Design, Synthesis, and Preliminary Bioactivity Evaluation of 2,7-Substituted Carbazole Derivatives as Potent Autotaxin Inhibitors and Antitumor Agents†

Author(s): Wenming Wang, Fengmei Zhao, Yarui Zhao, Weiwei Pan, Pengcheng Cao, Lintao Wu, Zhijun Wang, Xuan Zhao, Yi Zhao*, Hongfei Wang*

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 19 , Issue 2 , 2019

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Autotaxin-LPA signaling has been implicated in cancer progression, and targeted for the discovery of cancer therapeutic agents.

Objective: Potential ATX inhibitors were synthesized to develop novel leading compounds and effective anticancer agents.

Methods: The present work designs and synthesizes a series of 2,7-subsitituted carbazole derivatives with different terminal groups R [R = -Cl (I), -COOH (II), -B(OH)2 (III), or -PO(OH)2 (I-IV)]. The inhibition of these compounds on the enzymatic activity of ATX was measured using FS-3 and Bis-pNpp as substrates, and the cytotoxicity of these compounds was evaluated using SW620, SW480, PANC-1, and SKOV-3 human carcinoma cells. Furthermore, the binding of leading compound with ATX was analyzed by molecular docking.

Results: Compound III was shown to be a promising antitumor candidate by demonstrating both good inhibition of ATX enzymatic activity and high cytotoxicity against human cancer cell lines. Molecular docking study shows that compound III is located in a pocket, which mainly comprises amino acids 209 to 316 in domain 2 of ATX, and binds with these residues of ATX through van der Waals, conventional hydrogen bonds, and hydrophobic interactions.

Conclusion: Compound III with the terminal group R = -B(OH)2 has the most potent inhibitory effect with the greatest cytotoxicity to cancer cells. Moreover, the docking model provides a structural basis for the future optimization of promising antitumor compounds.

Keywords: Autotaxin, carbazole derivatives, phosphodiesterase inhibitor, cytotoxicity, anticancer drug, molecular docking.

