Lipids as Biomarkers of Cancer and Bacterial Infections

Author(s): Gerald Larrouy-Maumus*

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 11 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor


Lipids are ubiquitous molecules, known to play important roles in various cellular processes. Alterations to the lipidome can therefore be used as a read-out of the signs of disease, highlighting the importance to consider lipids as biomarkers in addition of nucleic acid and proteins. Lipids are among the primary structural and functional constituents of biological tissues, especially cell membranes. Along with membrane formation, lipids play also a crucial role in cell signalling, inflammation and energy storage. It was shown recently that lipid metabolism disorders play an important role in carcinogenesis and development. As well, the role of lipids in disease is particularly relevant for bacterial infections, during which several lipid bacterial virulence factors are recognized by the human innate immune response, such as lipopolysaccharide in Gram-negative bacteria, lipoteichoic acid in Gram-positive bacteria, and lipoglycans in mycobacteria. Compared to nucleic acids and proteins, a complete analysis of the lipidome, which is the comprehensive characterization of different lipid families, is usually very challenging due to the heterogeneity of lipid classes and their intrinsic physicoproperties caused by variations in the constituents of each class. Understanding the chemical diversity of lipids is therefore crucial to understanding their biological relevance and, as a consequence, their use as potential biomarkers for non-infectious and infectious diseases. This mini-review exposes the current knowledge and limitations of the use of lipids as biomarkers of the top global killers which are cancer and bacterial infections.

Keywords: Lipids, bacterial infection, tuberculosis, antibiotics resistance, cancer, biomarkers.

Hamburg, M.A.; Collins, F.S. The path to personalized medicine. N. Engl. J. Med., 2010, 363(4), 301-304.
Martinez-Ledesma, E.; Verhaak, R.G.; Treviño, V. Identification of a multi-cancer gene expression biomarker for cancer clinical outcomes using a network-based algorithm. Sci. Rep., 2015, 5, 11966.
Lü, L.; Sun, J.; Shi, P.; Kong, W.; Xu, K.; He, B.; Zhang, S.; Wang, J. Identification of circular RNAs as a promising new class of diagnostic biomarkers for human breast cancer. Oncotarget, 2017, 8(27), 44096-44107.
Anderson, S.T.; Kaforou, M.; Brent, A.J.; Wright, V.J.; Banwell, C.M.; Chagaluka, G.; Crampin, A.C.; Dockrell, H.M.; French, N.; Hamilton, M.S.; Hibberd, M.L.; Kern, F.; Langford, P.R.; Ling, L.; Mlotha, R.; Ottenhoff, T.H.M.; Pienaar, S.; Pillay, V.; Scott, J.A.G.; Twahir, H.; Wilkinson, R.J.; Coin, L.J.; Heyderman, R.S.; Levin, M.; Eley, B. Diagnosis of childhood tuberculosis and host RNA expression in Africa. N. Engl. J. Med., 2014, 370(18), 1712-1723.
Zak, D.E.; Penn-Nicholson, A.; Scriba, T.J.; Thompson, E.; Suliman, S.; Amon, L.M.; Mahomed, H.; Erasmus, M.; Whatney, W.; Hussey, G.D.; Abrahams, D.; Kafaar, F.; Hawkridge, T.; Verver, S.; Hughes, E.J.; Ota, M.; Sutherland, J.; Howe, R.; Dockrell, H.M.; Boom, W.H.; Thiel, B.; Ottenhoff, T.H.M.; Mayanja-Kizza, H.; Crampin, A.C.; Downing, K.; Hatherill, M.; Valvo, J.; Shankar, S.; Parida, S.K.; Kaufmann, S.H.E.; Walzl, G.; Aderem, A.; Hanekom, W.A. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet, 2016, 387(10035), 2312-2322.
