Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Multiple Quantum Barrier Nano-avalanche Photodiodes - Part I: Spectral Response

Author(s): Somrita Ghosh and Aritra Acharyya*

Volume 9, Issue 2, 2019

Page: [172 - 184] Pages: 13

DOI: 10.2174/2210681208666180813123550

Price: $65

Abstract

Background: The spectral response of Multiple Quantum Barrier (MQB) nano-scale avalanche photodiodes (APDs) based on Si~3C-SiC material system shows considerable responsivity of the device within a very wide wavelength range which includes some portion of Ultra- Violet (UV) spectrum (200- 90 nm), visible spectrum (390-770 nm), near-infrared (700-1400 nm), short-wavelength infrared (1400-3000 nm) and mid-infrared (3000-4000 nm) wavelengths. It has already been concluded from preceding studies that Si~3C-SiC MQB APDs shows better spectral response and excess noise characteristics as compared to equivalent conventional APDs based on Si. Moreover, the superiority of the illumination through p+-side (ITPS) structure has been observed among two probable optical illumination configurations such as illumination through n+- side (ITNS) and illumination through p+-side (ITPS) structures.

Methods: In this paper, the time and frequency responses of Si~3C-SiC MQB APDs have been investigated. A very narrow rectangular pulse of pulse-width of 0.4 ps has been used as the input optical pulse having 850 nm wavelength incident on the p+-side of the MQB APD structures (i.e. ITPS is considered here) and corresponding current responses have been calculated by using a rigorous simulation method developed by the authors; finally the frequency responses of the devices are obtained via the Fourier transform of the corresponding pulse current responses in time domain.

Results: The width of the current responses are limited to 4.7 and 3.1 ps in Si nano-APD and Si~3C-SiC MQB (consisting of five quantum barriers) nano-APD respectively for the input optical pulse of width 0.4 ps of 850 nm wavelength. On the other hand, the 3 dB upper cut-off frequencies of the above-mentioned diodes are obtained to be 68.63 and 82.64 GHz respectively.

Conclusion: Simulation results show that MQB nano-APDs possess significantly faster time response and wider frequency response as compared to the flat Si nano-APDs under similar operating conditions.

Keywords: Avalanche Photodiode, dark current, multiple quantum barrier, photocurrent, quantum well, self-consistent solution and spectral response.

