New N,C-Diaryl-1,2,4-triazol-3-ones: Synthesis and Evaluation as Anticancer Agents

Author(s): Dolores Santa María*, Rosa M. Claramunt, José Elguero, Miguel Carda*, Eva Falomir, Celia Martín-Beltrán

Journal Name: Medicinal Chemistry

Volume 15 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Background: A set of 2,5-diaryl-1,2,4-triazol-3-ones was synthesized in two steps and evaluated as regards their activity in some relevant biological targets related to cancer.

Objective: This study is focused on the synthesis and the biological evaluation of 2,5-diaryl-1,2,4- triazol-3-ones. In this sense, the effect of the synthetic triazolones on the proliferation of HT-29 and A549 cancer cells and on HEK non-cancer cells has been measured. In addition, the effects of triazolones on the expression of hTERT, c-Myc and PD-L1 genes and on the production of c-Myc and PD-L1 proteins have also been evaluated.

Method: A set of 2,5-diaryl-1,2,4-triazol-3-ones was synthesized in two steps. Firstly, N- (aminocarbonyl)-3-methoxybenzamide was prepared by coupling 3-methoxybenzoic acid and cyanamide followed by aqueous HCl hydrolysis. Then, the 2,5-diaryl-1,2,4-triazol-3-ones were obtained upon reaction of N-(aminocarbonyl)-3-methoxybenzamide with arylhydrazines in decaline at 170ºC. The ability of the triazolones to inhibit cell proliferation was measured against two human carcinoma cell lines (colorectal HT-29 and lung A549), and one non-tumor cell line (HEK- 293) by MTT assay. The downregulation of the synthetic triazolones on the expression of the hTERT, c-Myc and PD-L1 genes was measured by an RT-qPCR analysis. Their ability to regulate the expression of the c-Myc and PD-L1 proteins, as well as their direct interaction with c-Myc protein, was determined by the ELISA method. Finally, the direct interaction of triazolones with PD-L1 protein was assessed by the thermal shift assay.

Results: Ten 2,5-diaryl-1,2,4-triazol-3-ones were synthesized and characterized by spectroscopic methods. A thorough study by 1H, 13C, 15N and 19F NMR spectroscopy showed that all the synthetic compounds exist as 4H-triazolones and not as hydroxytriazoles or 1H-triazolones. Some triazolones showed relatively high activities together with very poor toxicity in non-tumor cell line HEK-293. 2-(2-fluorophenyl)-5-(3-methoxyphenyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (4) was particularly active in downregulating c-Myc and PD-L1 gene expression although 2-(4- chloro-2-fluorophenyl)-5-(3-methoxyphenyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (8) is the one that combines the best downregulatory activities in the three genes studied. Considering protein expression, the most active compounds are 2-(4-fluorophenyl)-5-(3-methoxyphenyl)-2,4-dihydro- 3H-1,2,4-triazol-3-one (5) and 2-(2,4,6-trifluorophenyl)-5-(3-methoxyphenyl)-2,4-dihydro-3H- 1,2,4-triazol-3-one (10) (c-Myc expression) and 2-(2,3,5,6-tetrafluorophenyl)-5-(3-methoxyphenyl)- 2,4-dihydro-3H-1,2,4-triazol-3-one (11) and (8) (PD-L1 expression).

Conclusion: Some of the triazolones studied have shown relevant activities in the inhibition of the hTERT, c-Myc and PD-L1 genes, and in the inhibition of c-Myc and PD-L1 protein secretion, the 2-(4-chloro-2-fluorophenyl)-5-(3-methoxyphenyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (8) was found to be a particularly promising lead compound.

Keywords: N, C-diaryl-1, 2, 4-triazol-3-ones, tautomerism, antiproliferative activity, gene targeting, PD-L1 protein inhibition, 19F NMR spectroscopy.