Zou, X.; Feng, B.; Dong, T.; Yan, G.; Tan, B.; Shen, H.; Huang, A.; Zhang, X.; Zhang, M.; Yang, P.; Zheng, M.; Zhang, Y. Up-regulation of type I collagen during tumorigenesis of colorectal cancer revealed by quantitative proteomic analysis. J. Proteomics, 2013, 94, 473-485.
Song, Y.; Wang, Q.; Wang, D.; Junqiang Li, Yang J.; Li, H.; Wang, X.; Jin, X.; Jing, R.; Yang, J.H.; Su, H. Label-free quantitative proteomics unravels carboxypeptidases as the novel biomarker in pancreatic ductal adenocarcinoma. Transl. Oncol., 2018, 11(3), 691-699.
Wu, X.; Xing, X.; Dowlut, D.; Zeng, Y.; Liu, J.; Liu, X. Integrating phosphoproteomics into kinase-targeted cancer therapies in precision medicine. J. Proteomics, 2019, 191, 68-79.
Ramroop, J.R.; Stein, M.N.; Drake, J.M. Impact of phosphoproteomics in the era of precision medicine for prostate cancer. Front. Oncol., 2018, 8, 28.
Papale, M.; Vocino, G.; Lucarelli, G.; Rutigliano, M.; Gigante, M.; Rocchetti, M.T.; Pesce, F.; Sanguedolce, F.; Bufo, P.; Battaglia, M.; Stallone, G.; Grandaliano, G.; Carrieri, G.; Gesualdo, L.; Ranieri, E. Urinary RKIP/p-RKIP is a potential diagnostic and prognostic marker of clear cell renal cell carcinoma. Oncotarget, 2017, 8(25), 40412-40424.
Frantzi, M.; Bhat, A.; Latosinska, A. Clinical proteomic biomarkers: relevant issues on study design & technical considerations in biomarker development. Clin. Transl. Med., 2014, 3(1), 7.
Fahy, E.; Subramaniam, S.; Brown, H.A.; Glass, C.K.; Merrill, A.H., Jr; Murphy, R.C.; Raetz, C.R.; Russell, D.W.; Seyama, Y.; Shaw, W.; Shimizu, T.; Spener, F.; van Meer, G.; VanNieuwenhze, M.S.; White, S.H.; Witztum, J.L.; Dennis, E.A. A comprehensive classification system for lipids. J. Lipid Res., 2005, 46(5), 839-861.
Shimizu, T. Lipid mediators in health and disease: enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu. Rev. Pharmacol. Toxicol., 2009, 49, 123-150.
Hannun, Y.A.; Obeid, L.M. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol., 2008, 9(2), 139-150.
Nakamura, M.T.; Yudell, B.E.; Loor, J.J. Regulation of energy metabolism by long-chain fatty acids. Prog. Lipid Res., 2014, 53, 124-144.
Bennett, M.; Gilroy, D.W. Lipid Mediators in Inflammation. Microbiol. Spectr., 2016, 4(6), 4.
Chandler, C.E.; Ernst, R.K. Bacterial lipids: Powerful modifiers of the innate immune response. F1000 Res., 2017, 6, 6.
Blanc, L.; Gilleron, M.; Prandi, J.; Song, O.R.; Jang, M.S.; Gicquel, B.; Drocourt, D.; Neyrolles, O.; Brodin, P.; Tiraby, G.; Vercellone, A.; Nigou, J. Mycobacterium tuberculosis inhibits human innate immune responses via the production of TLR2 antagonist glycolipids. Proc. Natl. Acad. Sci. USA, 2017, 114(42), 11205-11210.
Birch, H.L.; Alderwick, L.J.; Appelmelk, B.J.; Maaskant, J.; Bhatt, A.; Singh, A.; Nigou, J.; Eggeling, L.; Geurtsen, J.; Besra, G.S. A truncated lipoglycan from mycobacteria with altered immunological properties. Proc. Natl. Acad. Sci. USA, 2010, 107(6), 2634-2639.
