Multiuser Beam Index Modulation Wireless Transmission with Analogue Beamforming Networks

Author(s): Xu He, Yuan Ding*, Xingwang Li

Journal Name: Recent Advances in Electrical & Electronic Engineering
Formerly Recent Patents on Electrical & Electronic Engineering

Volume 13 , Issue 3 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: The multiuser scenarios using the recently proposed wireless communication scheme, namely Beam Index Modulation (BIM), are investigated in this paper.

Methods: Both transmitter node and multiple receiver nodes are equipped with analogue beamforming networks, transforming physical wireless propagation channels to virtue channels in beam domain.

Results: Under the non-line-of-sight (nLoS) multi-scattered channel conditions, which are likely the cases for some future wireless communication systems operating at higher frequency bands.

Conclusion: It has been proved, both through simulations and experiment, at 10 GHz in an indoor environment, that the proposed BIM is able to enhance the system performance at high Signal-to-Noise Ratio (SNR) scenarios, with regard to the sum spectral efficiency, with only a single Radio Frequency (RF) chain.

Keywords: Analogue beamforming, beam index modulation, index modulation, multiuser, spatial modulation, wireless communications.

[1]
A. Paulraj, D. Gore, R. Nabar, and H. Bolcskei, "An overview of MIMO communications - A key to gigabit wireless", IEEE Proc., vol. 92, no. 2, pp. 198-218, . 2004
[http://dx.doi.org/10.1109/JPROC.2003.821915]
[2]
L. Zheng, and D.N.C. Tse, "Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels", IEEE Trans. Inf. Theory, vol. 49, no. 5, pp. 1073-1096, 2003.
[http://dx.doi.org/10.1109/TIT.2003.810646]
[3]
A. Lozano, and N. Jindal, "Transmit diversity vs. spatial multiplexing in modern MIMO systems", IEEE Trans. Wirel. Commun., vol. 9, no. 1, pp. 186-197, 2010.
[http://dx.doi.org/10.1109/TWC.2010.01.081381]
[4]
T. Marzetta, E. Larsson, H. Yang, and H. Ngo, Fundamentals of Massive MIMO., Cambridge University Press: Cambridge, UK, 2016.
[http://dx.doi.org/10.1017/CBO9781316799895]
[5]
X. Li, M. Huang, X. Tian, H. Guo, J. Jin, and C. Zhang, "Impact of hardware impairments on large-scale MIMO systems over composite RG fading channels", AEU Int. J. Electron. Commun., vol. 88, pp. 134-140, 2018.
[http://dx.doi.org/10.1016/j.aeue.2018.03.010]
[6]
X. Li, L. Li, L. Xie, X. Su, and P. Zhang, "Performance analysis of 3D massive MIMO cellular systems with collaborative base station", Int. J. Antennas Propag., vol. 2014, 2014.
[http://dx.doi.org/10.1155/2014/614061]
[7]
L. Lu, G. Li, A. Swindlehurst, A. Ashikhmin, and R. Zhang, "An overview of massive MIMO: Benefits and challenges", IEEE J. Sel. Top. Signal Process., vol. 8, no. 5, pp. 742-758, 2014.
[http://dx.doi.org/10.1109/JSTSP.2014.2317671]
[8]
F. Sohrabi, and W. Yu, "Hybrid digital and analog beamforming design for large-scale MIMO systems", In: IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Brisbane, QLD, Australia, 2015, pp. 2929-2933.
[http://dx.doi.org/10.1109/ICASSP.2015.7178507]
[9]
