Role of Green Silver Nanoparticles in the Inhibition of Listeria monocytogenes and Escherichia coli

Author(s): Anvesha Sinha, Jayanand Manjhi*.

Journal Name: Nanoscience & Nanotechnology-Asia

Volume 10 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Background: The quandary of antimicrobial resistance is rapidly becoming a cause for global concern. Meanwhile, green biological synthesis of silver nanoparticles is being extensively studied for their antibacterial properties. However, in the dearth of appropriate and substantial evidence, the development of Green Silver Nanoparticles (GSNPs) as the antibacterial drug is impeded.

Objective: The present study aims at surfacing the mechanism behind the inhibitory actions of GSNPs against both gram-positive and gram-negative bacteria.

Methods: Silver nanoparticles were fabricated using the peels of Citrus Sinensis and Punica granatum and characterized using UV-Vis Spectrophotometer, XRD, FTIR, SEM and TEM. The GSNPs were further scrutinized for their antibacterial properties against Gran negative Escherichia coli and grampositive Listeria monocytogenes and confirmed using FC analysis. Further multiple parameters were investigated for deciphering the mechanism of antibacterial action.

Results: The results reveal the fabrication of 14-60 nm polydispersed GSNPs having 96% inhibition potential against both the test bacteria. Deposition of GSNPs on the bacterial surface resulting in pit formation in the bacterial cell wall and membrane causing leaking of cellular components and deactivation of bacterial enzymes were observed in the present study.

Conclusion: The study proves that contrary to earlier investigations, GSNPs prepared using orange and pomegranate peels are effective against both gram positive and gram negative bacteria and may thus be used for the development of antibacterial therapies, subjected to further investigation.

Keywords: Antibacterial activities, FC analysis, green synthesis, silver nanoparticles, infectious diseases, Citrus sinensis.

