpha(2A)-adrenoceptors. Mol. Psychiatry, 2002, 7(7), 755-767.
[http://dx.doi.org/10.1038/sj.mp.4001067] [PMID: 12192620]
[53]
Sequeira, A.; Mamdani, F.; Lalovic, A.; Anguelova, M.; Lesage, A.; Seguin, M.; Chawky, N.; Desautels, A.; Turecki, G. Alpha 2A adrenergic receptor gene and suicide. Psychiatry Res., 2004, 125(2), 87-93.
[http://dx.doi.org/10.1016/j.psychres.2003.12.002] [PMID: 15006432]
[54]
Sargent, P.A.; Kjaer, K.H.; Bench, C.J.; Rabiner, E.A.; Messa, C.; Meyer, J.; Gunn, R.N.; Grasby, P.M.; Cowen, P.J. Brain serotonin1A receptor binding measured by positron emission tomography with [11C]WAY-100635: effects of depression and antidepressant treatment. Arch. Gen. Psychiatry, 2000, 57(2), 174-180.
[http://dx.doi.org/10.1001/archpsyc.57.2.174] [PMID: 10665620]
[55]
Arango, V.; Underwood, M.D.; Boldrini, M.; Tamir, H.; Kassir, S.A.; Hsiung, S.; Chen, J.J.; Mann, J.J. Serotonin 1A receptors, serotonin transporter binding and serotonin transporter mRNA expression in the brainstem of depressed suicide victims. Neuropsychopharmacology, 2001, 25(6), 892-903.
[http://dx.doi.org/10.1016/S0893-133X(01)00310-4] [PMID: 11750182]
[56]
Hsiung, S.C.; Adlersberg, M.; Arango, V.; Mann, J.J.; Tamir, H.; Liu, K.P. Attenuated 5-HT1A receptor signaling in brains of suicide victims: involvement of adenylyl cyclase, phosphatidylinositol 3-kinase, Akt and mitogen-activated protein kinase. J. Neurochem., 2003, 87(1), 182-194.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01987.x] [PMID: 12969265]
[57]
Bhagwagar, Z.; Rabiner, E.A.; Sargent, P.A.; Grasby, P.M.; Cowen, P.J. Persistent reduction in brain serotonin1A receptor binding in recovered depressed men measured by positron emission tomography with [11C]WAY-100635. Mol. Psychiatry, 2004, 9(4), 386-392.
[http://dx.doi.org/10.1038/sj.mp.4001401] [PMID: 15042104]
[58]
Gabilondo, A.M.; Meana, J.J.; García-Sevilla, J.A. Increased density of mu-opioid receptors in the postmortem brain of suicide victims. Brain Res., 1995, 682(1-2), 245-250.
[http://dx.doi.org/10.1016/0006-8993(95)00333-L] [PMID: 7552322]
[59]
Gross-Isseroff, R.; Biegon, A.; Voet, H.; Weizman, A. The suicide brain: a review of postmortem receptor/transporter binding studies. Neurosci. Biobehav. Rev., 1998, 22(5), 653-661.
[http://dx.doi.org/10.1016/S0149-7634(97)00061-4] [PMID: 9662726]
[60]
Escribá, P.V.; Ozaita, A.; García-Sevilla, J.A. Increased mRNA expression of alpha2A-adrenoceptors, serotonin receptors and mu-opioid receptors in the brains of suicide victims. Neuropsychopharmacology, 2004, 29(8), 1512-1521.
[http://dx.doi.org/10.1038/sj.npp.1300459] [PMID: 15199368]
[61]
Hungund, B.L.; Vinod, K.Y.; Kassir, S.A.; Basavarajappa, B.S.; Yalamanchili, R.; Cooper, T.B.; Mann, J.J.; Arango, V. Upregulation of CB1 receptors and agonist-stimulated [35S]GTPgammaS binding in the prefrontal cortex of depressed suicide victims. Mol. Psychiatry, 2004, 9(2), 184-190.
[http://dx.doi.org/10.1038/sj.mp.4001376] [PMID: 14966476]
[62]
Young, W. Review of lithium effects on brain and blood. Cell Transplant., 2009, 18(9), 951-975.