Stracke, M.L.; Krutzsch, H.C.; Unsworth, E.J.; Arestad, A.; Cioce, V.; Schiffmann, E.; Liotta, L.A. Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulatingprotein. J. Biol. Chem., 1992, 267(4), 2524-2529.
Murata, J.; Lee, H.Y.; Clair, T.; Krutzsch, H.C.; Arestad, A.A.; Sobel, M.E.; Liotta, L.A.; Stracke, M.L. cDNA cloning of the human tumor motility-stimulating protein, autotaxin, reveals a homology with phosphodiesterases. J. Biol. Chem., 1994, 269(48), 30479-30484.
Tokumura, A.; Majima, E.; Kariya, Y.; Tominaga, K.; Kogure, K.; Yasuda, K.; Fukuzawa, K. Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase. J. Biol. Chem., 2002, 277(42), 39436-39442.
Umezu-Goto, M.; Kishi, Y.; Taira, A.; Hama, K.; Dohmae, N.; Takio, K.; Yamori, T.; Mills, G.B.; Inoue, K.; Aoki, J.; Arai, H. Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J. Cell Biol., 2002, 158(2), 227-233.
Mills, G.B.; Moolenaar, W.H. The emerging role of lysophosphatidic acid in cancer. Nat. Rev. Cancer, 2003, 3(8), 582-591.
Harper, K.; Arsenault, D.; Boulay-Jean, S.; Lauzier, A.; Lucien, F.; Dubois, C.M. Autotaxin promotes cancer invasion via the lysophosphatidic acid receptor 4: Participation of the cyclic AMP/EPAC/Rac1 signaling pathway in invadopodia formation. Cancer Res., 2010, 70(11), 4634-4643.
Nam, S.W.; Clair, T.; Kim, Y.S.; McMarlin, A.; Schiffmann, E.; Liotta, L.A.; Stracke, M.L. Autotaxin (NPP-2), a metastasis-enhancing motogen, is an angiogenic factor. Cancer Res., 2001, 61(18), 6938-6944.
Liu, S.; Murph, M.; Panupinthu, N.; Mills, G.B. ATX-LPA receptor axis in inflammation and cancer. Cell Cycle, 2009, 8(22), 3695-3701.
Boutin, J.A.; Ferry, G. Autotaxin. Cell. Mol. Life Sci., 2009, 66(18), 3009-3021.
Jansen, S.; Andries, M.; Derua, R.; Waelkens, E.; Bollen, M. Domain interplay mediated by an essential disulfide linkage is critical for the activity and secretion of the metastasis-promoting enzyme autotaxin. J. Biol. Chem., 2009, 284(21), 14296-14302.
Panupinthu, N.; Lee, H.Y.; Mills, G.B. Lysophosphatidic acid production and action: Critical new players in breast cancer initiation and progression. Br. J. Cancer, 2010, 102(6), 941-946.
Parrill, A.L.; Baker, D.L. Autotaxin inhibitors: A perspective on initial medicinal chemistry efforts. Expert Opin. Ther. Pat., 2010, 20(12), 1619-1625.
Federico, L.; Pamuklar, Z.; Smyth, S.S.; Morris, A.J. Therapeutic potential of autotaxin/lysophospholipase D inhibitors. Curr. Drug Targets, 2008, 9(8), 698-708.
Van Meeteren, L.A.; Ruurs, P.; Stortelers, C.; Bouwman, P.; van Rooijen, M.A.; Pradère, J.P.; Pettit, T.R.; Wakelam, M.J.; Saulnier-Blache, J.S.; Mummery, C.L.; Moolenaar, W.H.; Jonkers, J. Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Mol. Cell. Biol., 2006, 26(13), 5015-5022.
Okudaira, S.; Yukiura, H.; Aoki, J. Biological roles of lysophosphatidic acid signaling through its production by autotaxin. Biochimie, 2010, 92(6), 698-706.
Fang, X.; Schummer, M.; Mao, M.; Yu, S.; Tabassam, F.H.; Swaby, R.; Hasegawa, Y.; Tanyi, J.L.; LaPushin, R.; Eder, A.; Jaffe, R.; Erickson, J.; Mills, G.B. Lysophosphatidic acid is a bioactive mediator in ovarian cancer. Biochim. Biophys. Acta, 2002, 1582(1-3), 257-264.
Baker, D.L.; Morrison, P.; Miller, B.; Riely, C.A.; Tolley, B.; Westermann, A.M.; Bonfrer, J.M.; Bais, E.; Moolenaar, W.H.; Tigyi, G. Plasma lysophosphatidic acid concentration and ovarian cancer. JAMA, 2002, 287(23), 3081-3082.
Sawada, K.; Morishige, K.; Tahara, M.; Ikebuchi, Y.; Kawagishi, R.; Tasaka, K.; Murata, Y. Lysophosphatidic acid induces focal adhesion assembly through Rho/Rho-associated kinase pathway in human ovarian cancer cells. Gynecol. Oncol., 2002, 87(3), 252-259.
Vidot, S.; Witham, J.; Agarwal, R.; Greenhough, S.; Bamrah, H.S.; Tigyi, G.J.; Kaye, S.B.; Richardson, A. Autotaxin delays apoptosis induced by carboplatin in ovarian cancer cells. Cell. Signal., 2010, 22(6), 926-935.
Samadi, N.; Gaetano, C.; Goping, I.S.; Brindley, D.N. Autotaxin protects MCF-7 breast cancer and MDA-MB-435 melanoma cells against Taxol-induced apoptosis. Oncogene, 2009, 28(7), 1028-1039.
Jazaeri, A.A.; Awtrey, C.S.; Chandramouli, G.V.; Chuang, Y.E.; Khan, J.; Sotiriou, C.; Aprelikova, O.; Yee, C.J.; Zorn, K.K.; Birrer, M.J.; Barrett, J.C.; Boyd, J. Gene expression profiles associated with response to chemotherapy in epithelial ovarian cancers. Clin. Cancer Res., 2005, 11(17), 6300-6310.
Nakanaga, K.; Hama, K.; Aoki, J. Autotaxin-an LPA producing enzyme with diverse functions. J. Biochem., 2010, 148(1), 13-24.
Kawaguchi, M.; Okabe, T.; Okudaira, S.; Nishimasu, H.; Ishitani, R.; Kojima, H.; Nureki, O.; Aoki, J.; Nagano, T. Screening and X-ray crystal structure-based optimization of autotaxin (ENPP2) inhibitors, using a newly developed fluorescence probe. ACS Chem. Biol., 2013, 8(8), 1713-1721.
