Biomass Power Generation Potential and Utlization in Pakistan

Author(s): Muhammad G. Doggar, M. Shahzad Khurram*, Saima Mirza, Moinuddin Ghauri, Farrukh Jamil, Nawshad Muhammad*, Sikandar Rafiq, Mujtaba H. Jaffery

Journal Name: Current Organic Chemistry

Volume 23 , Issue 21 , 2019

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Pakistan is experiencing the worst power shortage since 2007 ranging from 5000 to 7000 MW. This has led to introduction of load shedding program which has caused economic loss @7% to the GDP. The indigenous oil reserves are poor and every year crude oil and petroleum products costing US$ 15.473 billion are imported. The potential of biomass energy is excellent, and Pakistan may generate 38000 GWh electricity annually using 25% crops residue and 50% animal waste. Except for Punjab province survey of crops biomass needs to be conducted to estimate the biomass resource potential in the country. Based upon the data, the size of power plants can be determined, and site of plants can be decided. Very few power plants have been installed by local industry under captive mode and their experience is encouraging. The indigenous capacity building for installation and operation of bio-mass based power plants are required. This paper reviews the power shortage and its implications on economy of Pakistan. It also describes the biomass technologies, resource base and power generation potential along with utilization status in Pakistan. It also discusses possible role of biomass power in mitigating the energy crisis especially in the rural areas. Using only 20-25% of the estimated crops waste of major crops and 50% of animal’s waste Pakistan can generate more than 36,000 GWh equivalent to 45% of the electricity consumption per annum. The crops residue alone can produce 11953 MW (31%) of the power potential with 25% of the available crops residue.

Keywords: Biomass, crop residue, power plants, technologies, power shortage, energy crisis, rural area.

