The Close Interplay of Nitro-Oxidative Stress, Advanced Glycation end Products and Inflammation in Inflammatory Bowel Diseases

Author(s): Fabiana Andréa Moura, Marília Oliveira Fonseca Goulart*, Samara Bonfim Gomes Campos, Amylly Sanuelly da Paz Martins

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 13 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Background: Inflammatory Bowel Disease (IBD) exhibits no defined aetiology. However, factors such as genetic and nitro-oxidative stress are associated with chronic inflammation and IBD progression to Colorectal Cancer (CRC). The present review discusses the association of nitro-oxidative stress, inflammation and Advanced Glycation End products (AGE) and their corresponding receptor (RAGE) in IBD and examines the connection between these factors and nuclear factors, such as Nuclear Factor Kappa B (NF-κB), factorerythroid 2-related factor-2 (Nrf2), and p53 Mutant (p53M).

Methods: We searched the PubMed, ScienceDirect and Web of Science databases using a combination of the following terms: IBD, CRC, oxidative stress, inflammation, NF-κB, Nrf2, p53M, AGE and RAGE.

Results: Oxidative stress and inflammation activated two cellular pathways, the nuclear expression of pro-inflammatory, pro-oxidant and pro-oncogenic genes based on NF-κB and p53M, which is associated with NF-κB activation, Deoxyribonucleic acid (DNA) damage and the expression of pro-oncogenic genes. Nrf2 stimulates the nuclear expression of enzymatic and non-enzymatic antioxidant systems and anti-inflammatory genes, and is inhibited by chronic oxidative stress, NF-κB and p53M. AGE/RAGE are involved in inflammation progression because RAGE polymorphisms and increased RAGE levels are found in IBD patients. Alterations of these pathways in combination with oxidative damage are responsible for IBD symptoms and the progression to CRC.

Conclusion: IBD is an inflammatory and nitro-oxidative stress-based bowel disease. Achieving a molecular understanding of the biochemical events and their complicated interactions will impact basic and applied research, animal models, and clinical trials.

Keywords: Nuclear factor kappa B, lipopolysaccharides, factor-erythroid 2-related factor-2, p53 mutant, colorectal cancer, Deoxyribonucleic acid.

[1]
Medhi, B.; Prakash, A.; Avti, P.K.; Saikia, U.N.; Pandhi, P.; Khanduja, K.L. Effect of Manuka honey and sulfasalazine in combination to promote antioxidant defense system in experimentally induced ulcerative colitis model in rats. Indian J. Exp. Biol., 2008, 46(8), 583-590.
[PMID: 18814487]
[2]
May, D.; Pan, S.; Crispin, D.A. Investigating neoplastic progression of ulcerative colitis with label-free comparative proteomics. J. Proteome Res., 2010, 10(1), 200-209.
[http://dx.doi.org/10.1021/pr100574p] [PMID: 20828217]
[3]
Walsh, A.J.; Bryant, R.V.; Travis, S.P. Current best practice for disease activity assessment in IBD. Nat. Rev. Gastroenterol. Hepatol., 2016, 13(10), 567-579.
[http://dx.doi.org/10.1038/nrgastro.2016.128] [PMID: 27580684]
[4]
Pravda, J. Radical induction theory of ulcerative colitis. World J. Gastroenterol., 2005, 11(16), 2371-2384.
[http://dx.doi.org/10.3748/wjg.v11.i16.2371] [PMID: 15832404]
[5]
Bringiotti, R.; Ierardi, E.; Lovero, R.; Losurdo, G.; Di Leo, A.; Principi, M. Intestinal microbiota: The explosive mixture at the origin of inflammatory bowel disease? World J. Gastrointest. Pathophysiol., 2014, 5(4), 550-559.
[http://dx.doi.org/10.4291/wjgp.v5.i4.550] [PMID: 25400998]
[6]
Moura, F.A.; Goulart, M.O. Inflammatory bowel diseases: the crosslink between risk factors and antioxidant therapy in: Gastrointestinal Tissue: oxidative stress and dietary antioxidants; Gracia-Sancho, J; Salvadó, J., Ed.; Elsevier, 2017, Vol. 1, pp. 99-112.
[http://dx.doi.org/10.1016/B978-0-12-805377-5.00007-2]
[7]
Ciccocioppo, R.; Vanoli, A.; Klersy, C.; Imbesi, V.; Boccaccio, V.; Manca, R.; Betti, E.; Cangemi, G.C.; Strada, E.; Besio, R.; Rossi, A.; Falcone, C.; Ardizzone, S.; Fociani, P.; Danelli, P.; Corazza, G.R. Role of the advanced glycation end products receptor in Crohn’s disease inflammation. World J. Gastroenterol., 2013, 19(45), 8269-8281.
[http://dx.doi.org/10.3748/wjg.v19.i45.8269] [PMID: 24363518]
[8]
Almenier, H.A.; Al Menshawy, H.H.; Maher, M.M.; Al Gamal, S. Oxidative stress and inflammatory bowel disease. Front. Biosci. (Elite Ed.), 2012, 4, 1335-1344.
[http://dx.doi.org/10.2741/e463] [PMID: 22201958]
[9]
Karp, S.M.; Koch, T.R. Oxidative stress and antioxidants in inflammatory bowel disease. Dis. Mon., 2006, 52(5), 199-207.
[http://dx.doi.org/10.1016/j.disamonth.2006.05.005] [PMID: 16828361]
[10]
Kruidenier, L.; Verspaget, H.W. Review article: oxidative stress as a pathogenic factor in inflammatory bowel disease--radicals or ridiculous? Aliment. Pharmacol. Ther., 2002, 16(12), 1997-2015.