[http://dx.doi.org/10.3727/096368909X471251] [PMID: 19523343]
[63]
Boku, S.; Nakagawa, S.; Masuda, T.; Nishikawa, H.; Kato, A.; Kitaichi, Y.; Inoue, T.; Koyama, T. Glucocorticoids and lithium reciprocally regulate the proliferation of adult dentate gyrus-derived neural precursor cells through GSK-3beta and beta-catenin/TCF pathway. Neuropsychopharmacology, 2009, 34(3), 805-815.
[http://dx.doi.org/10.1038/npp.2008.198] [PMID: 19005466]
[64]
Malhi, G.S.; Berk, M. Is the safety of lithium no longer in the balance? Lancet, 2012, 379(9817), 690-692.
[http://dx.doi.org/10.1016/S0140-6736(11)61703-0] [PMID: 22265701]
[65]
Kovacsics, C.E.; Gottesman, I.I.; Gould, T.D. Lithium’s antisuicidal efficacy: elucidation of neurobiological targets using endophenotype strategies. Annu. Rev. Pharmacol. Toxicol., 2009, 49, 175-198.
[http://dx.doi.org/10.1146/annurev.pharmtox.011008.145557] [PMID: 18834309]
[66]
McKnight, R.F.; Adida, M.; Budge, K.; Stockton, S.; Goodwin, G.M.; Geddes, J.R. Lithium toxicity profile: a systematic review and meta-analysis. Lancet, 2012, 379(9817), 721-728.
[http://dx.doi.org/10.1016/S0140-6736(11)61516-X] [PMID: 22265699]
[67]
Schrauzer, G.N.; Shrestha, K.P. Lithium in drinking water and the incidences of crimes, suicides, and arrests related to drug addictions. Biol. Trace Elem. Res., 1990, 25(2), 105-113.
[http://dx.doi.org/10.1007/BF02990271] [PMID: 1699579]
[68]
Ohgami, H.; Terao, T.; Shiotsuki, I.; Ishii, N.; Iwata, N. Lithium levels in drinking water and risk of suicide. Br. J. Psychiatry, 2009, 194(5), 464-465.
[http://dx.doi.org/10.1192/bjp.bp.108.055798] [PMID: 19407280]
[69]
Helbich, M.; Leitner, M.; Kapusta, N.D. Geospatial examination of lithium in drinking water and suicide mortality. Int. J. Health Geogr., 2012, 11, 19-27.
[http://dx.doi.org/10.1186/1476-072X-11-19] [PMID: 22695110]
[70]
Giotakos, O.; Nisianakis, P.; Tsouvelas, G.; Giakalou, V.V. Lithium in the public water supply and suicide mortality in Greece. Biol. Trace Elem. Res., 2013, 156(1-3), 376-379.
[http://dx.doi.org/10.1007/s12011-013-9815-4] [PMID: 24072668]
[71]
Giotakos, O.; Tsouvelas, G.; Nisianakis, P.; Giakalou, V.; Lavdas, A.; Tsiamitas, C.; Panagiotis, K.; Kontaxakis, V. A negative association between lithium in drinking water and the incidences of homicides, in Greece. Biol. Trace Elem. Res., 2015, 164(2), 165-168.
[http://dx.doi.org/10.1007/s12011-014-0210-6] [PMID: 25556933]
[72]
Harari, F.; Bottai, M.; Casimiro, E.; Palm, B.; Vahter, M. Exposure to lithium and cesium through drinking water and thyroid function during pregnancy: a prospective cohort study. Thyroid, 2015, 25(11), 1199-1208.
[http://dx.doi.org/10.1089/thy.2015.0280] [PMID: 26332132]
[73]
Harari, F.; Langeén, M.; Casimiro, E.; Bottai, M.; Palm, B.; Nordqvist, H.; Vahter, M. Environmental exposure to lithium during pregnancy and fetal size: a longitudinal study in the Argentinean Andes. Environ. Int., 2015, 77, 48-54.
[http://dx.doi.org/10.1016/j.envint.2015.01.011] [PMID: 25645381]
[74]
Kessing, L.V.; Forman, J.L.; Andersen, P.K. Does lithium protect against dementia? Bipolar Disord., 2010, 12(1), 87-94.
[http://dx.doi.org/10.1111/j.1399-5618.2009.00788.x] [PMID: 20148870]
[75]
Karege, F.; Perret, G.; Bondolfi, G.; Schwald, M.; Bertschy, G.; Aubry, J-M. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res., 2002, 109(2), 143-148.