Pitt, W.R.; Parry, D.M.; Perry, B.G.; Groom, C.R. Heteroaromatic rings of the future. J. Med. Chem., 2009, 52, 2952-2963.
Meanwell, N.A. Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem., 2011, 54, 2529-2591.
Ruddigkeit, L.; van Deursen, R.; Blum, L.C.; Reymond, J.L. Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J. Chem. Inform. Model., 2012, 52, 2864-2875.
Taylor, R.D.; MacCoss, M.; Lawson, A.D.G. Rings in drugs. J. Med. Chem., 2014, 57, 5845-5859.
Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57, 10257-10274.
Romine, J.L.; Martin, S.W.; Meanwell, N.A.; Gribkoff, V.K.; Boissard, C.G.; Dworetzky, S.I.; Natale, J.; Moon, S.; Ortiz, A.; Yeleswaram, S.; Pajor, L.; Gao, Q.; Starrett, Jr, J.E. 3-[(5-Chloro-2-hydroxyphenyl) methyl]-5-[4-(trifluoromethyl) phenyl]-1,3,4-oxadiazol-2(3H)-one, BMS-191011: Opener of large-conductance Ca2+-activated potassium (Maxi-K) channels, identification, solubility and SAR. J. Med. Chem., 2007, 50, 528-542.
Ryckmans, T. Advances in vasopressin receptor agonists and antagonists. Review article. Annu. Rep. Med. Chem., 2009, 44, 129-147.
Kaur, R.; Dwivedi, A.R.; Kumar, B.; Kumar, V. Recent developments on 1,2,4-triazole nucleus in anticancer compounds: A Review. Anticancer. Agents Med. Chem., 2016, 16, 465-489.
Sheppeck, J.E.; Gilmore, J.I.; Tebben, A.; Xue, C.B.; Liu, R.Q.; Decicco, C.P.; Duan, J.J.W. Hydantoins, triazolones, and imidazolones as selective non-hydroxamate inhibitors of tumor necrosis factor-α converting enzyme (TACE). Bioorg. Med. Chem. Lett., 2007, 17, 2769-2774.
Oza, V.; Ashwell, S.; Brassil, P.; Breed, J.; Deng, C.; Ezhuthachan, J.; Haye, H.; Horn, C.; Janetka, J.; Lyne, P.; Newcombe, N.; Otterbien, L.; Pass, M.; Read, J.; Roswell, S.; Su, M.; Toader, D.; Yu, D.; Yu, Y.; Valentine, A.; Webborn, P.; White, A.; Zabludoff, S.; Zheng, X. Discovery of a novel class of triazolones as checkpoint kinase inhibitors - Hit to lead exploration. Bioorg. Med. Chem. Lett., 2010, 20, 5133-5138.
Matthews, T.; Jones, A.M.; Collins, I. Structure-based design, discovery and development of checkpoint kinase inhibitors as potential anti-cancer therapies. Expert Opin. Drug Discov., 2013, 8, 621-640.
Lv, M.; Ma, S.; Tian, Y.; Zhang, X.; Lv, W.; Zhai, H. Computational studies on the binding mechanism between triazolone inhibitors and Chk1 by molecular docking and molecular dynamics. Mol. BioSyst., 2015, 11, 275-286.
Hardwicke, M.A.; Rendina, A.R.; Williams, S.P.; Moore, M.L.; Wang, L.; Krueger, J.A.; Plant, R.N.; Totoritis, R.D.; Zhang, G.; Briand, J.; Burkhart, W.A.; Brown, K.K.; Parrish, C.A. A Human fatty acid synthase inhibitor binds β-ketoacyl reductase in the keto-substrate site. Nature. Chem. Biol., 2014, 10, 774-779.
Ying, W.; Du, Z.; Sun, L.; Foley, K.P.; Proia, D.A.; Blackman, R.K.; Zhou, D.; Inoue, T.; Tatsuta, N.; Sang, J.; Ye, S.; Acquaviva, J.; Ogawa, L.S.; Wada, Y.; Barsoum, J.; Koya, K. Ganetespib, a unique triazolone-containing Hsp90 inhibitor, exhibits potent antitumor activity and a superior safety profile for cancer therapy. Mol. Cancer Therap., 2012, 11, 475-484.
Liu, L.; Nie, M.; Wang, Y.; Hu, J.; Zhang, F.; Gao, Y.; Liu, Y.; Gong, P. Design, synthesis and structure-activity relationships of novel 4-phenoxyquinoline derivatives containing 1,2,4-triazolone moiety as c-Met kinase inhibitors. Eur. J. Med. Chem., 2016, 123, 431-446.