[http://dx.doi.org/10.1046/j.1365-2036.2002.01378.x] [PMID: 12452933]
[11]
Devi, K.P.; Malar, D.S.; Braidy, N.; Nabavi, S.M.; Nabavi, S.F. A mini review on the chemistry and neuroprotective effects of silymarin. Curr. Drug Targets, 2017, 18(13), 1529-1536.
[http://dx.doi.org/10.2174/1389450117666161227125121] [PMID: 28025940]
[12]
Tejada, S.; Setzer, W.N.; Daglia, M.; Nabavi, S.F.; Sureda, A.; Braidy, N.; Gortzi, O.; Nabavi, S.M. Neuroprotective effects of ellagitannins: a brief review. Curr. Drug Targets, 2017, 18(13), 1518-1528.
[http://dx.doi.org/10.2174/1389450117666161005112002] [PMID: 27719661]
[13]
Duboc, H.; Rajca, S.; Rainteau, D.; Benarous, D.; Maubert, M.A.; Quervain, E.; Thomas, G.; Barbu, V.; Humbert, L.; Despras, G.; Bridonneau, C.; Dumetz, F.; Grill, J.P.; Masliah, J.; Beaugerie, L.; Cosnes, J.; Chazouillères, O.; Poupon, R.; Wolf, C.; Mallet, J.M.; Langella, P.; Trugnan, G.; Sokol, H.; Seksik, P. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut, 2013, 62(4), 531-539.
[http://dx.doi.org/10.1136/gutjnl-2012-302578] [PMID: 22993202]
[14]
Fujiyama, Y.; Andoh, A. [Dysbiosis in inflammatory bowel disease]. Nihon Rinsho, 2012, 70(Suppl. 1), 79-84.
[PMID: 23126071]
[15]
Jiang, W.; Wu, N.; Wang, X.; Chi, Y.; Zhang, Y.; Qiu, X.; Hu, Y.; Li, J.; Liu, Y. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci. Rep., 2015, 5, 8096.
[http://dx.doi.org/10.1038/srep08096] [PMID: 25644696]
[16]
Tamboli, C.P.; Neut, C.; Desreumaux, P.; Colombel, J.F. Dysbiosis in inflammatory bowel disease. Gut, 2004, 53(1), 1-4.
[http://dx.doi.org/10.1136/gut.53.1.1] [PMID: 14684564]
[17]
Nunes, S.; Danesi, F.; Del Rio, D.; Silva, P. Resveratrol and inflammatory bowel disease: the evidence so far. Nutr. Res. Rev., 2017, 1-13.
[PMID: 29191255]
[18]
Vistoli, G.; De Maddis, D.; Cipak, A.; Zarkovic, N.; Carini, M.; Aldini, G. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic. Res., 2013, 47(Suppl. 1), 3-27.
[http://dx.doi.org/10.3109/10715762.2013.815348] [PMID: 23767955]
[19]
Barbosa, J.H.P.; Souza, I.T.; Santana, A.E.G.; Goulart, M.O.F. A determinação dos produtos avançados de glicação (AGEs) e de lipoxidação (ALEs) em alimentos e em sistemas biológicos: avanços, desafios e perspectivas. Quim. Nova, 2016, 39(5), 13.
[20]
Kirsner, J.B. Historical origins of current IBD concepts. World J. Gastroenterol., 2001, 7(2), 175-184.
[http://dx.doi.org/10.3748/wjg.v7.i2.175] [PMID: 11819757]
[21]
Wink, D.A.; Mitchell, J.B. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic. Biol. Med., 1998, 25(4-5), 434-456.
[http://dx.doi.org/10.1016/S0891-5849(98)00092-6] [PMID: 9741580]
[22]
Leigh-Brown, S.; Enriquez, J.A.; Odom, D.T. Nuclear transcription factors in mammalian mitochondria. Genome Biol., 2010, 11(7), 215.
[http://dx.doi.org/10.1186/gb-2010-11-7-215] [PMID: 20670382]
[23]
Sies, H. Biological redox systems and oxidative stress. Cell. Mol. Life Sci., 2007, 64(17), 2181-2188.
[http://dx.doi.org/10.1007/s00018-007-7230-8] [PMID: 17565441]
[24]
Sies, H. Oxidative stress: a concept in redox biology and medicine. Redox Biol., 2015, 4, 180-183.
[http://dx.doi.org/10.1016/j.redox.2015.01.002] [PMID: 25588755]
[25]
Ramasamy, R.; Yan, S.F.; Herold, K.; Clynes, R.; Schmidt, A.M. Receptor for advanced glycation end products: fundamental roles in the inflammatory response: winding the way to the pathogenesis of endothelial dysfunction and atherosclerosis. Ann. N. Y. Acad. Sci., 2008, 1126, 7-13.