[http://dx.doi.org/10.1016/S0165-1781(02)00005-7] [PMID: 11927139]
[76]
Post, R.M. Role of BDNF in bipolar and unipolar disorder: clinical and theoretical implications. J. Psychiatr. Res., 2007, 41(12), 979-990.
[http://dx.doi.org/10.1016/j.jpsychires.2006.09.009] [PMID: 17239400]
[77]
Aleksić, D.; Aksić, M.; Divac, N.; Radonjić, V.; Filipović, B.; Jakovčevski, I. Thermomineral water promotes axonal sprouting but does not reduce glial scar formation in a mouse model of spinal cord injury. Neural Regen. Res., 2014, 9(24), 2174-2181.
[http://dx.doi.org/10.4103/1673-5374.147950] [PMID: 25657739]
[78]
Weinstein, G.; Beiser, A.S.; Choi, S.H.; Preis, S.R.; Chen, T.C.; Vorgas, D.; Au, R.; Pikula, A.; Wolf, P.A.; DeStefano, A.L.; Vasan, R.S.; Seshadri, S. Serum brain-derived neurotrophic factor and the risk for dementia: the framingham heart study. JAMA Neurol., 2014, 71(1), 55-61.
[http://dx.doi.org/10.1001/jamaneurol.2013.4781] [PMID: 24276217]
[79]
Berton, O.; McClung, C.A.; Dileone, R.J.; Krishnan, V.; Renthal, W.; Russo, S.J.; Graham, D.; Tsankova, N.M.; Bolanos, C.A.; Rios, M.; Monteggia, L.M.; Self, D.W.; Nestler, E.J. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science, 2006, 311(5762), 864-868.
[http://dx.doi.org/10.1126/science.1120972] [PMID: 16469931]
[80]
Ghosh, A.; Carnahan, J.; Greenberg, M.E. Requirement for BDNF in activity-dependent survival of cortical neurons. Science, 1994, 263(5153), 1618-1623.
[http://dx.doi.org/10.1126/science.7907431] [PMID: 7907431]
[81]
Acheson, A.; Conover, J.C.; Fandl, J.P.; DeChiara, T.M.; Russell, M.; Thadani, A.; Squinto, S.P.; Yancopoulos, G.D.; Lindsay, R.M. A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature, 1995, 374(6521), 450-453.
[http://dx.doi.org/10.1038/374450a0] [PMID: 7700353]
[82]
Conover, J.C.; Erickson, J.T.; Katz, D.M.; Bianchi, L.M.; Poueymirou, W.T.; McClain, J.; Pan, L.; Helgren, M.; Ip, N.Y.; Boland, P. Neuronal deficits, not involving motor neurons, in mice lacking BDNF and/or NT4. Nature, 1995, 375(6528), 235-238.
[http://dx.doi.org/10.1038/375235a0] [PMID: 7746324]
[83]
Jakobsson, E.; Argüello-Miranda, O.; Chiu, S.W.; Fazal, Z.; Kruczek, J.; Nunez-Corrales, S.; Pandit, S.; Pritchet, L. Towards a unified understanding of lithium action in basic biology and its significance for applied biology. J. Membr. Biol., 2017, 250(6), 587-604.
[http://dx.doi.org/10.1007/s00232-017-9998-2] [PMID: 29127487]
[84]
Vosahlikova, M.; Svoboda, P. Lithium - therapeutic tool endowed with multiple beneficiary effects caused by multiple mechanisms. Acta Neurobiol. Exp. (Warsz.), 2016, 76(1), 1-19.
[http://dx.doi.org/10.21307/ane-2017-001] [PMID: 27102914]
[85]
Dell’Osso, L.; Del Grande, C.; Gesi, C.; Carmassi, C.; Musetti, L. A new look at an old drug: neuroprotective effects and therapeutic potentials of lithium salts. Neuropsychiatr. Dis. Treat., 2016, 12, 1687-1703.
[http://dx.doi.org/10.2147/NDT.S106479] [PMID: 27468233]
[86]
Mai, L.; Jope, R.S.; Li, X. BDNF-mediated signal transduction is modulated by GSK3beta and mood stabilizing agents. J. Neurochem., 2002, 82(1), 75-83.
[http://dx.doi.org/10.1046/j.1471-4159.2002.00939.x] [PMID: 12091467]
[87]
Cohen, Y.; Chetrit, A.; Cohen, Y.; Sirota, P.; Modan, B. Cancer morbidity in psychiatric patients: influence of lithium carbonate treatment. Med. Oncol., 1998, 15(1), 32-36.
