An Analytical Modeling and Performance Analysis of Graded Work Function Gate Recessed Channel SOI-MOSFET

Author(s): Sikha Mishra, Urmila Bhanja, Guru Prasad Mishra*

Journal Name: Nanoscience & Nanotechnology-Asia

Volume 9 , Issue 4 , 2019

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Introduction: A new analytical model is designed for Workfunction Modulated Rectangular Recessed Channel-Silicon On Insulator (WMRRC-SOI) MOSFET that considers the concept of groove gate and implements an idea of workfunction engineering.

Methods: The impact of Negative Junction Depth (NJD) and oxide thickness (tox) are analyzed on device performances such as Sub-threshold Slope (SS), Drain Induced Barrier Lowering (DIBL) and threshold voltage.

Results: The results of the proposed work are evaluated with the Rectangular Recessed Channel-Silicon On Insulator (RRC-SOI) MOSFET keeping the metal workfunction constant throughout the gate region. Furthermore, an analytical model is developed using 2D Poisson’s equation and threshold voltage is estimated in terms of minimum surface potential.

Conclusion: In this work, the impact of Negative Junction Depth (NJD) on minimum surface potential and the drain current are also evaluated. It is observed from the analysis that the analog switching performance of WMRRC-SOI MOSFET surpasses RRC-SOI MOSFET in terms of better driving capability, high Ion/Ioff ratio, minimized Short Channel Effects (SCEs) and hot carrier immunity. Results are simulated using 2D Sentaurus TCAD simulator for validation of the proposed structure.

Keywords: Short-channel effects, SOI, rectangular recessed channel, negative junction depth, corner effect, DIBL.

Chiang, T.K. A scaling theory for fully-depleted, surrounding-gate MOSFET’s: including effective conducting path effect. Microelectron. Eng., 2005, 77, 175-183.
Suzuki, K.; Pidin, S. Short channel single gate SOI MOSFET model. IEEE Trans. Electron Dev., 2003, 50(5), 1297-1305.
Saremi, M.; Saremi, M.; Niazi, H.; Saremi, M.; Goharrizi, A.Y. SOI LDMOSFET with up and down extended stepped drift region. J. Electron. Mater., 2017, 46(10), 5570-5576.
Chaudhry, A.; Kumar, M.J. Investigation of the novel attributes of a fully depleted dual-material gate SOI MOSFET. IEEE Trans. Electron Dev., 2004, 51(9), 1463-1467.
Saremi, M.; Ebrahimi, B.; Afzali-Kusha, A. In: Ground plane SOI MOSFET based SRAM with consideration of process variation IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), Hong Kong, China 15-17 December 2010.
Imenabadi, Rouzbeh Molaei Saremi, Mehdi.; G. Vandenberghe, William.; A novel PNPN-Like Z-shaped tunnel field-effect transistor with improved ambipolar behavior and RF performance. IEEE Trans. Electron Dev., 2017, 64(11), 4752-4758.
Takeda, E.; Kume, H.; Asai, S. New grooved-gate MOSFET with drain separated from channel implanted region(DSC). IEEE Trans. Electron Dev., 1983, 30, 448-456.
Ren, H.; Hao, Y. The influence of geometric structure on the hot-carrier-effect immunity for deep-sub-micron grooved gate PMOSFET. Solid-State Electron., 2002, 46, 665-673.
Kimura, S.; Tanaka, J.; Noda, H.; Toyabe, T.; Ihara, S. Short-channel-effect-suppressed sub-0.1-lm grooved-gate MOSFET’s with W gate. IEEE Trans. Electron Dev., 1995, 42, 94-100.
Sreelal, S.; Lau, C.K.; Samudra, G.S. parasitic capacitance characteristics of deep sub micrometer grooved gate MOSFETs. Semicond. Sci. Technol., 2002, 17, 179-188.
Seo, J.Y.; Lee, K.J.; Kim, Y.S.; Lee, S.Y.; Hwang, S.J.; Yoon, C.K. Reliability for recessed channel structure n-MOSFET. Microelectron. Reliab., 2005, 45, 1317-1320.
Bricout, P.H.; Dubois, E. Short-channel effect immunity and current capability of sub-0.1-micron MOSFET’s using a recessed channel. IEEE Trans. Electron Dev., 1996, 43, 1251-1255.
Polishchuk, I.; Ranade, P.; King, T.J.; Hu, C. Dual work function metal gate CMOS technology using metal interdiffusion. IEEE Electron Dev. Lett., 2001, 22, 444-446.
Saxena, M.; Haldar, S.; Gupta, M.; Gupta, R.S. Physics-based analytical modeling of potential and electrical field distribution in dual material gate (DMG)-MOSFET for improved hot-electron effect and carrier transport efficiency. IEEE Trans. Electron Dev., 2002, 49, 1928-1938.
Pal, A.; Sarkar, A. Analytical study of Dual Material Surrounding Gate MOSFET to suppress short-channel effects (SCEs). Eng. Sci. Technol., 2014, 17, 205-212.
Na, K.Y.; Kim, Y.S. Silicon complementary metal–oxide–semiconductor field effect transistors with dual work function gate. J. Appl. Phys., 2006, 45, 9033-9036.
Chaujar, R.; Kaur, R.; Saxena, M. TCAD assessment of Gate Electrode Workfunction Engineered Recessed Channel (GEWE-RC) MOSFET and its multilayered gate architecture—Part I, hot-carrier-reliability evaluation. IEEE Tran. Electron Dev., 2008, 55, 2602-2613.
Malik, P.; Gupta, R.S.; Chaujar, R.; Gupta, M. AC analysis of nanoscale GME-TRC MOSFET for microwave and RF applications. Microelectron. Reliabil., 2012, 52, 151-158.
Tsui, T.Y.; Huang, C.F. Wide range work function modulation of binary alloys for MOSFET application. IEEE Electron Dev. Lett., 2003, 24, 153-155.
Deb, S.; Singh, N.B.; Islam, N.; Sarkar, S.K. Work function engineering with linearly graded binary metal alloy gate electrode for short channel SOI MOSFET. IEEE Tran. Nanotechnol., 2012, 11, 472-478.
Li, T.L.; Hu, C.H.; Ho, W.L.; Wang, H.C.H.; Chang, C.Y. Continuous and precise work- function adjustment for integratable dual metal gate CMOS technology using Hf–Mo binary alloys. IEEE Trans. Electron Dev., 2005, 52, 1172-1179.
Pan, A.; Liu, R.; Sun, M.; Ning, C.Z. Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate. ACS Nano, 2010, 4, 671-680.
Singh, M.; Mishra, S. Mohanty, Soumya. S.; Mishra, G.P. Performance analysis of SOI MOSFET with rectangular recessed channel. Adv. Nat. Sci. Nanosci. Nanotechnol., 2016, 7(1) 015010
Mishra, S.; Lenka, A.S.; Mohanty, S.S.; Bhanja, U.; Mishra, G.P.M. In: Effect of RRC on SOI MOSFET to Improve the SCE. 2017 Devices for Integrated Circuit (DevIC), Kalyani, India, March 23-24 2017
Sentaurus Device User Guide Synopsys. 2010.
Sze, S.M. Physics of Semiconductor Device; Wiley & Sons: New York, 2004.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 25 November, 2019
Page: [504 - 511]
Pages: 8
DOI: 10.2174/2210681208666180820151121
Price: $25

Article Metrics

PDF: 21
PRC: 1