[http://dx.doi.org/10.1196/annals.1433.056] [PMID: 18448789]
[26]
Jostins, L.; Ripke, S.; Weersma, R.K.; Duerr, R.H.; McGovern, D.P.; Hui, K.Y.; Lee, J.C.; Schumm, L.P.; Sharma, Y.; Anderson, C.A.; Essers, J.; Mitrovic, M.; Ning, K.; Cleynen, I.; Theatre, E.; Spain, S.L.; Raychaudhuri, S.; Goyette, P.; Wei, Z.; Abraham, C.; Achkar, J.P.; Ahmad, T.; Amininejad, L.; Ananthakrishnan, A.N.; Andersen, V.; Andrews, J.M.; Baidoo, L.; Balschun, T.; Bampton, P.A.; Bitton, A.; Boucher, G.; Brand, S.; Büning, C.; Cohain, A.; Cichon, S.; D’Amato, M.; De Jong, D.; Devaney, K.L.; Dubinsky, M.; Edwards, C.; Ellinghaus, D.; Ferguson, L.R.; Franchimont, D.; Fransen, K.; Gearry, R.; Georges, M.; Gieger, C.; Glas, J.; Haritunians, T.; Hart, A.; Hawkey, C.; Hedl, M.; Hu, X.; Karlsen, T.H.; Kupcinskas, L.; Kugathasan, S.; Latiano, A.; Laukens, D.; Lawrance, I.C.; Lees, C.W.; Louis, E.; Mahy, G.; Mansfield, J.; Morgan, A.R.; Mowat, C.; Newman, W.; Palmieri, O.; Ponsioen, C.Y.; Potocnik, U.; Prescott, N.J.; Regueiro, M.; Rotter, J.I.; Russell, R.K.; Sanderson, J.D.; Sans, M.; Satsangi, J.; Schreiber, S.; Simms, L.A.; Sventoraityte, J.; Targan, S.R.; Taylor, K.D.; Tremelling, M.; Verspaget, H.W.; De Vos, M.; Wijmenga, C.; Wilson, D.C.; Winkelmann, J.; Xavier, R.J.; Zeissig, S.; Zhang, B.; Zhang, C.K.; Zhao, H.; Silverberg, M.S.; Annese, V.; Hakonarson, H.; Brant, S.R.; Radford-Smith, G.; Mathew, C.G.; Rioux, J.D.; Schadt, E.E.; Daly, M.J.; Franke, A.; Parkes, M.; Vermeire, S.; Barrett, J.C.; Cho, J.H.; Cho, J.H. International IBD Genetics Consortium (IIBDGC). Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature, 2012, 491(7422), 119-124.
[http://dx.doi.org/10.1038/nature11582] [PMID: 23128233]
[27]
Inohara, N.; Ogura, Y.; Fontalba, A.; Gutierrez, O.; Pons, F.; Crespo, J.; Fukase, K.; Inamura, S.; Kusumoto, S.; Hashimoto, M.; Foster, S.J.; Moran, A.P.; Fernandez-Luna, J.L.; Nuñez, G. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J. Biol. Chem., 2003, 278(8), 5509-5512.
[http://dx.doi.org/10.1074/jbc.C200673200] [PMID: 12514169]
[28]
Balasubramanian, I.; Gao, N. From sensing to shaping microbiota: insights into the role of NOD2 in intestinal homeostasis and progression of Crohn’s disease. Am. J. Physiol. Gastrointest. Liver Physiol., 2017, 313(1), G7-G13.
[http://dx.doi.org/10.1152/ajpgi.00330.2016] [PMID: 28450278]
[29]
Chirieleison, S.M.; Marsh, R.A.; Kumar, P.; Rathkey, J.K.; Dubyak, G.R.; Abbott, D.W. Nucleotide-binding oligomerization domain (NOD) signaling defects and cell death susceptibility cannot be uncoupled in X-linked inhibitor of apoptosis (XIAP)-driven inflammatory disease. J. Biol. Chem., 2017, 292(23), 9666-9679.
[http://dx.doi.org/10.1074/jbc.M117.781500] [PMID: 28404814]
[30]
Couturier-Maillard, A.; Secher, T.; Rehman, A.; Normand, S.; De Arcangelis, A.; Haesler, R.; Huot, L.; Grandjean, T.; Bressenot, A.; Delanoye-Crespin, A.; Gaillot, O.; Schreiber, S.; Lemoine, Y.; Ryffel, B.; Hot, D.; Nùñez, G.; Chen, G.; Rosenstiel, P.; Chamaillard, M. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J. Clin. Invest., 2013, 123(2), 700-711.
[http://dx.doi.org/10.1172/JCI62236] [PMID: 23281400]
[31]
Saxena, A.; Lopes, F.; Poon, K.K.H.; McKay, D.M. Absence of the NOD2 protein renders epithelia more susceptible to barrier dysfunction due to mitochondrial dysfunction. Am. J. Physiol. Gastrointest. Liver Physiol., 2017, 313(1), G26-G38.
[http://dx.doi.org/10.1152/ajpgi.00070.2017] [PMID: 28450277]
[32]
Moura, F.A.; de Andrade, K.Q.; Dos Santos, J.C.F.; Araújo, O.R.P.; Goulart, M.O.F. Antioxidant therapy for treatment of inflammatory bowel disease: Does it work? Redox Biol., 2015, 6, 617-639.
[http://dx.doi.org/10.1016/j.redox.2015.10.006] [PMID: 26520808]
[33]
Sies, H.; Berndt, C.; Jones, D.P. Oxidative Stress. Annu. Rev. Biochem., 2017, 86, 715-748.
[http://dx.doi.org/10.1146/annurev-biochem-061516-045037] [PMID: 28441057]
[34]
Wang, Z.; Li, S.; Cao, Y.; Tian, X.; Zeng, R.; Liao, D.F.; Cao, D. Oxidative stress and carbonyl lesions in ulcerative colitis and associated colorectal cancer. Oxid. Med. Cell. Longev., 2016, 20169875298
[http://dx.doi.org/10.1155/2016/9875298] [PMID: 26823956]
[35]
Achitei, D.; Ciobica, A.; Balan, G.; Gologan, E.; Stanciu, C.; Stefanescu, G. Different profile of peripheral antioxidant enzymes and lipid peroxidation in active and non-active inflammatory bowel disease patients. Dig. Dis. Sci., 2013, 58(5), 1244-1249.