Pace, J.R.; DeBerardinis, A.M.; Sail, V.; Tacheva-Grigorova, S.K.; Chan, K.A.; Tran, R.; Raccuia, D.S.; Wechsler-Reya, R.J.; Hadden, M.K. Repurposing the clinically efficacious antifungal agent itraconazole as an anticancer chemotherapeutic. J. Med. Chem., 2016, 59, 3635-3649.
González-Albaladejo, J.; Sanz, D.; Claramunt, R.M.; Lavandera, J.L.; Alkorta, I.; Elguero, J. Curcumin and curcuminoids: Chemistry, structural studies and biological properties. Anal. RANF, 2015, 81, 278-310.
Banerjee, S.; Chakravarty, A.R. Metal complexes of curcumin for cellular imaging, targeting, and photoinduced anticancer activity. Acc. Chem. Res., 2015, 48, 2075-2083.
Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Ramirez-Tortosa, M.C. Curcumin and health. Molecules, 2016, 21, 264-285.
Liu, Y.; Dargusch, R.; Maher, P.; Schubert, D. A broadly neuroprotective derivative of curcumin. J. Neurochem., 2008, 195, 1336-1345.
Maher, P.; Akaishi, T.; Schubert, D.; Abe, K. A pyrazole derivative of curcumin enhances memory. Neurobiol. Aging, 2010, 31, 706-709.
Chen, Q.; Prior, M.; Dargusch, R.; Roberts, A.; Riek, R.; Eichmann, C.; Chiruta, C.; Akaishi, T.; Abe, K.; Maher, P.; Schubert, D. A novel neurotrophic drug for cognitive enhancement and Alzheimer's disease. Plos One, 2011, 6, e27865 (1-17).
Prior, M.; Dargusch, R.; Ehren, J.L.; Chiruta, C.; Schubert, D. The neurotrophic compound J147 reverses cognitive impairment in aged Alzheimer’s disease mice. Alzheimers Res. Ther., 2013, 5, 1-19.
Prior, M.; Chiruta, C.; Currais, A.; Goldberg, J.; Ramsey, J.; Dargusch, R.; Maher, P.A.; Schubert, D. Back to the Future with Phenotypic Screening. ACS Chem. Neurosci., 2014, 5, 503-513.
Currais, A.; Goldberg, J.; Farrokhi, C.; Chang, M.; Prior, M.; Dargusch, R.; Daugherty, D.; Armando, A.; Quehenberger, O.; Maher, P.; Schubert, D. A comprehensive multiomics approach toward understanding the relationship between aging and dementia. Aging, 2015, 7, 937-952.
Prior, M.; Goldberg, J.; Chiruta, C.; Farrokhi, C.; Kopynets, M.; Roberts, A.J.; Schubert, D. Selecting for neurogenic potential as an alternative for Alzheimer’s disease drug discovery. Alzheimers Dement., 2016, 12, 678-686.
Cornago, P.; Claramunt, R.M.; Bouissane, L.; Alkorta, I.; Elguero, J. A study of the tautomerism of β-dicarbonyl compounds with special emphasis on curcuminoids. Tetrahedron, 2008, 64, 8089-8094.
Cornago, P.; Cabildo, P.; Sanz, D.; Claramunt, R.M.; Torralba, M.C.; Torres, M.R.; Elguero, J. Structures of hemi-curcuminoids in the solid state and in solution. Eur. J. Org. Chem., 2013, 6043-6054.
Nieto, C.I.; Cabildo, P.; Claramunt, R.M.; Cornago, P.; Sanz, D.; Torralba, M.C.; Torres, M.R.; Ferraro, M.B.; Alkorta, I.; Marín-Luna, M.; Elguero, J. The structure of β-diketones related to curcumin determined by X-ray crystallography, NMR (solution and solid state) and theoretical calculations. Struct. Chem., 2016, 27, 705-730.
Cornago, P.; Cabildo, P.; Claramunt, R.M.; Bouissane, L.; Pinilla, E.; Torres, M.R.; Elguero, J. The annular tautomerism of the curcuminoid NH-pyrazoles. New J. Chem., 2009, 33, 125-135.
Claramunt, R.M.; Bouissane, L.; Cabildo, M.P.; Cornago, M.P.; Elguero, J.; Radziwon, A.; Medina, C. Synthesis and biological evaluation of curcuminoid pyrazoles as new therapeutic agents in inflammatory bowel disease: Effect on matrix metalloproteinases. Bioorg. Med. Chem., 2009, 17, 1290-1296.
Nieto, C.I.; Cabildo, M.P.; Cornago, M.P.; Sanz, D.; Claramunt, R.M.; Torralba, M.C.; Torres, M.R.; Elguero, J.; García, J.A.; López, A.; Acuña-Castroviejo, D. Fluorination effects on NOS inhibitory activity of pyrazoles related to curcumin. Molecules, 2015, 20, 15643-15665.