[http://dx.doi.org/10.1007/BF02787342] [PMID: 9643528]
[88]
Mazor, M.; Kawano, Y.; Zhu, H.; Waxman, J.; Kypta, R.M. Inhibition of glycogen synthase kinase-3 represses androgen receptor activity and prostate cancer cell growth. Oncogene, 2004, 23(47), 7882-7892.
[http://dx.doi.org/10.1038/sj.onc.1208068] [PMID: 15361837]
[89]
Sun, A.; Shanmugam, I.; Song, J.; Terranova, P.F.; Thrasher, J.B.; Li, B. Lithium suppresses cell proliferation by interrupting E2F-DNA interaction and subsequently reducing S-phase gene expression in prostate cancer. Prostate, 2007, 67(9), 976-988.
[http://dx.doi.org/10.1002/pros.20586] [PMID: 17440966]
[90]
Zhu, Q.; Yang, J.; Han, S.; Liu, J.; Holzbeierlein, J.; Thrasher, J.B.; Li, B. Suppression of glycogen synthase kinase 3 activity reduces tumor growth of prostate cancer in vivo. Prostate, 2011, 71(8), 835-845.
[http://dx.doi.org/10.1002/pros.21300] [PMID: 21456066]
[91]
Duffy, D.J.; Krstic, A.; Schwarzl, T.; Higgins, D.G.; Kolch, W. GSK3 inhibitors regulate MYCN mRNA levels and reduce neuroblastoma cell viability through multiple mechanisms, including p53 and Wnt signaling. Mol. Cancer Ther., 2014, 13(2), 454-467.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0560-T] [PMID: 24282277]
[92]
Li, H.; Huang, K.; Liu, X.; Liu, J.; Lu, X.; Tao, K.; Wang, G.; Wang, J. Lithium chloride suppresses colorectal cancer cell survival and proliferation through ROS/GSK-3b/NF-jB signaling pathway. Oxid. Med. Cell. Longev., 2014, 1, 184-190.
[http://dx.doi.org/10.1155/2014/241864]
[93]
Rookmaaker, M.B.; van Gerven, H.A.; Goldschmeding, R.; Boer, W.H. Solid renal tumours of collecting duct origin in patients on chronic lithium therapy. Clin. Kidney J., 2012, 5(5), 412-415.
[http://dx.doi.org/10.1093/ckj/sfs091] [PMID: 26019817]
[94]
Zaidan, M.; Stucker, F.; Stengel, B.; Vasiliu, V.; Hummel, A.; Landais, P.; Boffa, J-J.; Ronco, P.; Gru¨nfeld, J-P.; Servais, A. Increased risk of solid renal tumors in lithium-treated patients. Kidney Int., 2014, 86(1), 184-19.
[http://dx.doi.org/10.1038/ki.2014.2]
[95]
Maeng, Y-S.; Lee, R.; Lee, B.; Choi, S.I.; Kim, E.K. Lithium inhibits tumor lymphangiogenesis and metastasis through the inhibition of TGFBIp expression in cancer cells. Sci. Rep., 2016, 6, 20739.
[http://dx.doi.org/10.1038/srep20739] [PMID: 26857144]
[96]
Pottegård, A.; Hallas, J.; Jensen, B.L.; Madsen, K.; Friis, S. Longterm lithium use and risk of renal and upper urinary tract cancers. J. Am. Soc. Nephrol., 2016, 27(1), 249-255.
[http://dx.doi.org/10.1681/ASN.2015010061] [PMID: 25941353]
[97]
Pottegård, A.; Ennis, Z.N.; Hallas, J.; Jensen, B.L.; Madsen, K.; Friis, S. Long-term use of lithium and risk of colorectal adenocarcinoma: a nationwide case-control study. Br. J. Cancer, 2016, 114(5), 571-575.
[http://dx.doi.org/10.1038/bjc.2016.10] [PMID: 26867160]
[98]
Martinsson, L.; Westman, J.; Hällgren, J.; Ösby, U.; Backlund, L. Lithium treatment and cancer incidence in bipolar disorder. Bipolar Disord., 2016, 18(1), 33-40.
[http://dx.doi.org/10.1111/bdi.12361] [PMID: 26880208]
[99]
Nakamura, M.; Nakatsu, K.; Nagamine, T. Sinus node dysfunction after acute lithium treatment at therapeutic levels. Innov. Clin. Neurosci., 2015, 12(11-12), 18-20.