[http://dx.doi.org/10.1007/s10620-012-2510-z] [PMID: 23306840]
[36]
Genser, D.; Kang, M.H.; Vogelsang, H.; Elmadfa, I. Status of lipidsoluble antioxidants and TRAP in patients with Crohn’s disease and healthy controls. Eur. J. Clin. Nutr., 1999, 53(9), 675-679.
[http://dx.doi.org/10.1038/sj.ejcn.1600764] [PMID: 10509761]
[37]
Alzoghaibi, M.A.; Al Mofleh, I.A.; Al-Jebreen, A.M. Lipid peroxides in patients with inflammatory bowel disease. Saudi J. Gastroenterol., 2007, 13(4), 187-190.
[http://dx.doi.org/10.4103/1319-3767.36750] [PMID: 19858644]
[38]
Moura, F.A.; de Andrade, K.Q.; de Araujo, O.R.; Nunes-Souza, V. Colonic and hepatic modulation by lipoic acid and/or n-acetylcysteine supplementation in mild ulcerative colitis induced by dextran sodium sulfate in rats. Oxid. Med. Cell. Longev., 2016, 20164047362
[http://dx.doi.org/10.1155/2016/4047362] [PMID: 27957238]
[39]
Forman, H.J.; Augusto, O.; Brigelius-Flohe, R.; Dennery, P.A.; Kalyanaraman, B.; Ischiropoulos, H.; Mann, G.E.; Radi, R.; Roberts, L.J., II; Vina, J.; Davies, K.J. Even free radicals should follow some rules: a guide to free radical research terminology and methodology. Free Radic. Biol. Med., 2015, 78, 233-235.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.10.504] [PMID: 25462642]
[40]
Wang, J.; Zeng, J.; Wang, H.; Ye, S.; Bi, Y.; Zhou, Y.; Li, K.; Zhou, Y. Genetic polymorphisms of RAGE and risk of ulcerative colitis in a Chinese population. Immunol. Lett., 2016, 170, 88-94.
[http://dx.doi.org/10.1016/j.imlet.2015.09.003] [PMID: 26349055]
[41]
Witko-Sarsat, V.; Nguyen Khoa, T.; Jungers, P.; Drüeke, T.; Descamps-Latscha, B. Advanced oxidation protein products: oxidative stress markers and mediators of inflammation in uremia. Adv. Nephrol. Necker Hosp., 1998, 28, 321-341.
[PMID: 9889997]
[42]
Wu, P.; Xie, F.; Xue, M.; Xu, X.; He, S.; Lin, M.; Bai, L. Advanced oxidation protein products decrease the expression of calcium transport channels in small intestinal epithelium via the p44/42 MAPK signaling pathway. Eur. J. Cell Biol., 2015, 94(5), 190-203.
[http://dx.doi.org/10.1016/j.ejcb.2015.02.002] [PMID: 25801217]
[43]
Moran, G.W.; Dubeau, M.F.; Kaplan, G.G.; Panaccione, R.; Ghosh, S. Novel concepts in inflammatory bowel disease. Br. Med. Bull., 2014, 109, 55-72.
[http://dx.doi.org/10.1093/bmb/ldt039] [PMID: 24505093]
[44]
Vasconcelos, S.M.L.; Goulart, M.O.F.; Moura, J.B.F.; Benfato, V.M.M.S.; Kubota, L.T. Espécies reativas de oxigênio e de nitrogênio, antioxidantes e marcadores de dano oxidativo em sangue humano: principais métodos analíticos para sua determinação. Quim. Nova, 2007, 30(5), 1323-1338.
[http://dx.doi.org/10.1590/S0100-40422007000500046]
[45]
Pasparakis, M. Regulation of tissue homeostasis by NF-kappaB signalling: implications for inflammatory diseases. Nat. Rev. Immunol., 2009, 9(11), 778-788.
[http://dx.doi.org/10.1038/nri2655] [PMID: 19855404]
[46]
Neurath, M.F. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol., 2014, 14(5), 329-342.
[http://dx.doi.org/10.1038/nri3661] [PMID: 24751956]
[47]
Ellis, R.D.; Goodlad, J.R.; Limb, G.A.; Powell, J.J.; Thompson, R.P.; Punchard, N.A. Activation of nuclear factor kappa B in Crohn’s disease. Inflamm. Res., 1998, 47(11), 440-445.
[http://dx.doi.org/10.1007/s000110050358] [PMID: 9865503]
[48]
Schreiber, S.; Nikolaus, S.; Hampe, J. Activation of nuclear factor kappa B inflammatory bowel disease. Gut, 1998, 42(4), 477-484.
[http://dx.doi.org/10.1136/gut.42.4.477] [PMID: 9616307]
[49]
Han, Y.M.; Koh, J.; Kim, J.W.; Lee, C.; Koh, S.J.; Kim, B.; Lee, K.L. Im, J.P.; Kim, J.S. NF-kappa B activation correlates with disease phenotype in Crohn’s disease. PLoS One, 2017, 12(7)e0182071
[http://dx.doi.org/10.1371/journal.pone.0182071] [PMID: 28753650]
[50]
Olesen, C.M.; Coskun, M.; Peyrin-Biroulet, L.; Nielsen, O.H. Mechanisms behind efficacy of tumor necrosis factor inhibitors in inflammatory bowel diseases. Pharmacol. Ther., 2016, 159, 110-119.
[http://dx.doi.org/10.1016/j.pharmthera.2016.01.001] [PMID: 26808166]
[51]
Soussi, T. p53 Antibodies in the sera of patients with various types of cancer: a review. Cancer Res., 2000, 60(7), 1777-1788.