Claramunt, R.M.; Nieto, C.I.; Sanz, D.; Elguero, J. Curcumin derived pyrazoles and related compounds. Afinidad, 2016, 576, 259-268.
Martí-Centelles, R.; Falomir, E.; Carda, M.; Nieto, C.I.; Cornago, M.P.; Claramunt, R.M. Effects of curcuminoid pyrazoles on cancer cells and on the expression of telomerase related genes. Arch. Pharm. Chem. Life Sci., 2016, 349, 532-538.
Shay, J.W.; Wright, W.E. Role of telomeres and telomerase in cancer. Semin. Cancer Biol., 2011, 21, 349-353.
Shay, J.W.; Wright, W.E. Telomerase therapeutics for cancer: Challenges and new directions. Nat. Rev. Drug Discov., 2006, 5, 77-84.
Shay, J.W.; Keith, W.N. Targeting telomerase for cancer therapeutics. Br. J. Cancer, 2008, 98, 677-683.
Dang, C.V. MYC on the path to cancer. Cell, 2012, 149, 22-35.
Kato, G.J.; Dang, C.V. Function of the c-Myc oncoprotein. FASEB J., 1992, 6, 3065-3072.
The Myc family of genes and proteins, involved in many aspects of cell metabolism, is subjected to a tight control in normal cells but becomes deregulated in most tumor cells. For a review see: Albihn, A.; Johnsen, J.I.; Henriksson, M.A. MYC in oncogenesis and as a target for cancer therapies. Adv. Cancer Res., 2010, 107, 163-224.
Casey, S.C.; Tong, L.; Li, Y.; Do, R.; Walz, S.; Fitzgerald, K.N.; Gouw, A.; Baylot, V.; Gütgemann, I.; Eilers, M.; Felsher, D.W. MYC regulates the antitumor immune response through CD47 and PD-L1. Science, 2016, 352, 227-231.
Shi, L.; Chen, S.; Yang, L.; Li, Y. The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies. J. Hematol. Oncol., 2013, 6, 74-79.
Butte, M.J.; Keir, M.E.; Phamduy, T.B.; Sharpe, A.H.; Freeman, G.J. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity, 2007, 27, 111-122.
Berger, S.; Braun, S. 200 and More NMR Experiments; Wiley-VCH: Weinheim, 2004.
Rodríguez-Nieto, S.; Medina, M.A.; Quesada, A.R. A re-evaluation of fumagillin selectivity towards endothelial cells. Anticancer Res., 2001, 21, 3457-3460.
Álvarez-Buílla, J.; Vaquero, J.J.; Barluenga, J., Eds.; Modern Heterocyclic Chemistry. vol. 2; Wiley-VCH: Weinheim, 2011.
Xiao, Z.; Yang, M.G.; Tebben, A.J.; Galella, M.A.; Weinstein, D.S. Novel two-step, one-pot synthesis of primary acylureas. Tetrahedron Lett., 2010, 51, 5843-5844.
Brenner, M.; Wienrich, M.; Weiser, T.; Bechtel, W.D.; Palluck, R. Triazolone mit neuroprotektiver Wirkung. Ger. Offen. DE, , 19816882 A1 (21 Oct 1999).
Elguero, J.; Marzin, C.; Katritzky, A.R.; Linda, P. The Tautomerism of Heterocycles; Academic Press: New York, 1976.
Antonov, L., Ed.; Tautomerism: Concepts and Applications in Science and Technology; Wiley-VCH: Weinheim, 2016.
Berger, S.; Braun, S.; Kalinowski, H.O. NMR Spectroscopy of the Non-Metallic Elements; Wiley: Chichester, 1997.
Bouvard, C.; Min Lim, S.; Ludka, J.; Yazdani, N.; Woods, A.K.; Chatterjee, A.; Schultz, P.G.; Zhu, S. Small molecules selectively suppresses c-Myc transcription in cancer cells. Proc. Natl. Acad. Sci. USA, 2017, 114, 3497-3502.
Debb, D.; Gao, X.; Liu, Y.; Pindolia, Y.; Gautam, S.C. Inhibition of hTERT/telomerase contributes to the antitumor activity of pristimerin in pancreatic ductal adenocarcinoma cells. Oncol. Rep., 2015, 34, 518-524.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [360 - 372]
Pages: 13
DOI: 10.2174/1573406414666180821103604
Price: $65

Article Metrics

PDF: 53
PRC: 1