GOP. Pakistan Economic Survey 2013-14. Islamabad, Pakistan: Economic Advisers Wing, Ministry of Finance, Government of Pakistan, Available at.
NEPRA 2012 and 2014 State of Electricity Report.M/o Water and Power, Government of Pakistan, Islamabad.
Bhutto, A.W.; Bazmi, A.A.; Zahedi, G. Greener energy: Issues and challenges for Pakistan biomass energy prospective. Renew. Sustain. Energy Rev., 2011, 15, 3207-3219.
PEYB (Pakistan Energy Yearbook) 2013 & 2014. Hydrocarbon Development Institute of Pakistan.
Anwar, M. Solutions for Energy Crisis in Pakistan; Islamabad Policy Research Institute: Islamabad, Pakistan, 2015, II.
Chaudhry, M.A.; Raza, R.; Hayat, S.A. Renewable energy technologies in Pakistan: Prospects and challenges. Renew. Sustain. Energy Rev., 2009, 13, 1657-1662.
Molino, A.; Chianese, S.; Musmarra, D. Biomass gasification technology: The state of the art overview. J. Energ. Chem, 2016, 25, 10-25.
Farooq, A.; Khurram, M.S.; Rafiq, S.; Memon, S.A.; Ghauri, M.; Shahzad, K.; Jaffery, M.; Doggar, M.G.; Muhammad, N. Biomass gasification for energy generation: Parametric investigation on continuous updraft gasifier. J. Eng. Technol., 2017, 6, 352-436.
Abdullah, G.; Shair, A.; Ali, W. Siraj. Crude oil prices and Pakistani rupee-US dollar exchange rate: An analysis of preliminary evidence. Eur. J. Bus. Manag., 2015, 7, 442-447.
Saleem, S.; Ahmad, K. Crude oil price and inflation in Pakistan. Bull. Bus. Econ., 2015, 4, 10-18.
Hussain, F.; Hussain, S. Natural gas allocation and management in Pakistan: Issues and actors. ISSRA Papers, 2014, 7(1), 25-46.
Sarwar, A.; Khan, M.N.; Azhar, K.F. Coal chemistry and morphology of Thar reserves. Pak. J. Miner. Mater. Charact. Eng, 2012, 11, 817-824.
Afza, M. Population growth and economic development in Pakistan. Open Demography J., 2009, 2, 1-7.
Population of Pakistan. Pakistan Bureau of Statistics, 2014.Available at.
MPDR, 2014 Ministry of planning, development and reforms Vision 2025, Documents. Planning Commission of Pakistan, Islamabad, 2014.Available at.
ICCI report 2012, An overview of electricity sector in Pakistan. 2012.Available at.
Mohiuddin, O.; Mohiuddin, A.; Obaidullah, M.; Ahmed, H.; Sarkodie, S.A. Electricity production potential and social benefits from rice husk, a case study in Pakistan. Cogent Eng, 2016, 3, 1-13.
Sikarwar, V.S.; Zhao, M.; Clough, P.; Yao, J.; Zhong, X.; Memon, M.Z.; Shah, N.; Anthony, E.J.; Fennell, P.S. An overview of advances in biomass gasification. Energy Environ. Sci., 2016, 9, 2939-2977.
Hashiramoto, O. Wood Product Trade and Policy Issues. Cross Sectoral Policy Developments in Forestry; CABI, 2007, pp. 24-35.
Balat, M.; Ayar, G. Biomass energy in the world, use of biomass and potential trends. Energy Sources, 2005, 10, 931-940.
Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of renewable energy sources in environmental protection: A review. Renew. Sustain. Energy Rev., 2011, 15, 1513-1524.
Bezerra, T.L.; Ragauskas, A.J. A review of sugarcane bagasse for second-generation bioethanol and bio-power production. Biofuels Bioprod. Biorefin., 2016, 10, 634-647.
Bhattacharya, M.; Paramati, S.R.; Ozturk, I.; Bhattacharya, S. The effect of renewable energy consumption on economic growth: Evidence from top 38 countries. Appl. Energy, 2016, 162, 733-741.
Brammer, J.G.; Lauer, M.; Bridgwater, A.V. Opportunities for biomass-derived “bio-oil” in European heat and power markets. Energy Policy, 2006, 34, 2871-2880.
Hijazi, O.; Munro, S.; Zerhusen, B.; Effenberger, M. Review of life cycle assessment for biogas production in Europe. Renew. Sustain. Energy Rev., 2016, 54, 1291-1300.
Khan, I.; Othman, M.H.D.; Hashim, H.; Matsuura, T.; Ismail, A.F.; Arzhandi, M.R-D.; Azelee, I.W. Biogas as a renewable energy fuel- A review of biogas upgrading, utilisation and storage. Energy Convers. Manage., 2017, 150, 277-294.
Solarte-Toro, J.C.; Chacón-Pérez, Y.; Cardona-Alzate, C.A. Evaluation of biogas and syngas as energy vectors for heat and powergeneration using lignocellulosic biomass as raw material. Electron. J. Biotechnol., 2018, 33, 52-62.
Wu, C.Z.; Yin, X.L.; Yuan, Z.H.; Zhou, Z.Q.; Zhuang, X.S. The development of bioenergy technology in China. Energy, 2010, 35, 4445-4450.
Chen, G.Q.; Yang, Q.; Zhao, Y.H. Renewability of wind power in China: A case study of nonrenewable energy cost and greenhouse gas emission by a plant in Guangxi. Renew. Sustain. Energy Rev., 2011, 15, 2322-2329.
Cremonez, P.A.; Feroldi, M.; Nadaleti, W.C.; Rossi, E.; Feiden, A.; Camargo, M.P.; Cremonez, F.E.; Klajn, F.F. Biodiesel production in Brazil: Current scenario and perspectives. Renew. Sustain. Energy Rev., 2015, 42, 415-428.
GSRR. Global Status Report on Renewable Energy - REN 21: Renewables 2013.. Renewable Energy Network for 21st Century, 2013.
Gupta, A.; Verma, J.P. Sustainable bio-ethanol production from agro-residues: A review. Renew. Sustain. Energy Rev., 2015, 41, 550-567.
Pacesila, M.; Burcea, S.G.; Colesca, E. Analysis of renewable energies in European Union. Renew. Sustain. Energy Rev., 2016, 56, 156-170.
