Al-Au Heterogeneous Dimer-trimer Nanostructure for SERS

Author(s): Jyoti Katyal*.

Journal Name: Nanoscience & Nanotechnology-Asia

Volume 10 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Background: Tunability in resonance wavelength and the enhancement of the electromagnetic field intensities around the surface are two unique properties which make metal as a plasmonic material. A theoretical investigation on the LSPR and field enhancement for heterogeneous dimer–trimer metallic nanostructure by constituting Al and Au as two different plamsonic materials has been studied. Since electrons in Al exhibit free behavior for LSPR of Au, therefore, they influence the electric field magnitude generated by Au LSPR.

Methods: The electromagnetic simulations reported in this paper were performed using the FDTD Solutions (version 7.5.1), a product of Lumerical Solutions Inc., Vancouver, Canada. We adopted a cubic Yee cell of 1 nm side and a time step Δt= 1.31•10-18 s, bounded by Courant condition.

Results: The extinction spectrum shows LSPR peak over UV-visible region for isotropic nanostructure which shifts to NIR region for anisotropic shape nanostructure. The spherical shape hetero dimer nanostructure shows enhancement factor ~ 3.9 X 105 whereas it increases to ~ 6.2 X 106 for anisotropic shape at 610 nm. The field distribution corresponding to the trimer nanostructure reveals a large dipolar field distribution on each of the three nanoparticles, oscillating approximately in-phase. The spherical shape Al-Au-Al shows enhancement factor ~ 8.5 X 106 at 571 nm. The anisotropic shape increase the enhancement factor to ~ 2.4 X 107 at peak wavelength 700 nm i.e. tuning the plasmon wavelength towards NIR region.

Conclusion: The tunability in plasmon wavelength and field enhancement factor has been evaluated for heterogeneous nanostructure over wider spectrum range i.e. DUV-Visible-NIR using Au-Al dimer and trimer nanostructure. The isotropic shape Au-Al hetero nanostructure shows larger enhancement in the UV-visible region, whereas the anisotropic shape nanostructure contributes towards the NIR region.

Keywords: LSPR, FDTD, heterogeneous nanostructure, dimer, trimer, field enhancement.

Wei, Q.H.; Su, K.H.; Durant, S.; Zhang, X. Plasmon resonance of finite one-dimensional Au nanoparticle chains. Nano Lett., 2004, 4, 1067-1071.
Gao, Y.; Zhang, R.; Cheng, J.C.; Liawc, J.W.; Ma, C. Optical properties of plasmonic dimer, trimer, tetramer and pentamer assemblies of gold nanoboxes. J. Quant. Spectrosc. Radiat. Transf., 2013, 125, 23-32.
Paudel, H.P.; Bayat, K.; Baroughi, M.F.; May, S.; Galipeau, D.W. Geometry dependence of field enhancement in 2D metallic photonic crystals. Opt. Express, 2009, 17, 22179-22189.
Burrows, C.P.; Barnes, W.L. Large spectruml extinction due to overlap of dipolar and quadrupolar plasmonic modes of metallic nanoparticles in arrays. Opt. Express, 2010, 18, 3187-3198.
Nordlander, P.; Oubre, C.; Prodan, E.; Li, K.; Stockman, M.I. Plasmon hybridization in nanoparticle dimers. Nano Lett., 2004, 4, 899-903.
Rechberger, W.; Hohenau, A.; Leitner, A.; Krenn, J.R.; Lamprecht, B.; Aussenegg, F.R. Optical properties of two interacting gold nanoparticles. Opt. Commun., 2003, 220, 137-141.
Chowdhury, M.H.; Ray, K.; Johnson, M.L.; Gray, S.K.; Pond, J.; Lakowicz, J.R. On the feasibility of using the intrinsic fluorescence of nucleotides for DNA sequencing. J. Phys. Chem. C, 2010, 114, 7448-7461.
Bantz, K.C.; Meyer, A.F.; Wittenbergb, N.Z.; Imb, H.; Kurtulusa, O.; Leec, S.H.; Lindquistb, N.C.; Ohb, S.H.; Haynesa, C.L. Recent progress in SERS biosensing. Phys. Chem. Chem. Phys., 2011, 13, 11551-11567.
Knight, M.W.; Liu, L.; Wang, Y.; Brown, L.; Mukherjee, S.; King, N.S.; Everitt, H.O.; Nordlander, P.; Halas, N.J. Aluminum plasmonic nanoantennas. Nano Lett., 2012, 12, 6000-6004.
Adam, P.M. Compositional-asymmetry influenced non-linear optical processes of plasmonic nanoparticle dimers. Phys. Chem. Chem. Phys., 2013, 15, 8031-8034.
Toroghi, S.; Lumdee, C.; Kik, P.G. Heterogenous plamsonic trimers for enhanced non linear optical absorption. Appl. Phys. Lett., 2015, 106103102
Chen, F.; Alemu, N.; Johnston, R.L. Collective plasmon modes in a compositionally asymmetric nanoparticle dimer. AIP Adv., 2011, 1032134
Li, K.; Stockman, M.I.; Bergman, D.J. Self-similar chain of metal nanospheres as an efficient nanolens. Phys. Rev. Lett., 2003, 91227402
Lumerical Solution Home Page. Available from:. referenceguide.html
Palik, E.D. Handbook of optical constants of solids; Academic Press: New York, 1985.
Flauraud, V.; Bernasconi, G.D.; Butet, J.; Alexander, D.T.L.; Martin, O.J.F.; Brugger, J. Mode coupling in plasmonic heterodimers probed with electron energy loss spectroscopy. ACS Nano, 2017, 11, 3485-3495.
Katyal, J.; Soni, R.K. Size- and shape-dependent plasmonic properties of aluminum nanoparticles for nanosensing applications. J. Mod. Opt., 2013, 60, 1717-1724.
Woo, K.C.; Shao, L.; Chen, H.; Liang, Y.; Wang, J.; Lin, H.Q. Universal scaling and fano resonance in the plasmon coupling between gold nanorods. ACS Nano, 2011, 5, 5976-5986.
Katyal, J.; Soni, R.K. Field enhancement around Al nanostructures in UV-NIR region. Plasmonic, 2015, 10, 1729-1740.
Hu, Z.; Liu, Z.; Quan, B.; Li, Y.; Li, J.; Gu, C. Wafer-scale double-layer stacked Au/Al 2O3 @Au nanosphere structure with tunable nanospacing for surface-enhanced raman scattering. Small, 2014, 10, 3933-3942.
Søndergaard, T.; Bozhevolnyi, S.I.; Beermann, J.; Novikov, S.M.; Devaux, E.; Ebbesen, T.W. Resonant plasmon nanofocusing by closed tapered gaps. Nano Lett., 2010, 10, 291-295.
Kall, M.; Xu, H.; Johansson, P. Field enhancement and molecular response in surface enhanced Raman scattering and fluorescence spectroscopy. J. Raman Spectrosc., 2005, 36, 510-514.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [21 - 28]
Pages: 8
DOI: 10.2174/2210681208666180821141727
Price: $25

Article Metrics

PDF: 11