Graphical Abstract
[1]
Masudy-Panah, S.; Moravvej-Farshi, M.K.; and Jalali, M. Temperature dependent characteristics of submicron GaAs avalanche photodiodes obtained by a nonlocal analysis. Opt. Commun., 2009, 282, 3630-3636.
[2]
Masudy-Panah, S.; Moravvej-Farshi, M.K. An analytic approach to study the effects of optical phonon scattering loss on the characteristics of avalanche photodiodes. IEEE J. Quantum Electron., 2010, 46, 533-540.
[3]
Masudy-Panah, S. Nonlocal analysis to study of the impact ionization and avalanche characteristics of deep submicron Si devices. Solid State Commun., 2011, 151, 610-614.
[4]
Masudy-Panah, S.; Tikkiwal, V.A. Velocity enhancement in APDs with sub-100-nm multiplication region. Opt. Commun., 2015, 346, 167-171.
[5]
Wêgrzecka, I.; Wêgrzecki, M.; Grynglas, M.; Bar, J.; Uszyñski, A.; Grodecki, R.; Grabiec, P.; Krzemiñski, S.; Budzyñski, T. Design and properties of silicon avalanche photodiodes. Opto-Electron. Rev., 2004, 12(1), 95-104.
[6]
Othman, M.A.; Taib, S.N.; Husain, M.N.; and Napiah, Z.A.F.M. Reviews on avalanche photodiode for optical communication technology. ARPN J. Eng. Appl. Sci., 2004, 9(1), 35-44.
[7]
Yang, L.; Dzhosyuk, S.N.; Gabrielse, J.M.; Huffman, P.R.; Mattoni, C.E.H.; Maxwell, S.E.; McKinsey, D.N.; Doyle, J.M. Performance of a large-area avalanche photodiode at low temperature for scintillation detection. Nucl. Instrum. Methods Phys. Res. A, 2003, 508, 388-393.
[8]
Britvitch, et al. Avalanche photodiodes now and possible developments. NIM, 2004, A535, 523-527.
[9]
Renker, D. Properties of avalanche photodiodes for applications in high energy physics, astrophysics, and medical imaging. NIM, 2002, A486, 164-169.
[10]
Pansarat, J. Avalanche photodiodes for particle detection. Nucl. Instrum. Methods, 1997, 389, 186-186.
[11]
Uemura, H.; Kurita, Y.; Furuyama, H. 12.5 Gb/s optical driver and receiver ICs with double-threshold AGC for SATA out-of-band transmission. IEEE J. Solid-State Circuits, 2006, 51, 1-10.
[12]
Joo, J.; Jang, K.S.; Kim, S.H.; Kim, I.G.; Oh, J.H.; Kim, S.A.; Jeong, G.S.; Kim, Y.; Park, J.E.; Kim, S.; Chi, H.; Jeong, D.K.; Kim, G. Silicon photonic receiver and transmitter operating up to 36 Gb/s for λ~1550 nm. Opt. Express, 2015, 23, 12232-12243.
[13]
Chen, Y.M.; Wang, Z.G.; Fan, X.N.; Wang, H.; Li, W.A. 38 Gb/s to 43 Gb/s monolithic optical receiver in 65 nm CMOS technology. IEEE Trans. Circ. Syst., 2013, 60, 3173-3181.
[14]
Pan, Q.; Hou, Z.X.; Li, Y.; Poon, A.W.; Yue, C.P.A. 0.5-V p-well/deep n-well photodetector in 65-nm CMOS for monolithic 850-nm optical receivers. IEEE Photonics Technol. Lett., 2014, 26, 1184-1187.
[15]
Assefa, S.; Xia, F.N.; Green, W.M.J.; Schow, C.L.; Rylyakov, A.V.; Vlasov, Y. A CMOS-integrated optical receivers for on-chip interconnects. IEEE J. Sel. Top. Quantum Electron., 2010, 16, 1376-1385.
[16]
Youn, J.S.; Lee, M.J.; Park, K.Y.; Kim, W.S.; Choi, W.Y. Low-power 850 nm optoelectronic integrated circuit receiver fabricated in 65 nm complementary metal–oxide semiconductor technology. IET Circuits Dev. Syst., 2015, 9, 221-226.
[17]
Acharyya, A.; Ghosh, S. Dark current reduction in nano-avalanche photodiodes by incorporating multiple quantum barriers. Int. J. Electron., 2017, 104(12), 1957-1973.
[18]
Arthur, J.R. Molecular Beam Epitaxy. Surf. Sci., 2002, 500(1-3), 189-217.
[19]
Vyas, H.P.; Gutmann, R.J.; Borrego, J.M. Effect of hole versus electron photocurrent on microwave-optical interactions in Impatt oscillators. IEEE Trans. Electron Dev., 1979, 26(3), 232-234.
[20]
Rajkanan, K.; Singh, R.; Shewchun, J. Absorption coefficient of silicon for solar cell calculations. Solid-State Electron., 1979, 22(9), 793-795.
[21]
Spitzer, W.; Fan, H.Y. Infrared absorption in n-type silicon. Phys. Rev., 1957, 108(2), 268-271.
[22]
Hara, H.; Nishi, Y. Free Carrier Absorption in p-type silicon. J. Phys. Soc. Jpn., 1966, 21(6), 1222.
[23]
Solangi, A.; Chaudry, M.I. Absorption coefficient of beta--SiC grown by chemical vapor deposition. J. Mater. Res., 1992, 7, 539-541.
[24]
Mukherjee, K.; Das, N.R. Absorption coefficient in a MQW intersubband photodetector with non-uniform doping density & layer distribution. Prog. Electromagn. Res. M., 2014, 38, 193-201.
[25]
Manasreh, O. Semiconductor Heterojunctions and Nanostructures; McGraw-Hill: New York, 2005, pp. 210-216.
[26]
Ghosh, M.; Ghosh, S.; Acharyya, A. Self-consistent quantum drift-diffusion model for multiple quantum well IMPATT diodes. J. Comput. Electron., 2017, 15(4), 1370-1387.
[27]
Costato, M.; Reggiani, L. Temperature-dependence of the combined effective mass of holes in silicon. Lett. Nuovo Cimento, 1970, III(8), 239-245.
[28]
Selberherr, S. Analysis and Simulation of Semiconductor Devices; Springer Verlag: Wien, 1984.
[29]
Weisbuch, C.; Vinter, B. Quantum Semiconductor Structures; Academic Press Inc.: New York, 1991.
[30]
Doudlas, J.; Yuan, Y. Finite difference method for the transient behavior of a semiconductor device., IMA preprint Series # 286. 1987, pp. 1-20.
[31]
Christodoulou, N.S. An algorithm using Runge-Kutta methods of orders 4 and 5 for systems of ODEs. Int. J. Num. Methods Appl., 2009, 2(1), 47-57.
[32]
Stern, F. Iteration methods for calculating self-consistent fields in semiconductor inversion layers. J. Comput. Phys., 1970, 6(1), 56-67.
[33]
Grant, W.N. Electron and hole ionization rates in epitaxial Silicon. Solid-State Electron., 1973, 16, 1189-1203.
[34]
Bellotti, E.; Nilsson, H.E.; Brennan, K.F.; Ruden, P.P. Ensemble Monte Carlo calculation of hole transport in bulk 3C-SiC. J. Appl. Phys., 1999, 85(6), 3211-3217.
[35]
Mickevicius, R.; Zhao, J.H. Monte Carlo study of electron transport in SiC. J. Appl. Phys., 1998, 83(6), 3161-3167.
[36]
Canali, C.; Ottaviani, G.; Quaranta, A.A. Drift velocity of electrons and holes and associated anisotropic effects in silicon. J. Phys. Chem. Solids, 1971, 32, 1707-1720.
[37]
Electronic archive: New Semiconductor materials, characteristics and properties: Available from http://www.ioffe.rssi.ru/SVA/NSM/Semicond/SiC/index.html (Accessed on: October 6, 2017)
[38]
Zeghbroeck, B.V. Principles of Semiconductor Devices., Colorado Press, USA. 2011.
[39]
May, C.P. Impact ionization rate calculations for device simulation; ETH, Eidgenössische Technische Hochschule Zürich, Integrated Systems Laboratory. , 2005.
[40]
Yan-Kun, D.; Xin, Q.; Hai-Bo, J.; Mao-Sheng, C.; Zahid, U.; Zhi-Ling, H. First principle study of the electronic properties of 3C-SiC doped with different amounts of Ni. Chin. Phys. Lett., 2012, 29(7), 077701-1-4.
[41]
Silicon Avalanche Photodiodes - PerkinElmer: Available from. http://www.perkinelmer.com/CMSResources/Images/44-3477DTS_C30902.pdf (Accessed on: October 6, 2017).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy