Generic placeholder image

Current Rheumatology Reviews

Editor-in-Chief

ISSN (Print): 1573-3971
ISSN (Online): 1875-6360

Review Article

The Role of Vascular Endothelial Growth Factor in Systemic Sclerosis

Author(s): Victoria A. Flower*, Shaney L. Barratt, Stephen Ward and John D. Pauling

Volume 15, Issue 2, 2019

Page: [99 - 109] Pages: 11

DOI: 10.2174/1573397114666180809121005

Price: $65

Abstract

The pathological hallmarks of Systemic Sclerosis (SSc) constitute an inter-related triad of autoimmunity, vasculopathy and tissue remodeling. Many signaling mediators have been implicated in SSc pathology; most focusing on individual components of this pathogenic triad and current treatment paradigms tend to approach management of such as distinct entities. The present review shall examine the role of Vascular Endothelial Growth Factor (VEGF) in SSc pathogenesis. We shall outline potential mechanisms whereby differential Vascular Endothelial Growth Factor-A (VEGF-A) isoform expression (through conventional and alternative VEGF-A splicing,) may influence the relevant burden of vasculopathy and fibrosis offering novel insight into clinical heterogeneity and disease progression in SSc. Emerging therapeutic approaches targeting VEGF signaling pathways might play an important role in the management of SSc, and differential VEGF-A splice isoform expression may provide a tool for personalized medicine approaches to disease management.

Keywords: Systemic sclerosis (scleroderma), pathogenesis, vascular endothelial growth factor, VEGF-A, VEGF-A165b, fibrosis, vasculopathy, anti-angiogenic, pro-fibrotic.

Graphical Abstract
[1]
Steen VD. Autoantibodies in systemic sclerosis. Semin Arthritis Rheum 2005; 35(1): 35-42.
[2]
Denton CP, Hughes M, Gak N, et al. BSR and BHPR guideline for the treatment of systemic sclerosis. Rheumatology 2016; 55(10): 1906-10.
[3]
Campbell PM, LeRoy EC. Pathogenesis of systemic sclerosis: A vascular hypothesis. Semin Arthritis Rheum 1975; 4(4): 351-68.
[4]
Distler JH, Feghali-Bostwick C, Soare A, Asano Y, Distler O, Abraham DJ. Review: Frontiers of Antifibrotic Therapy in Systemic Sclerosis. Arthritis Rheumatol 2017; 69(2): 257-67.
[5]
Pope J, McBain D, Petrlich L, et al. Imatinib in active diffuse cutaneous systemic sclerosis: Results of a six-month, randomized, double-blind, placebo-controlled, proof-of-concept pilot study at a single center. Arthritis Rheum 2011; 63(11): 3547-51.
[6]
Prey S, Ezzedine K, Doussau A, et al. Imatinib mesylate in scleroderma-associated diffuse skin fibrosis: A phase II multicentre randomized double-blinded controlled trial. Br J Dermatol 2012; 167(5): 1138-44.
[7]
Denton CP, Merkel PA, Furst DE, et al. Recombinant human anti-transforming growth factor beta1 antibody therapy in systemic sclerosis: a multicenter, randomized, placebo-controlled phase I/II trial of CAT-192. Arthritis Rheum 2007; 56(1): 323-33.
[8]
Ioannou M, Pyrpasopoulou A, Simos G, et al. Upregulation of VEGF expression is associated with accumulation of HIF-1 alpha in the skin of naive scleroderma patients. Mod Rheumatol 2013; 23(6): 1245-8.
[9]
Distler O, Del Rosso A, Giacomelli R, et al. Angiogenic and angiostatic factors in systemic sclerosis: Increased levels of vascular endothelial growth factor are a feature of the earliest disease stages and are associated with the absence of fingertip ulcers. Arthritis Res 2002; 4(6): R11.
[10]
Choi JJ, Min DJ, Cho ML, et al. Elevated vascular endothelial growth factor in systemic sclerosis. J Rheumatol 2003; 30(7): 1529-33.
[11]
Distler O, Distler JH, Scheid A, et al. Uncontrolled expression of vascular endothelial growth factor and its receptors leads to insufficient skin angiogenesis in patients with systemic sclerosis. Circ Res 2004; 95(1): 109-16.
[12]
Manetti M, Guiducci S, Romano E, et al. Overexpression of VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, leads to insufficient angiogenesis in patients with systemic sclerosis. Circulat Res 2011; 109(3): e14-26.
[13]
Avouac J, Vallucci M, Smith V, et al. Correlations between angiogenic factors and capillaroscopic patterns in systemic sclerosis. Arthritis Res Ther 2013; 15(2): 10.
[14]
Manetti M, Guiducci S, Romano E, et al. Increased plasma levels of the VEGF165b splice variant are associated with the severity of nailfold capillary loss in systemic sclerosis. Ann Rheum Dis 2013; 72(8): 1425-7.
[15]
Richeldi L, Cottin V, du Bois RM, Selman M, Kimura T, Bailes Z, et al. Nintedanib in patients with idiopathic pulmonary fibrosis: Combined evidence from the TOMORROW and INPULSIS((R)) trials. Respir Med 2016; 113: 74-9.
[16]
Freemont AJ, Hoyland J, Fielding P, Hodson N, Jayson MI. Studies of the microvascular endothelium in uninvolved skin of patients with systemic sclerosis: Direct evidence for a generalized microangiopathy. Br J Dermatol 1992; 126(6): 561-8.
[17]
Prescott RJ, Freemont AJ, Jones CJ, Hoyland J, Fielding P. Sequential dermal microvascular and perivascular changes in the development of scleroderma. J Pathol 1992; 166(3): 255-63.
[18]
Roumm AD, Whiteside TL, Medsger TA Jr, Rodnan GP. Lymphocytes in the skin of patients with progressive systemic sclerosis. Quantification, subtyping, and clinical correlations. Arthr Rheum 1984; 27(6): 645-53.
[19]
Meier FM, Frommer KW, Dinser R, Walker UA, Czirjak L, Denton CP, et al. Update on the profile of the EUSTAR cohort: An analysis of the EULAR Scleroderma Trials and Research group database. Ann Rheum Dis 2012; 71(8): 1355-60.
[20]
Koenig M, Joyal F, Fritzler MJ, Roussin A, Abrahamowicz M, Boire G, et al. Autoantibodies and microvascular damage are independent predictive factors for the progression of Raynaud’s phenomenon to systemic sclerosis: a twenty-year prospective study of 586 patients, with validation of proposed criteria for early systemic sclerosis. Arthritis Rheum 2008; 58(12): 3902-12.
[21]
Sulli A, Ruaro B, Alessandri E, Pizzorni C, Cimmino MA, Zampogna G, et al. Correlations between nailfold microangiopathy severity, finger dermal thickness and fingertip blood perfusion in systemic sclerosis patients. Ann Rheum Dis 2014; 73(1): 247-51.
[22]
De Santis M, Ceribelli A, Cavaciocchi F, et al. Nailfold videocapillaroscopy and serum VEGF levels in scleroderma are associated with internal organ involvement. Auto immunity highlights 2016; 7(1): 5.
[23]
Caramaschi P, Canestrini S, Martinelli N, et al. Scleroderma patients nailfold videocapillaroscopic patterns are associated with disease subset and disease severity. Rheumatology 2007; 46(10): 1566-9.
[24]
Fichel F, Baudot N, Gaitz JP, et al. Systemic sclerosis with normal or nonspecific nailfold capillaroscopy. Dermatology 2014; 228(4): 360-7.
[25]
Ingegnoli F, Ardoino I, Boracchi P, Cutolo M. co-authors E. Nailfold capillaroscopy in systemic sclerosis: Data from the EULAR scleroderma trials and research (EUSTAR) database. Microvasc Res 2013; 89: 122-8.
[26]
Ostojic P, Damjanov N. Different clinical features in patients with limited and diffuse cutaneous systemic sclerosis. Clinical rheumatology 2006; 25(4): 453-7.