Kumar, H.; Kawai, T.; Akira, S. Pathogen recognition by the innate immune system. Int. Rev. Immunol., 2011, 30(1), 16-34.
Kumar, S.; Ingle, H.; Prasad, D.V.; Kumar, H. Recognition of bacterial infection by innate immune sensors. Crit. Rev. Microbiol., 2013, 39(3), 229-246.
Escribá, P.V.; González-Ros, J.M.; Goñi, F.M.; Kinnunen, P.K.; Vigh, L.; Sánchez-Magraner, L.; Fernández, A.M.; Busquets, X.; Horváth, I.; Barceló-Coblijn, G. Membranes: a meeting point for lipids, proteins and therapies. J. Cell. Mol. Med., 2008, 12(3), 829-875.
Piszcz, J.; Armitage, E.G.; Ferrarini, A.; Rupérez, F.J.; Kulczynska, A.; Bolkun, L.; Kloczko, J.; Kretowski, A.; Urbanowicz, A.; Ciborowski, M.; Barbas, C. To treat or not to treat: metabolomics reveals biomarkers for treatment indication in chronic lymphocytic leukaemia patients. Oncotarget, 2016, 7(16), 22324-22338.
Shen, S.; Yang, L.; Li, L.; Bai, Y.; Cai, C.; Liu, H. A plasma lipidomics strategy reveals perturbed lipid metabolic pathways and potential lipid biomarkers of human colorectal cancer. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1068-1069, 41-48.
Matos Do Canto, L.; Marian, C.; Varghese, R.S.; Ahn, J.; Da Cunha, P.A.; Willey, S.; Sidawy, M.; Rone, J.D.; Cheema, A.K.; Luta, G.; Nezami Ranjbar, M.R.; Ressom, H.W.; Haddad, B.R. Metabolomic profiling of breast tumors using ductal fluid. Int. J. Oncol., 2016, 49(6), 2245-2254.
Ressom, H.W.; Xiao, J.F.; Tuli, L.; Varghese, R.S.; Zhou, B.; Tsai, T.H.; Ranjbar, M.R.; Zhao, Y.; Wang, J.; Di Poto, C.; Cheema, A.K.; Tadesse, M.G.; Goldman, R.; Shetty, K. Utilization of metabolomics to identify serum biomarkers for hepatocellular carcinoma in patients with liver cirrhosis. Anal. Chim. Acta, 2012, 743, 90-100.
Griffiths, W.J.; Abdel-Khalik, J.; Yutuc, E.; Morgan, A.H.; Gilmore, I.; Hearn, T.; Wang, Y. Cholesterolomics: An update. Anal. Biochem., 2017, 524, 56-67.
Sohlenkamp, C.; Geiger, O. Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol. Rev., 2016, 40(1), 133-159.
López-Lara, I.M.; Geiger, O. Bacterial lipid diversity. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2017, 1862(11), 1287-1299.
Rietveld, A.G.; Killian, J.A.; Dowhan, W.; de Kruijff, B. Polymorphic regulation of membrane phospholipid composition in Escherichia coli. J. Biol. Chem., 1993, 268(17), 12427-12433.
Cronan, J.E., Jr Regulation of the fatty acid composition of the membrane phospholipids of Escherichia coli. Proc. Natl. Acad. Sci. USA, 1974, 71(9), 3758-3762.
Robert, C.B.; Thomson, M.; Vercellone, A.; Gardner, F.; Ernst, R.K.; Larrouy-Maumus, G.; Nigou, J. Mass spectrometry analysis of intact Francisella bacteria identifies lipid A structure remodeling in response to acidic pH stress. Biochimie, 2017, 141, 16-20.
Kang, S.S.; Sim, J.R.; Yun, C.H.; Han, S.H. Lipoteichoic acids as a major virulence factor causing inflammatory responses via Toll-like receptor 2. Arch. Pharm. Res., 2016, 39(11), 1519-1529.