Ventola, C.L. The antibiotic resistance crisis. Part 1: Causes and threats. Pharm. Ther, 2015, 40(4), 277-283.
Singh, R.; Smitha, M.S.; Singh, S.P. The role of nanotechnology in combating multi-drug resistant bacteria. J. Nanosci. Nanotechnol., 2014, 14(7), 4745-4756.
Das, B.; Patra, S. Antimicrobials: Meeting the challenges of antibiotic resistance through nanotechnology. Nanostruct. Antimicrob. Ther., 2017, 1, 1-22.
Albornoz, C.; Jacobo, S.E. Preparation of a biocompatible magnetic film from an aqueous ferrofluid. J. Magn. Magn. Mater., 2006, 305, 12-15.
Nande, A.; Longadge, N.; Sheikh, N.; Raut, S. Synthesis of silver nano-particles using coprecipitation method. Int. J. Curr. Eng. Sci. Res., 2018, 5(1), 480-482.
Shivakumar, M.; Nagashree, K.L.; Yallappa, S.; Manjappa, S.; Manjunath, K.S.; Dharmaprakash, M.S. Biosynthesis of silver nanoparticles using pre-hydrolysis liquor of Eucalyptus wood and its effective antimicrobial activity. Enzyme Microb. Technol., 2017, 97, 55-62.
Stopić, S.; Friedrich, B. Synthesis of nanosized metallic and core-shell particles by ultrasonic spray pyrolysis. Contemp. Mater., 2017, 2(8), 111-120.
Li, Y.; Gan, W.; Zhou, J.; Lu, Z.; Yang, C.; Ge, T. Hydrothermal synthesis of silver nanoparticles in Arabic gum aqueous solutions. Trans. Nonferrous Met. Soc. China, 2015, 25(6), 2081-2086.
Alagumuthu, G.; Kirubha, R. Synthesis and characterisation of silver nanoparticles in different medium. Open J. Synth. Theory Appl, 2012, 1, 13-17.
Zhang, X.; Liu, Z.; Shen, W.; Gurunathan, S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci., 2016, 17(9), 1534-1568.
Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res., 2016, 7(1), 17-28.
Jain, S.; Mehata, M.S. Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Sci. Rep., 2017, 7, 15867-15879.
Shaik, M.R.; Khan, M.; Kuniyil, M.; Al-Warthan, A.; Alkhathlan, H.Z.; Siddiqui, M.R.H.; Shaik, J.P.; Ahamed, A.; Mahmood, A.; Khan, M.; Adil, S.F. Plant-extract-assisted green synthesis of silver nanoparticles using Origanum vulgare L. extract and their microbicidal activities. Sustainability, 2018, 10, 913-926.
Sinha, A.; Manjhi, J. Silver nanoparticles: Green route of synthesis and antimicrobial profile. Int. J. Nanoparticles, 2015, 8(1), 30-40.
Sinha, A.; Manjhi, J.; Kumar, V. Role of green silver nanoparticles in suppressing various human pathogenesis. Rev. Adv. Mater. Res., 2017, 51(1), 50-61.
Abdelhamid, H.N.; Wu, H.F. Facile synthesis of nano silver ferrite (AgFeO2) modified with chitosan applied for biothiol separation. Mater. Sci. Eng. C, 2014, 45(1), 438-445.
Prasad, T.N.V.K.V.; Elumalai, E.K. Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity. Asian Pac. J. Trop. Biomed., 2011, 1(6), 439-442.
Baligar, N.S.; Aladakatti, R.H.; Ahmed, M.; Hiremath, M.B. Hepatoprotective activity of the neem-based constituent azadirachtin-A in carbon tetrachloride intoxicated wistar rats. Can. J. Physiol. Pharmacol., 2014, 92(4), 267-277.
Lowry, O.H.; Roserbrough, N.J.; Fair, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193, 255-275.
Miller, G. Use of dinitrisalicylic acid reagent for determination of reducing sugars. Anal. Chem., 1959, 31, 426-429.
Thakkar, K.N.; Mhatre, S.S.; Parikh, R.Y. Biological synthesis of metallic nanoparticles. Nanotechnol. Biol. Med. Nanomed, 2010, 6, 257-262.
Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem., 2011, 13, 2638-2650.
Ibrahim, H.M.M. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Rad. Res. Appl. Sci, 2015, 8(3), 265-275.
Reddy, G.R.; Jayakumar, C.; Morais, A.B.; Sreenivasn, D.; Gandhi, N.N. Green synthesis, characterization and in-vitro antibacterial activity of polyshaped gold nanoparticles by using Senna siamea (lam.) Plant leaf extract. Int. J. Green Chem. Bioprocess, 2012, 2(1), 1-5.
Elumulai, E.K.; Kayalvizhi, K.; Silvan, S. Coconut water assisted green synthesis of silver nanoparticles. J. Pharm. Bioallied Sci., 2014, 6(4), 241-245.
Poushpi, D.; Shahid, S.N.; Ravi, P.T. Phytofabrication characterization and comparative analysis of Ag nanoparticles by diverse biochemicals from Elaeocarpus ganitrus Roxb., Terminalia arjuna Roxb., Pseudotsuga menzietii, Prosopis spicigera, Ficus religiosa, Ocimum sanctum and Curcuma longa. Ind. Crops Prod., 2014, 54(2014), 22-31.