[PMID: 27222761]
[100]
Oudit, G.Y.; Korley, V.; Backx, P.H.; Dorian, P. Lithium-induced sinus node disease at therapeutic concentrations: linking lithium-induced blockade of sodium channels to impaired pacemaker activity. Can. J. Cardiol., 2007, 23(3), 229-232.
[http://dx.doi.org/10.1016/S0828-282X(07)70750-X] [PMID: 17347696]
[101]
Shetty, R.K.; Vivek, G.; Parida, A.; Chetty, S. Lithium-induced sinus node dysfunction at therapeutic levels. BMJ Case Rep., 2013. 2013, bcr2012008107..
[http://dx.doi.org/10.1136/bcr-2012-008107] [PMID: 23345498]
[102]
Acosta Martínez, J.; Sousa, D.R.; Portero, J.N.; Martínez, A.M. Sinus node disfunction due to lithium intoxication. Rev. Esp. Cardiol., 2011, 64(3), 243-244.
[PMID: 21306814]
[103]
Venkatarathnamma, P.N.; Patil, A.R.; Nanjundaiah, N. Fatal lithium toxicity with therapeutic levels--a case report. Int. J. Clin. Pharmacol. Ther., 2011, 49(5), 336-338.
[http://dx.doi.org/10.5414/CPP49336] [PMID: 21543037]
[104]
Farag, S.; Watson, R.D.; Honeybourne, D. Symptomatic junctional bradycardia due to lithium intoxication in patient with previously normal electrocardiogram. Lancet, 1994, 343(8909), 1371.
[http://dx.doi.org/10.1016/S0140-6736(94)92512-7] [PMID: 7910365]
[105]
Sabharwal, M.S.; Annapureddy, N.; Agarwal, S.K.; Ammakkanavar, N.; Kanakadandi, V.; Nadkarni, G.N. Severe bradycardia caused by a single dose of lithium. Intern. Med., 2013, 52(7), 767-769.
[http://dx.doi.org/10.2169/internalmedicine.52.8980] [PMID: 23545672]
[106]
Shiraki, T.; Kohno, K.; Saito, D.; Takayama, H.; Fujimoto, A. Complete atrioventricular block secondary to lithium therapy. Circ. J., 2008, 72(5), 847-849.
[http://dx.doi.org/10.1253/circj.72.847] [PMID: 18441470]
[107]
Gabeler, E.E.; van Miltenburg, A.J. Complete AV-block secondary to lithium-clozapine therapy and relapsing multiple sclerosis in a bipolar patient. BMJ Case Rep., 2011, 2011bcr1020115030
[http://dx.doi.org/10.1136/bcr.10.2011.5030] [PMID: 22674961]
[108]
La Rocca, R.; Foschi, A.; Preston, N.M.; Ceriani, C.; Materia, V.; Patanè, S. QT interval prolongation and bradycardia in lithium-induced nephrogenic diabetes insipidus. Int. J. Cardiol., 2012, 162(1), e1-e2.
[http://dx.doi.org/10.1016/j.ijcard.2012.04.122] [PMID: 22592036]
[109]
Nachimuthu, S.; Assar, M.D.; Schussler, J.M. Drug-induced QT interval prolongation: mechanisms and clinical management. Ther. Adv. Drug Saf., 2012, 3(5), 241-253.
[http://dx.doi.org/10.1177/2042098612454283] [PMID: 25083239]
[110]
Gong, R.; Wang, P.; Dworkin, L. What we need to know about the effect of lithium on the kidney. Am. J. Physiol. Renal Physiol., 2016, 311(6), F1168-F1171.
[http://dx.doi.org/10.1152/ajprenal.00145.2016] [PMID: 27122541]
[111]
Behl, T.; Kotwani, A.; Kaur, I.; Goel, H. Mechanisms of prolonged lithium therapy-induced nephrogenic diabetes insipidus. Eur. J. Pharmacol., 2015, 755, 27-33.
[http://dx.doi.org/10.1016/j.ejphar.2015.02.040] [PMID: 25746463]
[112]
Gordon, C.E.; Vantzelfde, S.; Francis, J.M. Acetazolamide in lithium-induced nephrogenic diabetes insipidus. N. Engl. J. Med., 2016, 375(20), 2008-2009.