Ginsburg, I. Role of lipoteichoic acid in infection and inflammation. Lancet Infect. Dis., 2002, 2(3), 171-179.
Percy, M.G.; Gründling, A. Lipoteichoic acid synthesis and function in gram-positive bacteria. Annu. Rev. Microbiol., 2014, 68, 81-100.
Lindberg, A.A.; Kärnell, A.; Weintraub, A. The lipopolysaccharide of Shigella bacteria as a virulence factor. Rev. Infect. Dis., 1991, 13(Suppl. 4), S279-S284.
Matsuura, M. Structural modifications of bacterial lipopolysaccharide that facilitate gram-negative bacteria evasion of host innate immunity. Front. Immunol., 2013, 4, 109.
Maeshima, N.; Evans-Atkinson, T.; Hajjar, A.M.; Fernandez, R.C. Bordetella pertussis Lipid A recognition by toll-like receptor 4 and MD-2 Is dependent on distinct charged and uncharged interfaces. J. Biol. Chem., 2015, 290(21), 13440-13453.
Korneev, K.V.; Kondakova, A.N.; Sviriaeva, E.N.; Mitkin, N.A.; Palmigiano, A.; Kruglov, A.A.; Telegin, G.B.; Drutskaya, M.S.; Sturiale, L.; Garozzo, D.; Nedospasov, S.A.; Knirel, Y.A.; Kuprash, D.V. Hypoacylated LPS from foodborne pathogen Campylobacter jejuni induces moderate TLR4-mediated inflammatory response in murine macrophages. Front. Cell. Infect. Microbiol., 2018, 8, 58.
Larrouy-Maumus, G.; Gilleron, M.; Skovierová, H.; Zuberogoitia, S.; Brennan, P.J.; Puzo, G.; Jackson, M.; Nigou, J. A glycomic approach reveals a new mycobacterial polysaccharide. Glycobiology, 2015, 25(11), 1163-1171.
Krishna, S.; Ray, A.; Dubey, S.K.; Larrouy-Maumus, G.; Chalut, C.; Castanier, R.; Noguera, A.; Gilleron, M.; Puzo, G.; Vercellone, A.; Nampoothiri, K.M.; Nigou, J. Lipoglycans contribute to innate immune detection of mycobacteria. PLoS One, 2011, 6(12)e28476
Skovierová, H.; Larrouy-Maumus, G.; Zhang, J.; Kaur, D.; Barilone, N.; Korduláková, J.; Gilleron, M.; Guadagnini, S.; Belanová, M.; Prevost, M.C.; Gicquel, B.; Puzo, G.; Chatterjee, D.; Brennan, P.J.; Nigou, J.; Jackson, M. AftD, a novel essential arabinofuranosyltransferase from mycobacteria. Glycobiology, 2009, 19(11), 1235-1247.
Appelmelk, B.J.; den Dunnen, J.; Driessen, N.N.; Ummels, R.; Pak, M.; Nigou, J.; Larrouy-Maumus, G.; Gurcha, S.S.; Movahedzadeh, F.; Geurtsen, J.; Brown, E.J.; Eysink Smeets, M.M.; Besra, G.S.; Willemsen, P.T.; Lowary, T.L.; van Kooyk, Y.; Maaskant, J.J.; Stoker, N.G.; van der Ley, P.; Puzo, G.; Vandenbroucke-Grauls, C.M.; Wieland, C.W.; van der Poll, T.; Geijtenbeek, T.B.; van der Sar, A.M.; Bitter, W. The mannose cap of mycobacterial lipoarabinomannan does not dominate the Mycobacterium-host interaction. Cell. Microbiol., 2008, 10(4), 930-944.
Reichmann, N.T.; Gründling, A. Location, synthesis and function of glycolipids and polyglycerolphosphate lipoteichoic acid in Gram-positive bacteria of the phylum Firmicutes. FEMS Microbiol. Lett., 2011, 319(2), 97-105.