Y. Din, ""V. Fusco, and A. Shitvov, “Beamspace multiplexing for wireless millimeter-wave backhaul link"", In: Proc. 11th Eur. Conf. on Antennas Propag. (EUCAP), Paris, France, 2017, pp. 912-916.
[10]
R. Heath, N. González-Prelcic, S. Rangan, W. Roh, and A. Sayeed, "An overview of signal processing techniques for millimeter wave MIMO systems", IEEE J. Sel. Top. Signal Process., vol. 10, no. 3, pp. 436-453, 2016.
[http://dx.doi.org/10.1109/JSTSP.2016.2523924]
[11]
J. Brady, N. Behdad, and A. Sayeed, "Beamspace MIMO for millimeter-wave communications: System architecture, modeling, analysis, and measurements", IEEE Trans. Antenn. Propag., vol. 61, no. 7, pp. 3814-3827, 2013.
[http://dx.doi.org/10.1109/TAP.2013.2254442]
[12]
M. Molu, P. Xiao, M. Khalily, K. Cumanan, L. Zhang, and R. Tafazolli, "Low-complexity and robust hybrid beamforming design for multi-antenna communication systems", IEEE Trans. Wirel. Commun., vol. 17, no. 3, pp. 1445-1459, 2018.
[http://dx.doi.org/10.1109/TWC.2017.2778258]
[13]
X. Gao, L. Dai, S. Han, I. Chih-Lin, and F. Adachi, Beamspace channel estimation for 3D lens-based millimeter-wave massive MIMO systems2016 8th Int. Conf. Wireless Commun. Signal Processing (WCSP), Yangzhou, China, 2016, pp. 1-5.
[http://dx.doi.org/10.1109/WCSP.2016.7752487]
[14]
Y. Ding, and V. Fusco, "Sidelobe manipulation using Butler matrix for 60 GHz physical layer secure wireless communication", In: Proc. Antennas Propag. Conf., Loughborough, U.K, 2013, pp. 61-65.
[15]
F. Benedetto, G. Giunta, A. Toscano, and L. Vegni, "Dynamic LOS/NLOS statistical discrimination of wireless mobile channels", In: , Technol. Conf: Dublin, Ireland, 2007, pp. 3071-3075.
[http://dx.doi.org/10.1109/VETECS.2007.629]
[16]
P. Kela, M. Costa, K. Leppänen, and R. Jäntti, Location-aware beamformed downlink control channel for ultra-dense networksIEEE Conf. Standards Commun. Netw., Helsinki, Finland, 2017, pp. 7-11.
[http://dx.doi.org/10.1109/CSCN.2017.8088590]
[17]
R. Mesleh, H. Haas, S. Sinanovic, C. Ahn, and S. Yun, "Spatial modulation", IEEE Trans. Vehicular Technol., vol. 57, no. 4, pp. 2228-2241, 2008.
[http://dx.doi.org/10.1109/TVT.2007.912136]
[18]
N. Ishikawa, R. Rajashekar, S. Sugiura, and L. Hanzo, "Generalized spatial modulation-based reduced-RF-chain milli-meter wave communications", IEEE Trans. Vehicular Technol., vol. 66, no. 1, pp. 879-883, 2017.
[19]
A. Ibrahim, T. Kim, and D. Love, "On the achievable rate of generalized spatial modulation using multiplexing under a Gaussian mixture model", IEEE Trans. Commun., vol. 64, no. 4, pp. 1588-1599, 2016.
[http://dx.doi.org/10.1109/TCOMM.2016.2515624]
[20]
H. Hussein, H. Esmaiel, and D. Jiang, "Fully generalised spatial modulation technique for underwater communication", In: Electron. Lett., vol. 54. 2018. no. 14, pp. 907-909.
[http://dx.doi.org/10.1049/el.2018.0948]
[21]
J. Wang, J. Zhu, S. Lin, and J. Wang, "Adaptive spatial modulation based visible light communications: SER analysis and optimization", IEEE Photonics J., vol. 10, no. 3, pp. 1-14, 2018.
[http://dx.doi.org/10.1109/JPHOT.2018.2835767]
[22]