[PMID: 10766157]
[52]
Staib, F.; Robles, A.I.; Varticovski, L.; Wang, X.W.; Zeeberg, B.R.; Sirotin, M.; Zhurkin, V.B.; Hofseth, L.J.; Hussain, S.P.; Weinstein, J.N.; Galle, P.R.; Harris, C.C. The p53 tumor suppressor network is a key responder to microenvironmental components of chronic inflammatory stress. Cancer Res., 2005, 65(22), 10255-10264.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1714] [PMID: 16288013]
[53]
Radovic, S.; Vukobrat-Bijedic, Z.; Selak, I.; Babic, M. Expression of p53, bcl-2, and Ki-67 proteins in the inflam-matory regenerative and dysplastic epithelial lesions of flat colonic mucosa. Bosn. J. Basic Med. Sci., 2006, 6(1), 39-45.
[http://dx.doi.org/10.17305/bjbms.2006.3208] [PMID: 16533178]
[54]
Jung, K.A.; Kwak, M.K. The Nrf2 system as a potential target for the development of indirect antioxidants. Molecules, 2010, 15(10), 7266-7291.
[http://dx.doi.org/10.3390/molecules15107266] [PMID: 20966874]
[55]
Kensler, T.W.; Wakabayashi, N.; Biswal, S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol., 2007, 47, 89-116.
[http://dx.doi.org/10.1146/annurev.pharmtox.46.120604.141046] [PMID: 16968214]
[56]
Wakabayashi, N.; Slocum, S.L.; Skoko, J.J.; Shin, S.; Kensler, T.W. When NRF2 talks, who’s listening? Antioxid. Redox Signal., 2010, 13(11), 1649-1663.
[http://dx.doi.org/10.1089/ars.2010.3216] [PMID: 20367496]
[57]
Trivedi, P.P.; Jena, G.B. Role of α-lipoic acid in dextran sulfate sodium-induced ulcerative colitis in mice: studies on inflammation, oxidative stress, DNA damage and fibrosis. Food Chem. Toxicol., 2013, 59, 339-355.
[http://dx.doi.org/10.1016/j.fct.2013.06.019] [PMID: 23793040]
[58]
Trivedi, P.P.; Jena, G.B.; Tikoo, K.B.; Kumar, V. Melatonin modulated autophagy and Nrf2 signaling path-ways in mice with colitis-associated colon carcinogenesis. Mol. Carcinog., 2016, 55(3), 255-267.
[http://dx.doi.org/10.1002/mc.22274] [PMID: 25598500]
[59]
Hofmann, M.A.; Drury, S.; Fu, C.; Qu, W.; Taguchi, A.; Lu, Y.; Avila, C.; Kambham, N.; Bierhaus, A.; Nawroth, P.; Neurath, M.F.; Slattery, T.; Beach, D.; McClary, J.; Nagashima, M.; Morser, J.; Stern, D.; Schmidt, A.M. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell, 1999, 97(7), 889-901.
[http://dx.doi.org/10.1016/S0092-8674(00)80801-6] [PMID: 10399917]
[60]
Deo, P.; Keogh, J.B.; Price, N.J.; Clifton, P.M. Effects of weight loss on advanced glycation end products in subjects with and without diabetes: a preliminary report. Int. J. Environ. Res. Public Health, 2017, 14(12)E1553
[http://dx.doi.org/10.3390/ijerph14121553] [PMID: 29232895]
[61]
Papagrigoraki, A.; Maurelli, M.; Del Giglio, M.; Gisondi, P.; Girolomoni, G. advanced glycation end products in the pathogenesis of psoriasis. Int. J. Mol. Sci., 2017, 18(11)E2471
[http://dx.doi.org/10.3390/ijms18112471] [PMID: 29156622]
[62]
Barbosa, J.H.P.; Oliveira, S.L.; Seara, L.T. O papel dos produtos finais da glicação avançada (AGEs) no desencadeamento das complicações vasculares do diabetes. Arq. Bras. Endocrinol. Metabol, 2008, 52(6), 940-950.
[http://dx.doi.org/10.1590/S0004-27302008000600005]
[63]
Ahmad, S.; Khan, H.; Siddiqui, Z.; Khan, M.Y.; Rehman, S.; Shahab, U.; Godovikova, T.; Silnikov, V. Moinuddin. AGEs, RAGEs and s-RAGE; friend or foe for cancer. Semin. Cancer Biol., 2018, 49, 44-55.
[http://dx.doi.org/10.1016/j.semcancer.2017.07.001] [PMID: 28712719]
[64]
Drenth, H.; Zuidema, S.U.; Krijnen, W.P.; Bautmans, I.; van der Schans, C.; Hobbelen, H. Advanced glycation endproducts are associated with the presence and severity of paratonia in early stage alzheimer disease. J Am Med Dir Assoc., 2017, 18(7), e612 636-e637-636.
[http://dx.doi.org/10.1016/j.jamda.2017.04.004] [PMID: 28558966]
[65]
Santos, J.C.D.F.; Valentim, I.B.; de Araújo, O.R.P. Ataide, Tda.R.; Goulart, M.O.F. Development of nonalcoholic hepatopathy: contributions of oxidative stress and advanced glycation end products. Int. J. Mol. Sci., 2013, 14(10), 19846-19866.
[http://dx.doi.org/10.3390/ijms141019846] [PMID: 24084729]
[66]
Ott, J.J.; Stevens, G.A.; Groeger, J.; Wiersma, S.T. Global epidemiology of hepatitis B virus infection: new estimates of age-specific HBsAg seroprevalence and endemicity. Vaccine, 2012, 30(12), 2212-2219.