Morath, S.; Geyer, A.; Hartung, T. Structure-function relationship of cytokine induction by lipoteichoic acid from Staphylococcus aureus. J. Exp. Med., 2001, 193(3), 393-397.
Koch, H.U.; Fischer, W. Acyldiglucosyldiacylglycerol-containing lipoteichoic acid with a poly(3-O-galabiosyl-2-O-galactosyl-sn-glycero-1-phosphate) chain from Streptococcus lactis Kiel 42172. Biochemistry, 1978, 17(24), 5275-5281.
Reid, C.W.; Vinogradov, E.; Li, J.; Jarrell, H.C.; Logan, S.M.; Brisson, J.R. Structural characterization of surface glycans from Clostridium difficile. Carbohydr. Res., 2012, 354, 65-73.
Gisch, N.; Kohler, T.; Ulmer, A.J.; Müthing, J.; Pribyl, T.; Fischer, K.; Lindner, B.; Hammerschmidt, S.; Zähringer, U. Structural reevaluation of Streptococcus pneumoniae Lipoteichoic acid and new insights into its immunostimulatory potency. J. Biol. Chem., 2013, 288(22), 15654-15667.
Rietschel, E.T.; Kirikae, T.; Schade, F.U.; Mamat, U.; Schmidt, G.; Loppnow, H.; Ulmer, A.J.; Zähringer, U.; Seydel, U.; Di Padova, F. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J., 1994, 8(2), 217-225.
Helander, I.M.; Lindner, B.; Brade, H.; Altmann, K.; Lindberg, A.A.; Rietschel, E.T.; Zähringer, U. Chemical structure of the lipopolysaccharide of Haemophilus influenzae strain I-69 Rd-/b+. Description of a novel deep-rough chemotype. Eur. J. Biochem., 1988, 177(3), 483-492.
Meredith, T.C.; Aggarwal, P.; Mamat, U.; Lindner, B.; Woodard, R.W. Redefining the requisite lipopolysaccharide structure in Escherichia coli. ACS Chem. Biol., 2006, 1(1), 33-42.
Samuel, G.; Reeves, P. Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly. Carbohydr. Res., 2003, 338(23), 2503-2519.
Nigou, J.; Gilleron, M.; Puzo, G. Lipoarabinomannans: from structure to biosynthesis. Biochimie, 2003, 85(1-2), 153-166.
Mishra, A.K.; Krumbach, K.; Rittmann, D.; Appelmelk, B.; Pathak, V.; Pathak, A.K.; Nigou, J.; Geurtsen, J.; Eggeling, L.; Besra, G.S. Lipoarabinomannan biosynthesis in Corynebacterineae: the interplay of two α(1→2)-mannopyranosyltransferases MptC and MptD in mannan branching. Mol. Microbiol., 2011, 80(5), 1241-1259.
Pitarque, S.; Larrouy-Maumus, G.; Payré, B.; Jackson, M.; Puzo, G.; Nigou, J. The immunomodulatory lipoglycans, lipoarabinomannan and lipomannan, are exposed at the mycobacterial cell surface. Tuberculosis (Edinb.), 2008, 88(6), 560-565.
Biron, B.M.; Ayala, A.; Lomas-Neira, J.L. Biomarkers for sepsis: What is and what might be? Biomark. Insights, 2015, 10(Suppl. 4), 7-17.
Glauser, M.P.; Zanetti, G.; Baumgartner, J.D.; Cohen, J. Septic shock: Pathogenesis. Lancet, 1991, 338(8769), 732-736.
Wurfel, M.M.; Kunitake, S.T.; Lichenstein, H.; Kane, J.P.; Wright, S.D. Lipopolysaccharide (LPS)-binding protein is carried on lipoproteins and acts as a cofactor in the neutralization of LPS. J. Exp. Med., 1994, 180(3), 1025-1035.