Y. Cui, X. Fang, and L. Yan, "Hybrid spatial modulation beamforming for mm wave railway communication systems", IEEE Trans. Vehicular Technol., vol. 65, no. 12, pp. 9597-9606, 2016.
[http://dx.doi.org/10.1109/TVT.2016.2614005]
[23]
Y. Ding, V. Fusco, A. Shitvov, Y. Xiao, and H. Li, "Beam index modulation wireless communication with analog beamforming", IEEE Trans. Vehicular Technol., vol. 67, no. 7, 2018.
[http://dx.doi.org/10.1109/TVT.2018.2819728]
[24]
E. Basar, M. Wen, R. Mesleh, M. Di Renzo, Y. Xiao, and H. Haas, "Index modulation techniques for next-generation wireless networks", IEEE Access, vol. 5, pp. 16693-16746, 2017.
[http://dx.doi.org/10.1109/ACCESS.2017.2737528]
[25]
Y. Ding, and V. Fusco, "Design guidelines on beam index modulation enabled wireless communications", IET Microw. Antennas Propag., vol. 12, no. 6, pp. 993-998, 2018.
[http://dx.doi.org/10.1049/iet-map.2017.0829]
[26]
F. Dai, and J. Wu, "Efficient broadcasting in Ad Hoc wireless networks using directional antennas", IEEE Trans. Parallel Distrib. Syst., vol. 17, no. 4, pp. 335-347, 2006.
[http://dx.doi.org/10.1109/TPDS.2006.46]
[27]
J. Wang, Z. Lan, C.W. Pyo, T. Baykas, C.S. Sum, M.A. Rahman, R. Funada, F. Kojima, I. Lakkis, H. Harada, and S. Kato, "Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems", IEEE J. Sel. Areas Comm., vol. 27, no. 8, pp. 1390-1399, 2009.
[http://dx.doi.org/10.1109/JSAC.2009.091009]
[28]
X. Gao, L. Dai, Z. Chen, Z. Wang, and Z. Zhang, "Near-optimal beam selection for beamspace mmWave massive MIMO systems", IEEE Commun. Lett., vol. 20, no. 5, pp. 1054-1057, 2016.
[http://dx.doi.org/10.1109/LCOMM.2016.2544937]
[29]
Q. Shi, and M. Hong, "Spectral efficiency optimization for millimeter wave multiuser MIMO systems", IEEE J. Sel. Top. Signal Process., vol. 12, no. 3, pp. 455-468, 2018.
[http://dx.doi.org/10.1109/JSTSP.2018.2824246]
[30]
Y. Ding, K. Kim, T. Koike-Akino, M. Pajovic, P. Wang, and P. Orlik, "Spatial scattering modulation for uplink millimeter-wave systems", IEEE Commun. Lett., vol. 21, no. 7, pp. 1493-14964, 2017.
[http://dx.doi.org/10.1109/LCOMM.2017.2684126]
[31]
P. McIllree, Channel capacity calculations for M-Ary N-dimensional signal sets, 1995
[32]
Y. Ding, Y. Zhang, and V. Fusco, "Fourier Rotman lens enabled directional modulation transmitter", Int. J. Antennas Propag., vol. 2015, 2015.
[http://dx.doi.org/10.1155/2015/285986]
[33]
Y. Zhang, Y. Ding, and V. Fusco, "Sidelobe modulation scrambling transmitter using fourier rotman lens", IEEE Trans. Antenn. Propag., vol. 61, no. 7, pp. 3900-3904, 2013.
[http://dx.doi.org/10.1109/TAP.2013.2254453]
[34]
Y. Shi, and R. Eberhart, "A modified particle swarm optimizer", In: IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), Anchorage, AK, USA, 1998, pp. 69-73.
[http://dx.doi.org/10.1109/ICEC.1998.699146]
[35]
Y. Ding, and V. Fusco, "Directional modulation transmitter synthesis using particle swarm optimization", In: Antennas Propag., Conf: Loughborough, U.K, 2013, pp. 500-503.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 13
ISSUE: 3
Year: 2020
Published on: 17 May, 2020
Page: [322 - 330]
Pages: 9
DOI: 10.2174/2352096511666180809130538
Price: $25

Article Metrics

PDF: 7
HTML: 3