[27]
Cutolo M, Herrick AL, Distler O, et al. Nailfold Videocapillaroscopic Features and Other Clinical Risk Factors for Digital Ulcers in Systemic Sclerosis: A Multicenter, Prospective Cohort Study. Arthr Rheumatol 2016; 68(10): 2527-39.
[28]
Tolosa-Vilella C, Morera-Morales ML, Simeon-Aznar CP, et al. Digital ulcers and cutaneous subsets of systemic sclerosis: Clinical, immunological, nailfold capillaroscopy, and survival differences in the Spanish RESCLE Registry. Semin Arthritis Rheum 2016; 46(2): 200-8.
[29]
Sebastiani M, Manfredi A, Colaci M, et al. Capillaroscopic skin ulcer risk index: A new prognostic tool for digital skin ulcer development in systemic sclerosis patients. Arthritis Rheum 2009; 61(5): 688-94.
[30]
Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell 2012; 148(3): 399-408.
[31]
Card PB, Erbel PJ, Gardner KH. Structural basis of ARNT PAS-B dimerization: Use of a common beta-sheet interface for hetero- and homodimerization. Journal of molecular biology 2005; 353(3): 664-77.
[32]
Deng W, Feng X, Li X, Wang D, Sun L. Hypoxia-inducible factor 1 in autoimmune diseases. Cellular immunology 2016; 303: 7-15.
[33]
Doedens A, Johnson RS. Transgenic Models to Understand Hypoxia Inducible Factor Function Methods in Enzymology Oxygen Biology and Hypoxia. Volume 435: Academic Press 2007; pp. 87-105.
[34]
Zhou G, Dada LA, Wu M, Kelly A, Trejo H, Zhou Q, et al. Hypoxia-induced alveolar epithelial-mesenchymal transition requires mitochondrial ROS and hypoxia-inducible factor 1. Am J Physiol Lung Cell Mol Physiol 2009; 297(6): L1120-30.
[35]
Lei W, He Y, Shui X, Li G, Yan G, Zhang Y, et al. Expression and analyses of the HIF-1 pathway in the lungs of humans with pulmonary arterial hypertension. Mol Med Rep 2016; 14(5): 4383-90.
[36]
Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983; 219(4587): 983-5.
[37]
Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 1989; 425(3): 540-7.
[38]
Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989; 246(4935): 1306-9.
[39]
Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996; 380(6573): 435-9.
[40]
Fong GH, Rossant J, Gertsenstein M, Breitman ML. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995; 376(6535): 66-70.
[41]
Hu K, Olsen BR. The roles of vascular endothelial growth factor in bone repair and regeneration. Bone 2016; 91: 30-8.
[42]
Barratt SL, Blythe T, Jarrett C, et al. Differential Expression of VEGF-Axxx Isoforms Is Critical for Development of Pulmonary Fibrosis. Am J Respir Crit Care Med 2017; 196(4): 479-93.
[43]
Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB journal :Official publication of the Federation of American Societies for Experimental Biology 1999; 13(1): 9-22.
[44]
Byrne AM, Bouchier-Hayes DJ, Harmey JH. Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). Journal of cellular and molecular medicine 2005; 9(4): 777-94.
[45]
Alvarez-Aznar A, Muhl L, Gaengel K. VEGF Receptor Tyrosine Kinases: Key Regulators of Vascular Function. Current topics in developmental biology 2017; 123: 433-82.
[46]
Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 2004; 56(4): 549-80.
[47]
Bates DO, Cui TG, Doughty JM, Winkler M, Sugiono M, Shields JD, et al. VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res 2002; 62(14): 4123-31.
[48]
Delcombel R, Janssen L, Vassy R, et al. New prospects in the roles of the C-terminal domains of VEGF-A and their cooperation for ligand binding, cellular signaling and vessels formation. Angiogenesis 2013; 16(2): 353-71.
[49]
Eswarappa SM, Fox PL. Antiangiogenic VEGF-Ax: A new participant in tumor angiogenesis. Cancer Res 2015; 75(14): 2765-9.
[50]
Manetti M, Guiducci S, Matucci-Cerinic M. The crowded crossroad to angiogenesis in systemic sclerosis: where is the key to the problem? Arthritis Res Ther 2016; 18: 36.