[http://dx.doi.org/10.1056/NEJMc1609483] [PMID: 27959610]
[113]
Zhang, Y.; Peti-Peterdi, J.; Brandes, A.U.; Riquier-Brison, A.; Carlson, N.G.; Müller, C.E.; Ecelbarger, C.M.; Kishore, B.K. Prasugrel suppresses development of lithium-induced nephrogenic diabetes insipidus in mice. Purinergic Signal., 2017, 13(2), 239-248.
[http://dx.doi.org/10.1007/s11302-017-9555-6] [PMID: 28233082]
[114]
Zardawi, I.; Nagonkar, S.; Patel, P. Renal cell carcinoma in a setting of chronic lithium toxicity. Am. J. Case Rep., 2013, 14, 300-303.
[http://dx.doi.org/10.12659/AJCR.889398] [PMID: 23951386]
[115]
Jung, J.H. Renal cell carcinoma recognized incidentally during long-term lithium treatment. Chonnam Med. J., 2016, 52(2), 143-144.
[http://dx.doi.org/10.4068/cmj.2016.52.2.143] [PMID: 27231681]
[116]
Lazarus, J.H. Lithium and thyroid. Best Pract. Res. Clin. Endocrinol. Metab., 2009, 23(6), 723-733.
[http://dx.doi.org/10.1016/j.beem.2009.06.002] [PMID: 19942149]
[117]
Oakley, P.W.; Dawson, A.H.; Whyte, I.M. Lithium: thyroid effects and altered renal handling. J. Toxicol. Clin. Toxicol., 2000, 38(3), 333-337.
[http://dx.doi.org/10.1081/CLT-100100941] [PMID: 10866336]
[118]
Yang, K.; Adada, M.M.; Sherman, M.J.; Yel, I.; Alam, A. Thyroid storm following lithium removal via hemodialysis: a case report. Prim. Care Companion CNS Disord., 2016, 18(4)
[http://dx.doi.org/10.4088/PCC.15l01920] [PMID: 27828704]
[119]
Berger, M.; Riedel, M.; Tomova, N.; Obermeier, M.; Seemüller, F.; Dittmann, S.; Moeller, H.J.; Severus, E. Do current screening recommendations allow for early detection of lithium-induced hyperparathyroidism in patients with bipolar disorder? Int. J. Bipolar Disord., 2013, 1, 7.
[http://dx.doi.org/10.1186/2194-7511-1-7] [PMID: 25505674]
[120]
Broome, J.T.; Solorzano, C.C. Lithium use and primary hyperparathyroidism. Endocr. Pract., 2011, 17(Suppl. 1), 31-35.
[http://dx.doi.org/10.4158/EP10273.RA]
[121]
Transbøl, I.; Christiansen, C.; Baastrup, P.C.; Nielsen, M.D.; Giese, J. Endocrine effects of lithium. III. Hypermagnesaemia and activation of the renin-aldosterone system. Acta Endocrinol. (Copenh.), 1978, 88(3), 619-624.
[PMID: 581026]
[122]
Kelly, S.J.; O’Donnell, T.; Fleming, J.C.; Einhaus, S. Pseudotumor cerebri associated with lithium use in an 11-year-old boy. J. AAPOS, 2009, 13(2), 204-206.
[http://dx.doi.org/10.1016/j.jaapos.2008.11.001] [PMID: 19393521]
[123]
Hexom, B.; Barthel, R.P. Lithium and pseudotumor cerebri. J. Am. Acad. Child Adolesc. Psychiatry, 2004, 43(3), 247-248.
[http://dx.doi.org/10.1097/00004583-200403000-00003] [PMID: 15076255]
[124]
Dommisse, J. Pseudotumor cerebri associated with lithium therapy in two patients. J. Clin. Psychiatry, 1991, 52(5), 239.
[PMID: 2033032]
[125]
Baek, J.H.; Kinrys, G.; Nierenberg, A.A. Lithium tremor revisited: pathophysiology and treatment. Acta Psychiatr. Scand., 2014, 129(1), 17-23.
[http://dx.doi.org/10.1111/acps.12171] [PMID: 23834617]
[126]
Miodownik, C.; Witztum, E.; Lerner, V. Lithium-induced tremor treated with vitamin B6: a preliminary case series. Int. J. Psychiatry Med., 2002, 32(1), 103-108.