[http://dx.doi.org/10.1016/j.vaccine.2011.12.116] [PMID: 22273662]
[67]
Liu, Y.; Qu, Y.; Wang, R.; Ma, Y.; Xia, C.; Gao, C.; Liu, J.; Lian, K.; Xu, A.; Lu, X.; Sun, L.; Yang, L.; Lau, W.B.; Gao, E.; Koch, W.; Wang, H.; Tao, L. The alternative crosstalk between RAGE and nitrative thioredoxin inactivation during diabetic myocardial ischemia-reperfusion injury. Am. J. Physiol. Endocrinol. Metab., 2012, 303(7), E841-E852.
[http://dx.doi.org/10.1152/ajpendo.00075.2012] [PMID: 22829582]
[68]
Arnér, E.S.; Holmgren, A. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem., 2000, 267(20), 6102-6109.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01701.x] [PMID: 11012661]
[69]
Lee, H.; Park, J.R.; Kim, W.J.; Sundar, I.K.; Rahman, I.; Park, S.M.; Yang, S.R. Blockade of RAGE ameliorates elastase-induced emphysema development and progression via RAGE-DAMP signaling. FASEB J., 2017, 31(5), 2076-2089.
[http://dx.doi.org/10.1096/fj.201601155R] [PMID: 28148566]
[70]
Buelna-Chontal, M.; Zazueta, C. Redox activation of Nrf2 & NF-κB: a double end sword? Cell. Signal., 2013, 25(12), 2548-2557.
[http://dx.doi.org/10.1016/j.cellsig.2013.08.007] [PMID: 23993959]
[71]
Budanov, A.V. The role of tumor suppressor p53 in the antioxidant defense and metabolism. Subcell. Biochem., 2014, 85, 337-358.
[http://dx.doi.org/10.1007/978-94-017-9211-0_18] [PMID: 25201203]
[72]
Lepage, P.; Colombet, J.; Marteau, P.; Sime-Ngando, T.; Doré, J.; Leclerc, M. Dysbiosis in inflammatory bowel disease: a role for bacteriophages? Gut, 2008, 57(3), 424-425.
[http://dx.doi.org/10.1136/gut.2007.134668] [PMID: 18268057]
[73]
Kawaguchi, T.; Mori, M.; Saito, K.; Suga, Y.; Hashimoto, M.; Sako, M.; Yoshimura, N.; Uo, M.; Danjo, K.; Ikenoue, Y.; Oomura, K.; Shinozaki, J.; Mitsui, A.; Kajiura, T.; Suzuki, M.; Takazoe, M. Food antigen-induced immune responses in Crohn’s disease patients and experimental colitis mice. J. Gastroenterol., 2015, 50(4), 394-405.
[http://dx.doi.org/10.1007/s00535-014-0981-8] [PMID: 25099432]
[74]
Tak, P.P.; Firestein, G.S. NF-kappaB: a key role in inflammatory diseases. J. Clin. Invest., 2001, 107(1), 7-11.
[http://dx.doi.org/10.1172/JCI11830] [PMID: 11134171]
[75]
Ntoufa, S.; Vilia, M.G.; Stamatopoulos, K.; Ghia, P.; Muzio, M. Toll-like receptors signaling: A complex network for NF-κB activation in B-cell lymphoid malignancies. Semin. Cancer Biol., 2016, 39, 15-25.
[http://dx.doi.org/10.1016/j.semcancer.2016.07.001] [PMID: 27402288]
[76]
Tóbon-Velasco, J.C.; Cuevas, E.; Torres-Ramos, M.A. Receptor for AGEs (RAGE) as mediator of NF-kB pathway activation in neuroinflammation and oxidative stress. CNS Neurol. Disord. Drug Targets, 2014, 13(9), 1615-1626.
[http://dx.doi.org/10.2174/1871527313666140806144831] [PMID: 25106630]
[77]
Horvath, B.; Liu, G.; Wu, X.; Lai, K.K.; Shen, B.; Liu, X. Overexpression of p53 predicts colorectal neoplasia risk in patients with inflammatory bowel disease and mucosa changes indefinite for dysplasia. Gastroenterol. Rep. (Oxf.), 2015, 3(4), 344-349.
[http://dx.doi.org/10.1093/gastro/gov022] [PMID: 26063242]
[78]
Tang, Y.; Chen, A. Curcumin eliminates the effect of advanced glycation end-products (AGEs) on the divergent regulation of gene expression of receptors of AGEs by interrupting leptin signaling. Lab. Invest., 2014, 94(5), 503-516.
[http://dx.doi.org/10.1038/labinvest.2014.42] [PMID: 24614199]
[79]
Hong, Y.; An, Z. Hesperidin attenuates learning and memory deficits in APP/PS1 mice through activation of Akt/Nrf2 signaling and inhibition of RAGE/NF-kappaB signaling. Arch. Pharm. Res., 2018, 41(6), 655-663.
[http://dx.doi.org/10.1007/s12272-015-0662-z] [PMID: 26391026]
[80]
Collison, K.S.; Parhar, R.S.; Saleh, S.S.; Meyer, B.F.; Kwaasi, A.A.; Hammami, M.M.; Schmidt, A.M.; Stern, D.M.; Al-Mohanna, F.A. RAGE-mediated neutrophil dysfunction is evoked by advanced glycation end products (AGEs). J. Leukoc. Biol., 2002, 71(3), 433-444.
[PMID: 11867681]
[81]
Morgan, M.J.; Liu, Z.G. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res., 2011, 21(1), 103-115.
[http://dx.doi.org/10.1038/cr.2010.178] [PMID: 21187859]
[82]
Zhou, L.Z.; Johnson, A.P.; Rando, T.A. NF kappa B and AP-1 mediate transcriptional responses to oxidative stress in skeletal muscle cells. Free Radic. Biol. Med., 2001, 31(11), 1405-1416.