[51]
Ballmer-Hofer K, Andersson AE, Ratcliffe LE, Berger P. Neuropilin-1 promotes VEGFR-2 trafficking through Rab11 vesicles thereby specifying signal output. Blood 2011; 118(3): 816-26.
[52]
Bills VL, Varet J, Millar A, Harper SJ, Soothill PW, Bates DO. Failure to up-regulate VEGF165b in maternal plasma is a first trimester predictive marker for pre-eclampsia. Clin Sci 2009; 116(3): 265-72.
[53]
Ramakrishnan S, Anand V, Roy S. Vascular endothelial growth factor signaling in hypoxia and inflammation. J Neuroimmune Pharmacol 2014; 9(2): 142-60.
[54]
Avouac J, Wipff J, Goldman O, Ruiz B, Couraud PO, Chiocchia G, et al. Angiogenesis in systemic sclerosis impaired expression of vascular endothelial growth factor receptor 1 in endothelial progenitor-derived cells under hypoxic conditions. Arthr Rheum 2008; 58(11): 3550-61.
[55]
Silva I, Teixeira A, Oliveira J, et al. Endothelial dysfunction and nailfold videocapillaroscopy pattern as predictors of digital ulcers in systemic sclerosis: a Cohort Study and Review of the Literature. Clinical reviews in allergy & immunology 2015; 49(2): 240-52.
[56]
McMahan Z, Schoenhoff F, Van Eyk JE, Wigley FM, Hummers LK. Biomarkers of pulmonary hypertension in patients with scleroderma: A case-control study. Arthr Res Ther 2015; 17: 201.
[57]
Glodkowska-Mrowka E, Gorska E, Ciurzynski M, et al. Pro- and antiangiogenic markers in patients with pulmonary complications of systemic scleroderma. Respir Physiol Neurobiol 2015; 209: 69-75.
[58]
Gigante A, Navarini L, Margiotta D, et al. Angiogenic and angiostatic factors in renal scleroderma-associated vasculopathy. Microvasc Res 2017; 114: 41-5.
[59]
Rentka A, Harsfalvi J, Berta A, Koroskenyi K, Szekanecz Z, Szucs G, et al. Vascular Endothelial Growth Factor in Tear Samples of Patients with Systemic Sclerosis. Mediators Inflamm 2015; 2015: 573681.
[60]
Choi JJ, Min DJ, Cho ML, et al. Elevated vascular endothelial growth factor in systemic sclerosis. J Rheumatol 2003; 30(7): 1529-33.
[61]
Avouac J, Vallucci M, Smith V, Senet P, Ruiz B, Sulli A, et al. Correlations between angiogenic factors and capillaroscopic patterns in systemic sclerosis. Arthr Res Ther 2013; 15(2): R55.
[62]
Kaner RJ, Crystal RG. Compartmentalization of vascular endothelial growth factor to the epithelial surface of the human lung. Mole Med 2001; 7(4): 240-6.
[63]
Avouac J, Wipff J, Goldman O, et al. Angiogenesis in systemic sclerosis: impaired expression of vascular endothelial growth factor receptor 1 in endothelial progenitor-derived cells under hypoxic conditions. Arthritis Rheum 2008; 58(11): 3550-61.
[64]
Jinnin M, Makino T, Kajihara I, et al. Serum levels of soluble vascular endothelial growth factor receptor-2 in patients with systemic sclerosis. Br J Dermatol 2010; 162(4): 751-8.
[65]
Romano E, Chora I, Manetti M, et al. Decreased expression of neuropilin-1 as a novel key factor contributing to peripheral microvasculopathy and defective angiogenesis in systemic sclerosis. Ann Rheum Dis 2016; 75(8): 1541-9.
[66]
Higashi-Kuwata N, Makino T, Inoue Y, Ihn H. Expression pattern of VEGFR-1,-2,-3 and D2-40 protein in the skin of patients with systemic sclerosis. Eur J Dermatol 2011; 21(4): 490-4.