Field, C.B.; Campbell, J.E.; Lobell, D.B. Biomass energy: the scale of the potential resource. Trends Ecol. Evol. (Amst.), 2008, 23(2), 65-72.
[] [PMID: 18215439]
Berndes, G.; Hoogwijkb, M.; Broekc, R.V. The contribution of biomass in the future global energy supply: A review of 17 studies. Biomass Bioenergy, 2003, 25, 1-28.
Jungura, R.M.; Musademba, D.; Kamusoko, R. A review of the state of biomass energy technologies in Zimbabwe. Renew. Sustain. Energ, 2013, 26, 652-659.
Bentsen, N.S.; Felby, C. Biomass for energy in the European Union - a review of bioenergy resource assessments. Biotechnol. Biofuels, 2012, 5(1), 25.
[] [PMID: 22546368]
Verma, M.; Godbout, S.; Brar, S.K.; Solomatnikova, O.; Lemay, S.P.; Larouche, J.P. Biofuels production from biomass by thermochemical conversion technologies. Int. J. Chem. Eng., 2012, 542426, 1-18.
Vakalis, S.; Sotiropoulos, A.; Moustakas, K.; Malamis, D.; Baratieri, M. Utilisation of biomass gasification by-products for onsite energy production. Waste Manag. Res., 2016, 34(6), 564-571.
[] [PMID: 27118736]
Inward, Obernberger. Developments of Biomass Combustion Technologies and Future Outlook.International Proceedings of the 17th European Biomass Conference, June 2009, Hamburg, Germany; Florence, Italy, 2009, 3, pp. 20-37.
Jamil, F.; Al-Muhatseb, H.A.; Myo, T.; Zar, M.; Lamya, M.; Al-Haj Mahad, B.M.; Al-Abri, G.K.; Atabani, A.E. Biodiesel production by valorizing waste Phoenix dactylifera L. Kernel oil in the presence of synthesized heterogeneous metallic oxide catalyst (Mn@MgO-ZrO2). Energy Convers. Manage., 2018, 155, 128-137.
Soleimani, S.S.; Adiguzel, A.; Nadaroglu, H. Production of bioethanol by facultative anaerobic bacteria. J. Inst. Brew., 2017, 123, 402-406.
IRENA report.. Renewable Energy Technologies: Cost Analysis Series, Power Sector, Biomass for Power Generation, 2018.
Kaa, G.V.; Kamp, D.; Rezaei, L.J. Selection of biomass thermochemical conversion technology in the Netherlands: A best worst method approach. J. Clean. Prod., 2017, 166, 32-39.
McKendry, P. Energy production from biomass (Part 2): Conversion technologies. Bioresour. Technol., 2002, 83(1), 47-54.
[] [PMID: 12058830]
Demirbas, M.F. Current technologies for biomass conversion into chemicals and fuels. Energy Sources, 2002, 28, 1181-1188.
Kunii, D.; Levenspiel, O. Fluidization Engineering, 2nd edition; Butterworth-Heinemann: Boston, 1991.
Basu, P. Combustion and Gasification in Fluidized Beds; CRC Press Taylor and Francis Group: New York, 2006.
Adams, P.W.; Hammond, G.P.; McManus, M.C.; Mezzullo, W.G. Barriers to and drivers for UK bioenergy development. Renew. Sustain. Energy Rev., 2011, 15, 1217-1227.
McCormick, K.; Kaberger, T. Key barriers for bioenergy in Europe: Economic conditions, know-how and institutional capacity, and supply chain co-ordination. Biomass Bioenergy, 2007, 31, 443-452.
Mirza, U.K.; Ahmad, N.; Majeed, T. An overview of biomass energy utilization in Pakistan. Renew. Sustain. Energy Rev., 2008, 12, 1988-1996.
GIZ report on “Compilation of Information on Biomass Based Power Projects”. GIZ Deutsche Gesellschaft fur Internationale Zusammenarbeit GmbH, 2013.
Iqbal, M. Renewable Energy Resources in Pakistan. Internal Report; Faculty of Agriculture Engineering and Technology, University of Agriculture: Faisalabad, 2014.
GIZ (BFSR). Biomass Feasibility Study Report for All Pakistan Textile Mills Association (APTMA); Masud Textile Mills Faisalabad Punjab Pakistan, 2013.
Gravalos, I.; Xyradakis, P.; Kateris, D.; Gialamas, T.; Bartzialis, D.; Giannoulis, K. An experimental determination of gross calorific value of different agroforestry species and bio-based industry residues. Nat. Resour., 2016, 7, 57-68.
Gravalos, I.; Kateris, D.; Xyradakis, P.; Gialamas, T.; Loutridis, S.; Augousti, A.; Georgiades, A.; Tsiropoulos, Z. A study on calorific energy values of biomass residue pellets for heating purposes. FORMEC, 2010, 2010, 11-14.
PCSIR Labs Analysis Reports.Biomass Energy Content of Crops Residue - Punjab: Pakistan. , 2012.
Full Advantage Co.. Bangkok. Feasibility Study on Biomass Power Generation in Punjab, Pakistan- 5 Locations; Agriculture Department Punjab: Pakistan, 2014.
ADS, Agriculture Department Survey. Crops Biomass Resource Potential in Punjab; Government of the Punjab, Agriculture Department, Biomass Cell: 21 Davis Road Lahore, 2013.
Saeed, M.A.; Irshad, A.; Sattar, H.; Andrews, G.E.; Phylaktou, H.N.; Gibbs, B.M. Agricultural Waste Biomass Energy Potential in Pakistan.Proceedings of the International Bioenergy (Shanghai); China, 2015, pp. 21-23.
AEDB. Alternate Energy Development Board Pakistan. Available at.
Pakistan Energy Policy, Laws and Regulations Handbook; International Business Publications: Washington, DC, USA, 2015, Vol. 1, .

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 09 January, 2020
Page: [2350 - 2365]
Pages: 16
DOI: 10.2174/1385272822666180820143707
Price: $58

Article Metrics

PDF: 16