[http://dx.doi.org/10.2190/DB1V-85M4-E65T-R3QA] [PMID: 12075913]
[127]
Niethammer, M.; Ford, B. Permanent lithium-induced cerebellar toxicity: three cases and review of literature. Mov. Disord., 2007, 22(4), 570-573.
[http://dx.doi.org/10.1002/mds.21318] [PMID: 17260335]
[128]
Nagaraja, D.; Taly, A.B.; Sahu, R.N.; Channabasavanna, S.M.; Narayanan, H.S. Permanent neurological sequelae due to lithium toxicity. Clin. Neurol. Neurosurg., 1987, 89(1), 31-34.
[http://dx.doi.org/10.1016/S0303-8467(87)80072-0] [PMID: 3568517]
[129]
Schou, M. Long-lasting neurological sequelae after lithium intoxication. Acta Psychiatr. Scand., 1984, 70(6), 594-602.
[http://dx.doi.org/10.1111/j.1600-0447.1984.tb01254.x] [PMID: 6524425]
[130]
Baird-Gunning, J.; Lea-Henry, T.; Hoegberg, L.C.G.; Gosselin, S.; Roberts, D.M. Lithium Poisoning. J. Intensive Care Med., 2017, 32(4), 249-263.
[http://dx.doi.org/10.1177/0885066616651582] [PMID: 27516079]
[131]
Caviness, J.N.; Evidente, V.G. Cortical myoclonus during lithium exposure. Arch. Neurol., 2003, 60(3), 401-404.
[http://dx.doi.org/10.1001/archneur.60.3.401] [PMID: 12633152]
[132]
Rust, H.; Lutz, N.; Honegger, F.; Fischer-Barnicol, D.; Welge-Luessen, A.; Kappos, L.; Allum, J.H.J. Periodic alternating nystagmus in a patient on long-term lithium medication. J. Neurol. Sci., 2016, 369, 252-253.
[http://dx.doi.org/10.1016/j.jns.2016.08.036] [PMID: 27653900]
[133]
Lang, E.J.; Davis, S.M. Lithium neurotoxicity: the development of irreversible neurological impairment despite standard monitoring of serum lithium levels. J. Clin. Neurosci., 2002, 9(3), 308-309.
[http://dx.doi.org/10.1054/jocn.2001.0977] [PMID: 12093141]
[134]
Fitzgerald, R.T.; Fitzgerald, C.T.; Samant, R.S.; Kumar, M.; Ramakrishniah, R.; Van Hemert, R.; Angtuaco, E.J. Lithium toxicity and PRES: a novel association. J. Neuroimaging, 2015, 25(1), 147-149.
[http://dx.doi.org/10.1111/jon.12094] [PMID: 24571251]
[135]
Alevizos, B.; Gatzonis, S.; Anagnostara, Ch. Myasthenia gravis disclosed by lithium carbonate. J. Neuropsychiatry Clin. Neurosci., 2006, 18(3), 427-429.
[http://dx.doi.org/10.1176/jnp.2006.18.3.427] [PMID: 16963600]
[136]
Bruns, A.S.; Sebestyen, J. Twelve-year-old female with nausea, vomiting, edema, tremor, and slurred speech. Clin. Pediatr. (Phila.), 2015, 54(2), 194-196.
[http://dx.doi.org/10.1177/0009922814545167] [PMID: 25085929]
[137]
Peng, J. Case report on lithium intoxication with normal lithium levels. Shanghai Jingshen Yixue, 2014, 26(2), 103-104.
[PMID: 25092957]
[138]
Seshadri, M.; Mazi-Kotwal, N.; Aguis, M. Reversible mild cognitive impairment--a case report. Psychiatr. Danub., 2013, 25(Suppl. 2), S358-S361.
[PMID: 23995209]
[139]
Sugahara, Y.; Tsukamoto, H.; Sasaki, T. Lithium carbonate in prophylaxis of reappearing catatonic stupor: case report. Psychiatry Clin. Neurosci., 2000, 54(5), 607-609.
[http://dx.doi.org/10.1046/j.1440-1819.2000.00762.x] [PMID: 11043815]
[140]
Su, K.P.; Lee, Y.J.; Lee, M.B. Severe peripheral polyneuropathy and rhabdomyolysis in lithium intoxication: a case report. Gen. Hosp. Psychiatry, 1999, 21(2), 136-137.
[PMID: 10228896]
[141]
Bateman, A.M.; Larner, A.J.; McCartney, S.A.; Rifkin, I.R. Rhabdomyolysis associated with lithium-induced hyperosmolal state. Nephrol. Dial. Transplant., 1991, 6(3), 203-205.
[http://dx.doi.org/10.1093/ndt/6.3.203] [PMID: 1907725]
[142]
Grover, S.; Ghosh, A.; Sarkar, S.; Chakrabarti, S.; Avasthi, A. Sexual dysfunction in clinically stable patients with bipolar disorder receiving lithium. J. Clin. Psychopharmacol., 2014, 34(4), 475-482.
[http://dx.doi.org/10.1097/JCP.0000000000000131] [PMID: 24781439]
[143]
Elnazer, H.Y.; Sampson, A.; Baldwin, D. Lithium and sexual dysfunction: an under-researched area. Hum. Psychopharmacol., 2015, 30(2), 66-69.
[http://dx.doi.org/10.1002/hup.2457] [PMID: 25619161]
[144]
Ricken, R.; Bopp, S.; Schlattmann, P.; Himmerich, H.; Bschor, T.; Richter, C.; Stamm, T.J.; Bauer, F.; Heinz, A.; Hellweg, R.; Lang, U.E.; Adli, M. Leptin serum concentrations are associated with weight gain during lithium augmentation. Psychoneuroendocrinology, 2016, 71, 31-35.
[http://dx.doi.org/10.1016/j.psyneuen.2016.04.013] [PMID: 27235637]
[145]
de Coo, I.F.; Haan, J. Long lasting impairment of taste and smell as side effect of lithium carbonate in a cluster headache patient. Headache, 2016, 56(7), 1201-1203.
[http://dx.doi.org/10.1111/head.12872] [PMID: 27317012]
[146]
Richa, S.; Yazbek, J.C. Ocular adverse effects of common psychotropic agents: a review. CNS Drugs, 2010, 24(6), 501-526.
[http://dx.doi.org/10.2165/11533180-000000000-00000] [PMID: 20443647]
[147]
Boyce, H.W.; Bakheet, M.R. Sialorrhea: a review of a vexing, often unrecognized sign of oropharyngeal and esophageal disease. J. Clin. Gastroenterol., 2005, 39(2), 89-97.
[PMID: 15681902]
[148]
Finley, P.R.; Warner, M.D.; Peabody, C.A. Clinical relevance of drug interactions with lithium. Clin. Pharmacokinet., 1995, 29(3), 172-191.
[http://dx.doi.org/10.2165/00003088-199529030-00004] [PMID: 8521679]
[149]
Finley, P.R. Drug interactions with lithium: an update. Clin. Pharmacokinet., 2016, 55(8), 925-941.
[http://dx.doi.org/10.1007/s40262-016-0370-y] [PMID: 26936045]
[150]
Tommelein, E.; Petrovic, M.; Somers, A.; Mehuys, E.; van der Cammen, T.; Boussery, K. Older patients’ prescriptions screening in the community pharmacy: development of the Ghent Older People’s Prescriptions community Pharmacy Screening (GheOP3S) tool. J. Public Health (Oxf.), 2016, 38(2), e158-e170.
[http://dx.doi.org/10.1093/pubmed/fdv090] [PMID: 26175537]
[151]
Reimann, I.W.; Frölich, J.C. Effects of diclofenac on lithium kinetics. Clin. Pharmacol. Ther., 1981, 30(3), 348-352.
[http://dx.doi.org/10.1038/clpt.1981.171] [PMID: 7273598]
[152]
Levin, G.M.; Grum, C.; Eisele, G. Effect of over-the-counter dosages of naproxen sodium and acetaminophen on plasma lithium concentrations in normal volunteers. J. Clin. Psychopharmacol., 1998, 18(3), 237-240.
[http://dx.doi.org/10.1097/00004714-199806000-00009] [PMID: 9617983]
[153]
Reimann, I.W.; Diener, U.; Frölich, J.C. Indomethacin but not aspirin increases plasma lithium ion levels. Arch. Gen. Psychiatry, 1983, 40(3), 283-286.
[http://dx.doi.org/10.1001/archpsyc.1983.01790030053006] [PMID: 6830407]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 3
Year: 2020
Page: [337 - 351]
Pages: 15
DOI: 10.2174/0929867325666180904124733
Price: $65

Article Metrics

PDF: 48
HTML: 2
EPUB: 1
PRC: 1