Banala, R.R.; Nagati, V.B.; Karnati, P.R. Green synthesis and characterization of Carica papaya leaf extract coated silver nanoparticles through X-ray diffraction, electron microscopy and evaluation of bactericidal properties. Saudi J. Biol. Sci., 2015, 22(5), 637-644.
Ahmed, S. Saifullah; Ahmad, M.; Swami, B.L.; Ikram, S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci, 2016, 9(2016), 1-7.
Vanaja, M.; Annadurai, G. Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl. Nanosci., 2013, 3(3), 217-223.
Goudarzi, M.; Mir, N.; Mousavi-Kamazani, M.; Bagheri, S.; Salavati-Niasari, M. Biosynthesis and characterization of silver nanoparticles prepared from two novel natural precursors by facile thermal decomposition methods. Sci. Rep., 2016, 6, 32539.
Marimuthu, M.; Gurumoorthi, P. Phytochemical screening and FT-IR studies on wild and common south Indian legumes. Asian J. Pharm Clin. Res, 2013, 6(Suppl. 2), 141-144.
Das, B.; Dash, S.K.; Mandal, D.; Ghosh, T.; Chattopadhyay, S.; Tripathy, S.; Das, S.; Dey, S.K.; Das, D.; Roy, S. Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab. J. Chem., 2017, 10(6), 862-876.
Din, M.I.; and Rani, A. Recent advances in the synthesis and stabilization of nickel and nickel oxide nanoparticles: A green adeptness. Int. J. Anal. Chem, 2016, 2016(2016), 3512145.
Dubey, S.P.; Lahtinen, M.; Särkkä, H.; Sillanpää, M. Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids. Colloids Surf. B, 2010, 80(1), 26-33.
Paulkumar, K.; Gnanajobitha, G.; Vanaja, M.; Rajeshkumar, S.; Malarkodi, C.; Pandian, K.; Annadurai, G. Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens. Sci. World J., 2014, 2014829894
Maiti, S.; Krishnan, D.; Barman, G.; Ghosh, S.K.; Laha, J.K. Antimicrobial activities of silver nanoparticles synthesized from Lycopersicon esculentum extract. J. Anal. Sci. Technol., 2014, 5, 40.
Zucker, R.M.; Ortenzio, J.N.; Boyes, W.K. Characterization, detection, and counting of metal nanoparticles using flow cytometry. Cytometry A, 2016, 89(2), 169-183.
Theunissen, P.; Mejstrikova, E.; Sedek, L.; van der Sluijs-Gelling, A.J.; Gaipa, G.; Bartels, M.; Sobral da Costa, E.; Kotrova, M.; Novakova, M.; Sonneveld, E.; Buracchi, C.; Bonaccorso, P.; Oliveira, E.; Te Marvelde, J.G.; Szczepanski, T.; Lhermitte, L.; Hrusak, O.; Lecrevisse, Q.; Grigore, G.E. Froňková, E.; Trka, J.; Brühhemann, M.; Orfao, A.; van Dongen, J.J.; van der Velden, V.H. Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia. Blood, 2017, 129(3), 347-357.
Léonard, L.; Chibane, L.B.; Bouhedda, B.O.; Degraeve, P.; Oulahal, N. Recent advances on multi-parameter flow cytometry to characterize antimicrobial treatments. Front. Microbiol., 2016, 7(1225), 1-16.
Ghosh, K.; Dill, K. Cellular proteomes have broad distributions of protein stability. Biophys. J., 2010, 99(12), 3996-4002.
de Marco, A. Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microb. Cell Fact., 2009, 8, 26-44.
Shrivastava, S.; Bera, T.; Roy, A.; Dash, D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology, 2007, 18(22)225103
Yuan, Y.G.; Peng, Q.L.; Gurunathan, S. Effects of silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from Mastitis-infected goats: An alternative approach for antimicrobial therapy. Int. J. Mol. Sci., 2017, 18, 569-591.
Erdem, A.; Metzler, D.; Cha, D.K.; Huang, C.P. The short-term toxic effects of TiO2 nanoparticles toward bacteria through viability, cellular respiration, and lipid peroxidation. Environ. Sci. Pollut. Res. Int., 2015, 22(22), 17917-17924.
Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J. Colloid Interface Sci., 2004, 275(1), 177-182.
Holt, K.B.; Bard, A.J. Interaction of silver(I) ions with the respiratory chain of Escherichia coli: An electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry, 2005, 44, 13214-13223.
Kim, S.H.; Lee, H.S.; Ryu, D.S.; Choi, S.J.; Lee, D.S. Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J. Microbiol. Biotechnol, 2011, 39(1), 77-85.
Li, W.; Xie, X.; Shi, Q.; Zeng, H. You-Sheng; OU-Yang; Chen, Y.B. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol., 2010, 85, 1115-1122.
Prabhu, S.; Poulose, E.K. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett., 2012, 2, 32.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [39 - 50]
Pages: 12
DOI: 10.2174/2210681208666180820150128
Price: $25

Article Metrics

PDF: 10