Triantafilou, M.; Mouratis, M.A.; Lepper, P.M.; Haston, R.M.; Baldwin, F.; Lowes, S.; Ahmed, M.A.; Schumann, C.; Boyd, O.; Triantafilou, K. Serum proteins modulate lipopolysaccharide and lipoteichoic acid-induced activation and contribute to the clinical outcome of sepsis. Virulence, 2012, 3(2), 136-145.
Gaïni, S.; Koldkjaer, O.G.; Pedersen, C.; Pedersen, S.S. Procalcitonin, lipopolysaccharide-binding protein, interleukin-6 and C-reactive protein in community-acquired infections and sepsis: A prospective study. Crit. Care, 2006, 10(2), R53.
Opal, S.M.; Scannon, P.J.; Vincent, J.L.; White, M.; Carroll, S.F.; Palardy, J.E.; Parejo, N.A.; Pribble, J.P.; Lemke, J.H. Relationship between plasma levels of lipopolysaccharide (LPS) and LPS-binding protein in patients with severe sepsis and septic shock. J. Infect. Dis., 1999, 180(5), 1584-1589.
Tobias, P.S.; Mathison, J.; Mintz, D.; Lee, J.D.; Kravchenko, V.; Kato, K.; Pugin, J.; Ulevitch, R.J. Participation of lipopolysaccharide-binding protein in lipopolysaccharide-dependent macrophage activation. Am. J. Respir. Cell Mol. Biol., 1992, 7(3), 239-245.
Sakr, Y.; Burgett, U.; Nacul, F.E.; Reinhart, K.; Brunkhorst, F. Lipopolysaccharide binding protein in a surgical intensive care unit: A marker of sepsis? Crit. Care Med., 2008, 36(7), 2014-2022.
Chen, K.F.; Chaou, C.H.; Jiang, J.Y.; Yu, H.W.; Meng, Y.H.; Tang, W.C.; Wu, C.C. Diagnostic accuracy of lipopolysaccharide-binding protein as biomarker for sepsis in adult patients: A systematic review and meta-analysis. PLoS One, 2016, 11(4)e0153188
Jeannot, K.; Bolard, A.; Plésiat, P. Resistance to polymyxins in Gram-negative organisms. Int. J. Antimicrob. Agents, 2017, 49(5), 526-535.
Olaitan, A.O.; Morand, S.; Rolain, J.M. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front. Microbiol., 2014, 5, 643.
Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; Yu, L.F.; Gu, D.; Ren, H.; Chen, X.; Lv, L.; He, D.; Zhou, H.; Liang, Z.; Liu, J.H.; Shen, J. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis., 2016, 16(2), 161-168.
Poirel, L.; Jayol, A.; Nordmann, P. Polymyxins: Antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin. Microbiol. Rev., 2017, 30(2), 557-596.
Leung, L.M.; Cooper, V.S.; Rasko, D.A.; Guo, Q.; Pacey, M.P.; McElheny, C.L.; Mettus, R.T.; Yoon, S.H.; Goodlett, D.R.; Ernst, R.K.; Doi, Y. Structural modification of LPS in colistin-resistant, KPC-producing Klebsiella pneumoniae. J. Antimicrob. Chemother., 2017, 72(11), 3035-3042.
Beceiro, A.; Llobet, E.; Aranda, J.; Bengoechea, J.A.; Doumith, M.; Hornsey, M.; Dhanji, H.; Chart, H.; Bou, G.; Livermore, D.M.; Woodford, N. Phosphoethanolamine modification of lipid A in colistin-resistant variants of Acinetobacter baumannii mediated by the pmrAB two-component regulatory system. Antimicrob. Agents Chemother., 2011, 55(7), 3370-3379.