[67]
Chora I, Romano E, Manetti M, Mazzotta C, Costa R, Machado V, et al. Evidence for a Derangement of the Microvascular System in Patients with a Very Early Diagnosis of Systemic Sclerosis. J Rheumatol 2017; 44(8): 1190-7.
[68]
Smith V, Decuman S, Sulli A, et al. Do worsening scleroderma capillaroscopic patterns predict future severe organ involvement? A pilot study. Ann Rheum Dis 2012; 71(10): 1636-9.
[69]
Maurer B, Distler A, Suliman YA, et al. Vascular endothelial growth factor aggravates fibrosis and vasculopathy in experimental models of systemic sclerosis. Ann Rheum Dis 2014; 73(10): 1880-7.
[70]
Dor Y, Djonov V, Abramovitch R, et al. Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy. The EMBO J 2002; 21(8): 1939-47.
[71]
Manetti M, Milia AF, Guiducci S, Romano E, Matucci-Cerinic M, Ibba-Manneschi L. Progressive loss of lymphatic vessels in skin of patients with systemic sclerosis. J Rheumatol 2011; 38(2): 297-301.
[72]
Honda N, Jinnin M, Kajihara I, Makino T, Fukushima S, Ihn H. Impaired lymphangiogenesis due to excess vascular endothelial growth factor-D/Flt-4 signalling in the skin of patients with systemic sclerosis. Br J Dermatol 2010; 163(4): 776-80.
[73]
Chitale S, Al-Mowallad AF, Wang Q, Kumar S, Herrick A. High circulating levels of VEGF-C suggest abnormal lymphangiogenesis in systemic sclerosis. Rheumatology 2008; 47(11): 1727-8.
[74]
Kylhammar D, Hesselstrand R, Nielsen S, Scheele C, Radegran G. Angiogenic and inflammatory biomarkers for screening and follow-up in patients with pulmonary arterial hypertension. Scand J Rheumatol 2018; 1-6.
[75]
Porkholm M, Bono P, Saarinen-Pihkala UM, Kivivuori SM. Higher angiopoietin-2 and VEGF levels predict shorter EFS and increased non-relapse mortality after pediatric hematopoietic SCT. Bone mar trans 2013; 48(1): 50-.
[76]
Min CK, Kim SY, Lee MJ, Eom KS, Kim YJ, Kim HJ, et al. Vascular endothelial growth factor (VEGF) is associated with reduced severity of acute graft-versus-host disease and nonrelapse mortality after allogeneic stem cell transplantation. Bone Mar Trans 2006; 38(2): 149-56.
[77]
Kim DH, Lee NY, Lee MH, Sohn SK. Vascular endothelial growth factor gene polymorphisms may predict the risk of acute graft-versus-host disease following allogeneic transplantation: preventive effect of vascular endothelial growth factor gene on acute graft-versus-host disease. Biology of blood and marrow transplantation. J Am Soc Blood Marrow Trans 2008; 14(12): 1408-16.
[78]
Holtan SG, Verneris MR, Schultz KR, et al. Circulating Angiogenic Factors Associated with Response and Survival in Patients with Acute Graft-versus-Host Disease: Results from Blood and Marrow Transplant Clinical Trials Network 0302 and 0802. Biology of blood and marrow transplantation. J Am Soc Blood Mar Trans 2015; 21(6): 1029-36.
[79]
Yao Y, Wang L, Zhou J, Zhang X. HIF-1alpha inhibitor echinomycin reduces acute graft-versus-host disease and preserves graft-versus-leukemia effect. J trans Med 2017; 15(1): 28.
[80]
Wang J, Lu Z, Xu Z, Tian P, Miao H, Pan S, et al. Reduction of hepatic fibrosis by overexpression of von Hippel-Lindau protein in experimental models of chronic liver disease. Sci Rep 2017; 7: 41038.
[81]
Tzouvelekis A, Harokopos V, Paparountas T, Oikonomou N, Chatziioannou A, Vilaras G, et al. Comparative expression profiling in pulmonary fibrosis suggests a role of hypoxia-inducible factor-1alpha in disease pathogenesis. Am J Respira Crit Car Med 2007; 176(11): 1108-19.