[http://dx.doi.org/10.1016/S0891-5849(01)00719-5] [PMID: 11728812]
[83]
Djavaheri-Mergny, M.; Javelaud, D.; Wietzerbin, J.; Besançon, F. NF-kappaB activation prevents apoptotic oxidative stress via an increase of both thioredoxin and MnSOD levels in TNFalpha-treated Ewing sarcoma cells. FEBS Lett., 2004, 578(1-2), 111-115.
[http://dx.doi.org/10.1016/j.febslet.2004.10.082] [PMID: 15581626]
[84]
Kairisalo, M.; Korhonen, L.; Blomgren, K.; Lindholm, D. X-linked inhibitor of apoptosis protein increases mitochondrial antioxidants through NF-kappaB activation. Biochem. Biophys. Res. Commun., 2007, 364(1), 138-144.
[http://dx.doi.org/10.1016/j.bbrc.2007.09.115] [PMID: 17936246]
[85]
Krajka-Kuzniak, V.; Paluszczak, J.; Baer-Dubowska, W. The Nrf2-ARE signaling pathway: An update on its regulation and possible role in cancer prevention and treatment. Pharmacol. Rep., 2017, 69(3), 393-402.
[http://dx.doi.org/10.1016/j.pharep.2016.12.011]
[86]
Ahmed, S.M.; Luo, L.; Namani, A.; Wang, X.J.; Tang, X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(2), 585-597.
[http://dx.doi.org/10.1016/j.bbadis.2016.11.005] [PMID: 27825853]
[87]
Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev., 2014, 2014360438
[http://dx.doi.org/10.1155/2014/360438] [PMID: 24999379]
[88]
Fedorova, M.; Bollineni, R.C.; Hoffmann, R. Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies. Mass Spectrom. Rev., 2014, 33(2), 79-97.
[http://dx.doi.org/10.1002/mas.21381] [PMID: 23832618]
[89]
Dalle-Donne, I.; Giustarini, D.; Colombo, R.; Rossi, R.; Milzani, A. Protein carbonylation in human diseases. Trends Mol. Med., 2003, 9(4), 169-176.
[http://dx.doi.org/10.1016/S1471-4914(03)00031-5] [PMID: 12727143]
[90]
Harding, S.V.; Rideout, T.C.; Jones, P.J. Evidence for using alpha-lipoic acid in reducing lipoprotein and inflammatory related atherosclerotic risk. J. Diet. Suppl., 2012, 9(2), 116-127.
[http://dx.doi.org/10.3109/19390211.2012.683136] [PMID: 22607646]
[91]
Zen, K.; Chen, C.X.; Chen, Y.T.; Wilton, R.; Liu, Y. Receptor for advanced glycation endproducts mediates neutrophil migration across intestinal epithelium. J. Immunol., 2007, 178(4), 2483-2490.
[http://dx.doi.org/10.4049/jimmunol.178.4.2483] [PMID: 17277156]
[92]
Brazil, J.C.; Louis, N.A.; Parkos, C.A. The role of polymorphonuclear leukocyte trafficking in the perpetuation of inflammation during inflammatory bowel disease. Inflamm. Bowel Dis., 2013, 19(7), 1556-1565.
[http://dx.doi.org/10.1097/MIB.0b013e318281f54e] [PMID: 23598816]
[93]
Yilmaz, Y.; Yonal, O.; Eren, F.; Atug, O.; Hamzaoglu, H.O. Serum levels of soluble receptor for advanced glycation endproducts (sRAGE) are higher in ulcerative colitis and correlate with disease activity. J. Crohn’s Colitis, 2011, 5(5), 402-406.
[http://dx.doi.org/10.1016/j.crohns.2011.03.011] [PMID: 21939913]
[94]
Nakamura, K.; Yamagishi, S.; Adachi, H.; Kurita-Nakamura, Y.; Matsui, T.; Yoshida, T.; Imaizumi, T. Serum levels of sRAGE, the soluble form of receptor for advanced glycation end products, are associated with inflammatory markers in patients with type 2 diabetes. Mol. Med., 2007, 13(3-4), 185-189.
[http://dx.doi.org/10.2119/2006-00090.Nakamura] [PMID: 17592553]
[95]
Malícková, K.; Kalousová, M.; Fucíková, T.; Bortlík, M.; Duricová, D.; Komárek, V.; Zima, T.; Janatková, I.; Lukás, M. Anti-inflammatory effect of biological treatment in patients with inflammatory bowel diseases: calprotectin and IL-6 changes do not correspond to sRAGE changes. Scand. J. Clin. Lab. Invest., 2010, 70(4), 294-299.
[http://dx.doi.org/10.3109/00365513.2010.485648] [PMID: 20446880]
[96]
Leach, S.T.; Yang, Z.; Messina, I.; Song, C.; Geczy, C.L.; Cunningham, A.M.; Day, A.S. Serum and mucosal S100 proteins, calprotectin (S100A8/S100A9) and S100A12, are elevated at diagnosis in children with inflammatory bowel disease. Scand. J. Gastroenterol., 2007, 42(11), 1321-1331.
[http://dx.doi.org/10.1080/00365520701416709] [PMID: 17852869]
[97]
ALJahdali N.; Gadonna-Widehem, P.; Delayre-Orthez, C.; Marier, D.; Garnier, B.; Carbonero, F.; Anton, P.M. Repeated oral exposure to N ε-Carboxymethyllysine, a maillard reaction product, alleviates gut microbiota dysbiosis in colitic mice. Dig. Dis. Sci., 2017, 62(12), 3370-3384.