Ferry, G.; Moulharat, N.; Pradère, J.P.; Desos, P.; Try, A.; Genton, A.; Giganti, A.; Beucher-Gaudin, M.; Lonchampt, M.; Bertrand, M.; Saulnier-Blache, J.S.; Tucker, G.C.; Cordi, A.; Boutin, J.A. S32826, a nanomolar inhibitor of autotaxin: Discovery, synthesis and applications as a pharmacological tool. J. Pharmacol. Exp. Ther., 2008, 327(3), 809-819.
Zhang, H.; Xu, X.; Gajewiak, J.; Tsukahara, R.; Fujiwara, Y.; Liu, J.; Fells, J.I.; Perygin, D.; Parrill, A.L.; Tigyi, G.; Prestwich, G.D. Dual activity lysophosphatidic acid receptor pan-antagonist/autotaxin inhibitor reduces breast cancer cell migration in vitro and causes tumor regression In vivo. Cancer Res., 2009, 69(13), 5441-5449.
Baker, D.L.; Fujiwara, Y.; Pigg, K.R.; Tsukahara, R.; Kobayashi, S.; Murofushi, H.; Uchiyama, A.; Murakami-Murofushi, K.; Koh, E.; Bandle, R.W.; Byun, H.S.; Bittman, R.; Fan, D.; Murph, M.; Mills, G.B.; Tigyi, G. Carba analogs of cyclic phosphatidic acid are selective inhibitors of autotaxin and cancer cell invasion and metastasis. J. Biol. Chem., 2006, 281(32), 22786-22793.
Albers, H.M.; Hendrickx, L.J.; van Tol, R.J.; Hausmann, J.; Perrakis, A.; Ovaa, H. Structure-based design of novel boronic acid-based inhibitors of autotaxin. J. Med. Chem., 2011, 54(13), 4619-4626.
Albers, H.M.; Dong, A.; Van-Meeteren, L.A.; Egan, D.A.; Sunkara, M.; van Tilburg, E.W.; Schuurman, K.; van Tellingen, O.; Morris, A.J.; Smyth, S.S.; Moolenaar, W.H.; Ovaa, H. Boronic acid-based inhibitor of autotaxin reveals rapid turnover of LPA in the circulation. Proc. Natl. Acad. Sci., 2010, 107(16), 7257-7262.
Gierse, J.; Thorarensen, A.; Beltey, K.; Bradshaw-Pierce, E.; Cortes-Burgos, L.; Hall, T.; Johnston, A.; Murphy, M.; Nemirovskiy, O.; Ogawa, S.; Pegg, L.; Pelc, M.; Prinsen, M.; Schnute, M.; Wendling, J.; Wene, S.; Weinberg, R.; Wittwer, A.; Zweifel, B.; Masferrer, J. A novel autotaxin inhibitor reduces lysophosphatidic acid levels in plasma and the site of inflammation. J. Pharmacol. Exp., 2010, 334(1), 310-317.
Albers, H.M.; van Meeteren, L.A.; Egan, D.A.; van Tilburg, E.W.; Moolenaar, W.H.; Ovaa, H. Discovery and optimization of boronic acid based inhibitors of autotaxin. J. Med. Chem., 2010, 53(13), 4958-4967.
Banerjee, S.; Norman, D.D.; Lee, S.C.; Parril, A.L.; Pham, T.C.; Bake, D.L.; Tigyi, G.J.; Mille, D.D. Highly potent non-carboxylic acid autotaxin inhibitors reduce melanoma metastasis and chemotherapeutic resistance of breast cancer stem cells. J. Med. Chem., 2017, 60(4), 1309-1324.
Hausmann, J.; Kamtekar, S.; Christodoulou, E.; Day, J.E.; Wu, T.; Fulkerson, Z.; Albers, H.M.; van Meeteren, L.A.; Houben, A.J.; van Zeijl, L.; Jansen, S.; Andries, M.; Hall, T.; Pegg, L.E.; Benson, T.E.; Kasiem, M.; Harlos, K.; Kooi, C.W.; Smyth, S.S.; Ovaa, H.; Bollen, M.; Morris, A.J.; Moolenaar, W.H.; Perrakis, A. Structural basis of substrate discrimination and integrin binding by autotaxin. Nat. Struct. Mol. Biol., 2011, 18(2), 198-262.
Nishimasu, H.; Okudaira, S.; Hama, K.; Mihara, E.; Dohmae, N.; Inoue, A.; Ishitani, R.; Takagi, J.; Aoki, J.; Nureki, O. Crystal structure of autotaxin and insight into GPCR activation by lipid mediators. Nat. Struct. Mol. Biol., 2011, 18(2), 205-271.
Castagna, D.; Budd, D.C.; Macdonald, S.J.; Jamieson, C.; Watson, A.J. Development of autotaxin inhibitors: An overview of the patent and primary literature. J. Med. Chem., 2016, 59(12), 5604-5621.
Freeman, A.W.; Urvoy, M.; Criswell, M.E. Triphenylphosphine-mediated reductive cyclization of 2-nitrobiphenyls: A practical and convenient synthesis of carbazoles. J. Org. Chem., 2005, 70(13), 5014-5019.
Ferguson, C.G.; Bigman, C.S.; Richardson, R.D.; van Meeteren, L.A.; Moolenaar, W.H.; Prestwich, G.D. Fluorogenic phospholipid substrate to detect lysophospholipase D/autotaxin activity. Org. Lett., 2006, 8(10), 2023-2026.
Morris, A.J.; Smyth, S.S. Measurement of autotaxin/lysophospholipase D activity. Methods Enzymol., 2007, 434, 89-104.
Razzell, W.E.; Khorana, H.G. Studies on polynucleotides. X. Enzymic degradation. Some properties and mode of action of spleen phosphodiesterase. J. Biol. Chem., 1961, 236, 1144-1149.
Albers, H.M.; Ovaa, H. Chemical evolution of autotaxin inhibitors. Chem. Rev., 2012, 112(5), 2593-2603.
Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Cassarino, T.G.; Bertoni, M.; Bordoli, L.; Schwede, T. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res., 2014, 42(1), W252-258.
Delano, W.L. The PyMOL molecular graphics system. CCP4 Newslett. Protein Crystallograph, 2002, 40(1), 82-92.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [256 - 264]
Pages: 9
DOI: 10.2174/1871520618666180830161821
Price: $65

Article Metrics

PDF: 37