[82]
Zhao ZM, Liu HL, Sun X, et al. Levistilide A inhibits angiogenesis in liver fibrosis via vascular endothelial growth factor signaling pathway. Experimental biology and medicine (Maywood, NJ) 2017; 242(9): 974-85.
[83]
Maurer B, Distler A, Suliman YA, Gay RE, Michel BA, Gay S, et al. Vascular endothelial growth factor aggravates fibrosis and vasculopathy in experimental models of systemic sclerosis. Ann Rheum Dis 2013.
[84]
Riccieri V, Stefanantoni K, Vasile M, et al. Abnormal plasma levels of different angiogenic molecules are associated with different clinical manifestations in patients with systemic sclerosis. Clin Exp Rheumatol 2011; 29(2)(Suppl. 65): S46-52.
[85]
Distler JH, Jungel A, Pileckyte M, Zwerina J, Michel BA, Gay RE, et al. Hypoxia-induced increase in the production of extracellular matrix proteins in systemic sclerosis. Arthr Rheum 2007; 56(12): 4203-15.
[86]
Lauer BM, Baechler EC, Molitor JA, Eds. The anti-angiogenic VEGF-165b isoform is elevated in both anti-centromere and anti-topoisomerase positive systemic sclerosis patients.13th International Workshop on Scleroderma Research 2013 3rd August 2013; Boston University, Boston, Massachusetts.
[87]
Riccieri V, Stefanantoni K, Vasile M, et al. Abnormal plasma levels of different angiogenic molecules are associated with different clinical manifestations in patients with systemic sclerosis. Clin Exp Rheumatol 2011; 29(2): S46-52.
[88]
Cossu M, Andracco R, Santaniello A, et al. Serum levels of vascular dysfunction markers reflect disease severity and stage in systemic sclerosis patients. Rheumatology 2016; 55(6): 1112-6.
[89]
Bielecki M, Kowal K, Lapinska A, Chwiesko-Minarowska S, Chyczewski L, Kowal-Bielecka O. Peripheral blood mononuclear cells from patients with systemic sclerosis spontaneously secrete increased amounts of vascular endothelial growth factor (VEGF) already in the early stage of the disease. Adv Med Sci 2011; 56(2): 255-63.
[90]
Corallo C, Cutolo M, Kahaleh B, et al. Bosentan and macitentan prevent the endothelial-to-mesenchymal transition (EndoMT) in systemic sclerosis: in vitro study. Arthr Res Ther 2016; 18(1): 228.
[91]
Solanilla A, Villeneuve J, Auguste P, et al. The transport of high amounts of vascular endothelial growth factor by blood platelets underlines their potential contribution in systemic sclerosis angiogenesis. Rheumatology 2009; 48(9): 1036-44.
[92]
Hirigoyen D, Burgos PI, Mezzano V, et al. Inhibition of angiogenesis by platelets in systemic sclerosis patients. Arthr Res Ther 2015; 17: 332.
[93]
Moritz F, Schniering J, Distler JHW, et al. Tie2 as a novel key factor of microangiopathy in systemic sclerosis. Arthr Res Ther 2017; 19(1): 105.
[94]
Michalska-Jakubus M, Kowal-Bielecka O, Chodorowska G, Bielecki M, Krasowska D. Angiopoietins-1 and -2 are differentially expressed in the sera of patients with systemic sclerosis: High angiopoietin-2 levels are associated with greater severity and higher activity of the disease. Rheumatology 2011; 50(4): 746-55.
[95]
Noda S, Asano Y, Aozasa N, et al. Serum Tie2 levels: Clinical association with microangiopathies in patients with systemic sclerosis. JEADV 2011; 25(12): 1476-9.
[96]
Dunne JV, Keen KJ, Van Eeden SF. Circulating angiopoietin and Tie-2 levels in systemic sclerosis. Rheumatol Int 2013; 33(2): 475-84.
[97]
Tsou PS, Rabquer BJ, Ohara RA, et al. Scleroderma dermal microvascular endothelial cells exhibit defective response to pro-angiogenic chemokines. Rheumatol 2016; 55(4): 745-54.