[http://dx.doi.org/10.1007/s10620-017-4767-8] [PMID: 28965192]
[98]
Eaden, J.A.; Abrams, K.R.; Mayberry, J.F. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut, 2001, 48(4), 526-535.
[http://dx.doi.org/10.1136/gut.48.4.526] [PMID: 11247898]
[99]
Castaño-Milla, C.; Chaparro, M.; Gisbert, J.P. Systematic review with meta-analysis: the declining risk of colorectal cancer in ulcerative colitis. Aliment. Pharmacol. Ther., 2014, 39(7), 645-659.
[http://dx.doi.org/10.1111/apt.12651] [PMID: 24612141]
[100]
Lakatos, L.; Mester, G.; Erdelyi, Z.; David, G.; Pandur, T.; Balogh, M.; Fischer, S.; Vargha, P.; Lakatos, P.L. Risk factors for ulcerative colitis-associated colorectal cancer in a Hungarian cohort of patients with ulcerative colitis: results of a population-based study. Inflamm. Bowel Dis., 2006, 12(3), 205-211.
[http://dx.doi.org/10.1097/01.MIB.0000217770.21261.ce] [PMID: 16534422]
[101]
Beaugerie, L.; Itzkowitz, S.H. Cancers complicating inflammatory bowel disease. N. Engl. J. Med., 2015, 372(15), 1441-1452.
[http://dx.doi.org/10.1056/NEJMra1403718] [PMID: 25853748]
[102]
Burisch, J.; Jess, T.; Martinato, M.; Lakatos, P.L. ECCO -EpiCom. The burden of inflammatory bowel disease in Europe. J. Crohn’s Colitis, 2013, 7(4), 322-337.
[http://dx.doi.org/10.1016/j.crohns.2013.01.010] [PMID: 23395397]
[103]
Rutter, M.D.; Saunders, B.P.; Wilkinson, K.H.; Rumbles, S.; Schofield, G.; Kamm, M.A.; Williams, C.B.; Price, A.B.; Talbot, I.C.; Forbes, A. Thirty-year analysis of a colonoscopic surveillance program for neoplasia in ulcerative colitis. Gastroenterology, 2006, 130(4), 1030-1038.
[http://dx.doi.org/10.1053/j.gastro.2005.12.035] [PMID: 16618396]
[104]
Jurjus, A.; Eid, A.; Al Kattar, S.; Zeenny, M.N.; Gerges-Geagea, A.; Haydar, H.; Hilal, A.; Oueidat, D.; Matar, M.; Tawilah, J.; Hussein, I.H.; Schembri-Wismayer, P.; Cappello, F.; Tomasello, G.; Leone, A.; Jurjus, R.A. Inflammatory bowel disease, colorectal cancer and type 2 diabetes mellitus: The links. BBA Clin., 2015, 5, 16-24.
[http://dx.doi.org/10.1016/j.bbacli.2015.11.002] [PMID: 27051585]
[105]
Kryston, T.B.; Georgiev, A.B.; Pissis, P.; Georgakilas, A.G. Role of oxidative stress and DNA damage in human carcinogenesis. Mutat. Res., 2011, 711(1-2), 193-201.
[http://dx.doi.org/10.1016/j.mrfmmm.2010.12.016] [PMID: 21216256]
[106]
Hamouda, H.E.; Zakaria, S.S.; Ismail, S.A.; Khedr, M.A.; Mayah, W.W. p53 antibodies, metallothioneins, and oxidative stress markers in chronic ulcerative colitis with dysplasia. World J. Gastroenterol., 2011, 17(19), 2417-2423.
[http://dx.doi.org/10.3748/wjg.v17.i19.2417] [PMID: 21633642]
[107]
Lin, J.A.; Wu, C.H.; Yen, G.C. Methylglyoxal displays colorectal cancer-promoting properties in the murine models of azoxymethane and CT26 isografts. Free Radic. Biol. Med., 2018, 115, 436-446.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.12.020] [PMID: 29269310]
[108]
Kuniyasu, H.; Chihara, Y.; Kondo, H. Differential effects between amphoterin and advanced glycation end products on colon cancer cells. Int. J. Cancer, 2003, 104(6), 722-727.
[http://dx.doi.org/10.1002/ijc.11016] [PMID: 12640679]
[109]
Liang, H.; Zhong, Y.; Zhou, S.; Peng, L. Knockdown of RAGE expression inhibits colorectal cancer cell invasion and suppresses angiogenesis in vitro and in vivo. Cancer Lett., 2011, 313(1), 91-98.
[http://dx.doi.org/10.1016/j.canlet.2011.08.028] [PMID: 21945853]
[110]
Sakellariou, S.; Fragkou, P.; Levidou, G.; Gargalionis, A.N.; Piperi, C.; Dalagiorgou, G.; Adamopoulos, C.; Saetta, A.; Agrogiannis, G.; Theohari, I.; Sougioultzis, S.; Tsioli, P.; Karavokyros, I.; Tsavaris, N.; Kostakis, I.D.; Zizi-Serbetzoglou, A.; Vandoros, G.P.; Patsouris, E.; Korkolopoulou, P. Clinical significance of AGE-RAGE axis in colorectal cancer: associations with glyoxalase-I, adiponectin receptor expression and prognosis. BMC Cancer, 2016, 16, 174.
[http://dx.doi.org/10.1186/s12885-016-2213-5] [PMID: 26931562]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 13
Year: 2020
Page: [2059 - 2076]
Pages: 18
DOI: 10.2174/0929867325666180904115633
Price: $65

Article Metrics

PDF: 37
HTML: 1