Larrouy-Maumus, G.; Clements, A.; Filloux, A.; McCarthy, R.R.; Mostowy, S. Direct detection of lipid A on intact Gram-negative bacteria by MALDI-TOF mass spectrometry. J. Microbiol. Methods, 2016, 120, 68-71.
Hamasur, B.; Bruchfeld, J.; Haile, M.; Pawlowski, A.; Bjorvatn, B.; Källenius, G.; Svenson, S.B. Rapid diagnosis of tuberculosis by detection of mycobacterial lipoarabinomannan in urine. J. Microbiol. Methods, 2001, 45(1), 41-52.
Lawn, S.D. Point-of-care detection of lipoarabinomannan (LAM) in urine for diagnosis of HIV-associated tuberculosis: a state of the art review. BMC Infect. Dis., 2012, 12, 103.
Lawn, S.D.; Gupta-Wright, A. Detection of lipoarabinomannan (LAM) in urine is indicative of disseminated TB with renal involvement in patients living with HIV and advanced immunodeficiency: Evidence and implications. Trans. R. Soc. Trop. Med. Hyg., 2016, 110(3), 180-185.
Iskandar, A.; Nursiloningrum, E.; Arthamin, M.Z.; Olivianto, E.; Chandrakusuma, M.S. The diagnostic value of urine Lipoarabinomannan (LAM) antigen in childhood tuberculosis. J. Clin. Diagn. Res., 2017, 11(3), EC32-EC35.
Kroidl, I.; Clowes, P.; Reither, K.; Mtafya, B.; Rojas-Ponce, G.; Ntinginya, E.N.; Kalomo, M.; Minja, L.T.; Kowuor, D.; Saathoff, E.; Kroidl, A.; Heinrich, N.; Maboko, L.; Bates, M.; O’Grady, J.; Zumla, A.; Hoelscher, M.; Rachow, A. Performance of urine lipoarabinomannan assays for paediatric tuberculosis in Tanzania. Eur. Respir. J., 2015, 46(3), 761-770.
Dheda, K.; Ruhwald, M.; Theron, G.; Peter, J.; Yam, W.C. Point-of-care diagnosis of tuberculosis: Past, present and future. Respirology, 2013, 18(2), 217-232.
Drain, P.K.; Gounder, L.; Sahid, F.; Moosa, M.Y. Rapid urine LAM testing improves diagnosis of expectorated smear-negative pulmonary tuberculosis in an HIV-endemic region. Sci. Rep., 2016, 6, 19992.
Disease, G.B.D.; Injury, I.; Prevalence, C. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet, 2016, 388(10053), 1545-1602.
Mortality, G.B.D. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet, 2016, 388(10053), 1459-1544.
Goossens, N.; Nakagawa, S.; Sun, X.; Hoshida, Y. Cancer biomarker discovery and validation. Transl. Cancer Res., 2015, 4(3), 256-269.
Liberti, M.V.; Locasale, J.W. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem. Sci., 2016, 41(3), 211-218.
Warburg, O.; Wind, F.; Negelein, E. The Metabolism of Tumors in the Body. J. Gen. Physiol., 1927, 8(6), 519-530.
Paradies, G.; Paradies, V.; De Benedictis, V.; Ruggiero, F.M.; Petrosillo, G. Functional role of cardiolipin in mitochondrial bioenergetics. Biochim. Biophys. Acta, 2014, 1837(4), 408-417.
Mejia, E.M.; Hatch, G.M. Mitochondrial phospholipids: role in mitochondrial function. J. Bioenerg. Biomembr., 2016, 48(2), 99-112.
Sapandowski, A.; Stope, M.; Evert, K.; Evert, M.; Zimmermann, U.; Peter, D.; Päge, I.; Burchardt, M.; Schild, L. Cardiolipin composition correlates with prostate cancer cell proliferation. Mol. Cell. Biochem., 2015, 410(1-2), 175-185.
Zhang, J.; Yu, W.; Ryu, S.W.; Lin, J.; Buentello, G.; Tibshirani, R.; Suliburk, J.; Eberlin, L.S. Cardiolipins are biomarkers of mitochondria-rich thyroid oncocytic tumors. Cancer Res., 2016, 76(22), 6588-6597.
Bandu, R.; Mok, H.J.; Kim, K.P. Phospholipids as cancer biomarkers: Mass spectrometry-based analysis. Mass Spectrom. Rev., 2018, 37(2), 107-138.
Ellis, S.R.; Brown, S.H. In Het Panhuis, M.; Blanksby, S.J.; Mitchell, T.W. Surface analysis of lipids by mass spectrometry: more than just imaging. Prog. Lipid Res., 2013, 52(4), 329-353.
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
Jiang, N.; Zhang, G.; Pan, L.; Yan, C.; Zhang, L.; Weng, Y.; Wang, W.; Chen, X.; Yang, G. Potential plasma lipid biomarkers in early-stage breast cancer. Biotechnol. Lett., 2017, 39(11), 1657-1666.
Hammad, L.A.; Wu, G.; Saleh, M.M.; Klouckova, I.; Dobrolecki, L.E.; Hickey, R.J.; Schnaper, L.; Novotny, M.V.; Mechref, Y. Elevated levels of hydroxylated phosphocholine lipids in the blood serum of breast cancer patients. Rapid Commun. Mass Spectrom., 2009, 23(6), 863-876.
Ni, H.; Liu, H.; Gao, R. Serum lipids and breast cancer risk: A meta-analysis of prospective cohort studies. PLoS One, 2015, 10(11)e0142669
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90.
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
Yu, Z.; Chen, H.; Ai, J.; Zhu, Y.; Li, Y.; Borgia, J.A.; Yang, J.S.; Zhang, J.; Jiang, B.; Gu, W.; Deng, Y. Global lipidomics identified plasma lipids as novel biomarkers for early detection of lung cancer. Oncotarget, 2017, 8(64), 107899-107906.
Li, Y.; Song, X.; Zhao, X.; Zou, L.; Xu, G. Serum metabolic profiling study of lung cancer using ultra high performance liquid chromatography/quadrupole time-of-flight mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 966, 147-153.
Li, G.; Li, L.; Joo, E.J.; Son, J.W.; Kim, Y.J.; Kang, J.K.; Lee, K.B.; Zhang, F.; Linhardt, R.J. Glycosaminoglycans and glycolipids as potential biomarkers in lung cancer. Glycoconj. J., 2017, 34(5), 661-669.
Eastham, J. Prostate cancer screening. Investig. Clin. Urol., 2017, 58(4), 217-219.
Thompson, I.M.; Pauler, D.K.; Goodman, P.J.; Tangen, C.M.; Lucia, M.S.; Parnes, H.L.; Minasian, L.M.; Ford, L.G.; Lippman, S.M.; Crawford, E.D.; Crowley, J.J.; Coltman, C.A., Jr Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N. Engl. J. Med., 2004, 350(22), 2239-2246.
Zhou, X.; Mao, J.; Ai, J.; Deng, Y.; Roth, M.R.; Pound, C.; Henegar, J.; Welti, R.; Bigler, S.A. Identification of plasma lipid biomarkers for prostate cancer by lipidomics and bioinformatics. PLoS One, 2012, 7(11)e48889
O’Malley, J.; Kumar, R.; Kuzmin, A.N.; Pliss, A.; Yadav, N.; Balachandar, S.; Wang, J.; Attwood, K.; Prasad, P.N.; Chandra, D. Lipid quantification by Raman microspectroscopy as a potential biomarker in prostate cancer. Cancer Lett., 2017, 397, 52-60.

open access plus

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [1924 - 1932]
Pages: 9
DOI: 10.2174/0929867325666180904120029

Article Metrics

PDF: 110
HTML: 17
PRC: 1