[98]
Tsou PS, Amin MA, Campbell PL, et al. Activation of the thromboxane a2 receptor by 8-isoprostane inhibits the pro-angiogenic effect of vascular endothelial growth factor in scleroderma. J Invest Dermatol 2015; 135(12): 3153-62.
[99]
Denton CP, Abraham DJ. Transforming growth factor-beta and connective tissue growth factor: key cytokines in scleroderma pathogenesis. Curr Opin Rheumatol 2001; 13(6): 505-11.
[100]
Dumoitier N, Chaigne B, Regent A, et al. Scleroderma peripheral B lymphocytes secrete interleukin-6 and TGF-beta and activate fibroblasts. Arthr Rheumatol 2016.
[101]
Yamane K, Ihn H, Kubo M, Tamaki K. Increased transcriptional activities of transforming growth factor beta receptors in scleroderma fibroblasts. Arthr Rheum 2002; 46(9): 2421-8.
[102]
McMahon S, Charbonneau M, Grandmont S, Richard DE, Dubois CM. Transforming growth factor beta1 induces hypoxia-inducible factor-1 stabilization through selective inhibition of PHD2 expression. J Biol Chem 2006; 281(34): 24171-81.
[103]
Kajihara I, Jinnin M, Honda N, et al. Scleroderma dermal fibroblasts overexpress vascular endothelial growth factor due to autocrine transforming growth factor beta signaling. Mod Rheumatol the Japan Rheumatism Association 2013; 23(3): 516-24.
[104]
Sanchez-Elsner T, Botella LM, Velasco B, Corbi A, Attisano L, Bernabeu C. Synergistic cooperation between hypoxia and transforming growth factor-beta pathways on human vascular endothelial growth factor gene expression. J Biol Chem 2001; 276(42): 38527-35.
[105]
Nowak DG, Woolard J, Amin EM, et al. Expression of pro- and anti-angiogenic isoforms of VEGF is differentially regulated by splicing and growth factors. J Cell Sci 2008; 121(Pt 20): 3487-95.
[106]
Denton CP, Engelhart M, Tvede N, Wilson H, Khan K, Shiwen X, et al. An open-label pilot study of infliximab therapy in diffuse cutaneous systemic sclerosis. Ann Rheum Dis 2009; 68(9): 1433-9.
[107]
Wang D, Huang HJ, Kazlauskas A, Cavenee WK. Induction of vascular endothelial growth factor expression in endothelial cells by platelet-derived growth factor through the activation of phosphatidylinositol 3-kinase. Cancer Res 1999; 59(7): 1464-72.
[108]
Trojanowska M. Role of PDGF in fibrotic diseases and systemic sclerosis. Rheumatology 2008; 47(Suppl. 5): v2-4.
[109]
Hong KH, Yoo SA, Kang SS, Choi JJ, Kim WU, Cho CS. Hypoxia induces expression of connective tissue growth factor in scleroderma skin fibroblasts. Clin Exp Immunol 2006; 146(2): 362-70.
[110]
Sato S, Nagaoka T, Hasegawa M, et al. Serum levels of connective tissue growth factor are elevated in patients with systemic sclerosis: association with extent of skin sclerosis and severity of pulmonary fibrosis. J Rheumatol 2000; 27(1): 149-54.
[111]
Cipriani P, Di Benedetto P, Capece D, et al. Impaired Cav-1 expression in SSc mesenchymal cells upregulates VEGF signaling: a link between vascular involvement and fibrosis. Fibrogenesis & tissue Rep 2014; 7: 13.
[112]
Jasmin J-Fo. Caveolins and Caveolae Roles in Signaling and Disease Mechanisms Frank PG, Lisanti MPEditors New York, NY: New York, NY : Springer US; 2012.
[113]
Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL. Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nature cell Biol 2003; 5(5): 410-21.
[114]
Del Galdo F, Sotgia F, de Almeida CJ, et al. Decreased expression of caveolin 1 in patients with systemic sclerosis: Crucial role in the pathogenesis of tissue fibrosis. Arthr Rheum 2008; 58(9): 2854-65.
[115]
Castello-Cros R, Whitaker-Menezes D, Molchansky A, Purkins G, Soslowsky LJ, Beason DP, et al. Scleroderma-like properties of skin from caveolin-1-deficient mice: Implications for new treatment strategies in patients with fibrosis and systemic sclerosis. Cell Cycle 2011; 10(13): 2140-50.
[116]
Xu Q, Briggs J, Park S, et al. Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene 2005; 24(36): 5552-60.
[117]
Zhang YJ, Zhang Q, Yang GJ, et al. Elevated serum levels of interleukin-1beta and interleukin-33 in patients with systemic sclerosis in Chinese population. Zeitschrift fur Rheumatologie 2016.
[118]
Antonelli A, Fallahi P, Ferrari SM, et al. Systemic sclerosis fibroblasts show specific alterations of interferon-gamma and tumor necrosis factor-alpha-induced modulation of interleukin 6 and chemokine ligand 2. J Rheumatol 2012; 39(5): 979-85.
[119]
Khanna D, Denton CP, Jahreis A, et al. Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (faSScinate): A phase 2, randomised, controlled trial. The Lancet 2016; 387(10038): 2630-40.
[120]
Peng YJ, Yuan G, Ramakrishnan D, et al. Heterozygous HIF-1alpha deficiency impairs carotid body-mediated systemic responses and reactive oxygen species generation in mice exposed to intermittent hypoxia. J Physiol 2006; 577(Pt 2): 705-16.
[121]
Peng YJ, Yuan G, Khan S, et al. Regulation of hypoxia-inducible factor-alpha isoforms and redox state by carotid body neural activity in rats. J Physiol 2014; 592(17): 3841-58.
[122]
Li Y, Shi B, Huang L, Wang X, Yu X, Guo B, et al. Suppression of the expression of hypoxia-inducible factor-1alpha by RNA interference alleviates hypoxia-induced pulmonary hypertension in adult rats. Int J Mol Med 2016; 38(6): 1786-94.
[123]
Brusselmans K, Compernolle V, Tjwa M, et al. Heterozygous deficiency of hypoxia-inducible factor-2alpha protects mice against pulmonary hypertension and right ventricular dysfunction during prolonged hypoxia. The J Clin Invest 2003; 111(10): 1519-27.
[124]
Wipff J, Dieude P, Avouac J, et al. Association of hypoxia-inducible factor 1A (HIF1A) gene polymorphisms with systemic sclerosis in a French European Caucasian population. Scand J Rheumatol 2009; 38(4): 291-4.
[125]
Andrigueti FV, Ebbing PCC, Arismendi MI, Kayser C. Evaluation of the effect of sildenafil on the microvascular blood flow in patients with systemic sclerosis: A randomised, double-blind, placebo-controlled study. Clin Exp Rheumatol 2017; 35 Suppl 106(4): 151-8.
[126]
Guiducci S, Bellando Randone S, Bruni C, et al. Bosentan fosters microvascular de-remodelling in systemic sclerosis. Clin Rheumatol 2012; 31(12): 1723-5.
[127]
Corrado A, Neve A, Costantino E, Palladino GP, Foschino Barbaro MP, Cantatore FP. Effect of endothelin inhibition on lung fibroblasts on patients with systemic sclerosis. Minerva Medica 2013; 104(5): 505-17.
[128]
Gammons MV, Dick AD, Harper SJ, Bates DO. SRPK1 inhibition modulates VEGF splicing to reduce pathological neovascularization in a rat model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 2013; 54(8): 5797-806.
[129]
Cutolo M, Pizzorni C, Tuccio M, et al. Nailfold videocapillaroscopic patterns and serum autoantibodies in systemic sclerosis. Rheumatology 2004; 43(6): 719-26.
[130]
Heinolainen K, Karaman S, D’Amico G, et al. VEGFR3 Modulates Vascular Permeability by Controlling VEGF/VEGFR2 Signaling. Circ Res 2017.
[131]
Ioannou M, Pyrpasopoulou A, Simos G, et al. Upregulation of VEGF expression is associated with accumulation of HIF-1alpha in the skin of naive scleroderma patients. Mod Rheumatol the Japan Rheumatism Association 2013; 23(6): 1245-8.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy