Bactericidal Activity and Structural Studies of the Steviol Derivative 17- Hydroxy-16-hydroxyiminobayeran-19-oic Acid

Author(s): Sheila Boreiko, Agnes T.P. Machado, Júlio C. Stiirmer, Jorge Iulek, Marcio Silva*

Journal Name: Current Bioactive Compounds

Volume 16 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: According to the World Health Organization (WHO), the routine use of antibiotics has led to the increase of microbial resistance. Thus, the search for new compounds that present antimicrobial activity must be constant. This study reports the bactericidal activity assay of the steviol derivative 17-hydroxy-16-hydroxyiminobayeran-19-oic acid against various bacteria and structural studies by quantum chemistry and molecular dynamics.

Methods: Bactericidal activity assays of the steviol derivative 17-hydroxy-16-hydroxyiminobayeran-19- oic acid against Salmonella typhimurium [ATCC 14028], Staphylococcus aureus [ATCC 6538], Bacillus cereus [ATCC 11778], Helicobacter pylori [ATCC 26695], Pseudomonas aeruginosa [ATCC 27853], Escherichia coli [ATCC 25922] and Bacillus subtilis [ATCC 23857] were performed, as well as structural studies by quantum chemistry and molecular dynamics.

Results: The results show that the compound exhibits activity towards S. typhimurium, what makes it an interesting compound for future studies on the development of antibiotics against this bacteria. An intramolecular hydrogen bond does not seem to be maintained in solution, therefore, corresponding moieties should be prone to interactions with their surroundings.

Conclusions: The results indicate that the title compound exhibits activity towards S. typhimurium, what sums up to similar results from other steviol derivatives and stevioside, thus reinforcing the potential of these compounds for future studies on the development of antibiotics against this bacteria. The potential energy surface for the selected torsion angles and molecular dynamics have revealed that an intramolecular hydrogen bond, though slightly energetically favorable, does not seem to be maintained in solution; therefore, corresponding moieties should be prone to interactions with their surroundings, an important feature in further studies involving inhibitor/drug design from this compound.

Keywords: 17-hydroxy-16-hydroxyiminobayeran-19-oic acid, bactericidal activity assay, molecular structure, Salmonella typhimurium, molecular dynamics, antibiotics.

[1]
World Health Organization. http://www.who.int/ [Accessed Mar 5, 2018]
[2]
Jena, M.K.; Malakar, D.; De, A.K.; Garg, S.; Akshey, Y.S.; Dutta, R.; Sahu, S.; Mohanty, A.K.; Kaushik, J.K. Handmade cloned and parthenogenetic goat embryos-A comparison of different culture media and donor cells. Small Rumin. Res., 2012, 105(3), 255-262.
[http://dx.doi.org/10.1016/j.smallrumres.2012.03.001]
[3]
Bassetti, M.; Righi, E. New antibiotics and antimicrobial combination therapy for the treatment of gram-negative bacterial infections. Curr. Opin. Crit. Care, 2015, 21(5), 402-411.
[http://dx.doi.org/10.1097/MCC.0000000000000235] [PMID: 26263298]
[4]
Montville, T.J.; Matthews, K.R.; Kniel, K.E. Food Microbiology: An Introduction; 3rd ed.; Copyrighted Material, ASC Press: Washington . , 2008.
[5]
Smith, S.E.; Li, J.; Garbett, K.; Mirnics, K.; Patterson, P.H. Maternal immune activation alters fetal brain development through interleukin-6. J. Neurosci., 2007, 27(40), 10695-10702.
[http://dx.doi.org/10.1523/JNEUROSCI.2178-07.2007] [PMID: 17913903]
[6]
Tong, S.Y.C.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G., Jr Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev., 2015, 28(3), 603-661.
[http://dx.doi.org/10.1128/CMR.00134-14] [PMID: 26016486]
[7]
Rachakonda, S.; Cartee, L. Challenges in antimicrobial drug discovery and the potential of nucleoside antibiotics. Curr. Med. Chem., 2004, 11(6), 775-793.
[http://dx.doi.org/10.2174/0929867043455774] [PMID: 15032731]
[8]
Terai, T.; Ren, H.; Mori, G.; Yamaguchi, Y.; Hayashi, T. Mutagenicity of steviol and its oxidative derivatives in Salmonella typhimurium TM677. Chem. Pharm. Bull. (Tokyo), 2002, 50(7), 1007-1010.
[http://dx.doi.org/10.1248/cpb.50.1007] [PMID: 12130868]
[9]
de Oliveira, B.H.; Stiirmer, J.C.; Filho, J.D.D.; Ayub, R.A. Plant growth regulation activity and derivatives. Phytochemistry, 2008, 69(7), 1528-1533.
[http://dx.doi.org/10.1016/j.phytochem.2008.01.015] [PMID: 18329674]
[10]
ChemAxon.-Software Solutions and Services for Chemistry & Biology. https://chemaxon.com/1998 [Accessed Mar 5, 2018]
[11]
AMMP. A modern full-featured Molecular mechanics, dy-namics and Modeling Program, http://www.ks.uiuc.edu/Development/biosoftdb/ biosoft.cgi?application=330&category=22002 [Accessed Mar 5, 2018]
[12]
Pedretti, A.; Villa, L.; Vistoli, G. VEGA--an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. J. Comput. Aided Mol. Des., 2004, 18(3), 167-173.
[http://dx.doi.org/10.1023/B:JCAM.0000035186.90683.f2] [PMID: 15368917]
[13]
Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.; Jensen, J.H.; Koseki, S.; Matsunaga, N.; Nguyen, K.A.; Su, S.J. General atomic and molecular electronic structure system. J. Comput. Chem., 1993, 14, 1347-1363.
[http://dx.doi.org/10.1002/jcc.540141112]
[14]
Cremer, D.; Pople, J.A. A general definition of ring puckering coordinates. J. Am. Chem. Soc., 1975, 97(6), 1354-1358.
[http://dx.doi.org/10.1021/ja00839a011]
[15]
Iulek, J.; Zukerman-Schpector, J. Conforma: A program for determining ring conformations and puckering coordinates. Quim. Nova, 1997, 20(4), 433-434.
[http://dx.doi.org/10.1590/S0100-40421997000400015]
[16]
Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model., 2006, 25(2), 247-260.
[http://dx.doi.org/10.1016/j.jmgm.2005.12.005] [PMID: 16458552]
[17]
Case, D.A.; Darden, T.A.; Cheatham, T.E., III; Simmerling, C.L.; Wang, J.; Duke, R.E.; Luo, R.; Walker, R.C.; Zhang, W.; Merz, K.M.; Roberts, B.; Wang, B.; Hayik, S.; Roitberg, A.; Seabra, G.; Kolossváry, I.; Wong, K.F.; Paesani, F.; Vanicek, J.; Liu, J.; Wu, X.; Brozell, S.R.; Steinbrecher, T.; Gohlke, H.; Cai, Q.; Ye, X.; Wang, J.; Hsieh, M-J.; Cui, G.; Roe, D.R.; Mathews, D.H.; Seetin, M.G.; Sagui, C.; Babin, V.; Luchko, T.; Gusarov, S.; Kovalenko, A.; Kollman, P.A. AMBER; 11, University of California: San Francisco, CA. , 2010.
[18]
Jakalian, A.; Bush, B.L.; Jack, D.B.; Bayly, C.I. Fast efficient generation of high-quality atomic charges. AM1-BCC Model: I. Method. J. Comput. Chem, 2000, 21(2), 132-146.
[http://dx.doi.org/10.1002/(SICI)1096-987X(20000130)21:2<132:AID-JCC5>3.0.CO;2-P] [PMID: 12395429]
[19]
Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem., 2004, 25(9), 1157-1174.
[http://dx.doi.org/10.1002/jcc.20035] [PMID: 15116359]
[20]
Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, 79(2), 926-935.
[http://dx.doi.org/10.1063/1.445869]
[21]
Kumari, S.; Paliwal, S.K.; Chauhan, R. An improved protocol for the synthesis of chalcones containing pyrazole with potential antimicrobial and antioxidant activity. Curr. Bioact. Compd., 2018, 14(3), 39-47.
[http://dx.doi.org/10.2174/1573407212666161101152735]
[22]
Lamia Aliouche, Larguet, H.; Amrani, A.; Leon, F.; Brouard, I.; Benayache, S.; Zama, D.; Meraihi, Z.; Benayache, F.. Isolation, antioxidant and antimicrobial activities of ecdysteroids from Serratula cichoracea. Curr. Bioact. Compd., 2018, 14(1), 60-66.
[http://dx.doi.org/10.2174/1573407214666171211154922]
[23]
Shinohara, N.K.S.; Barros, V.B.; Jimenez, S.M.; Machado, Ede.C.; Dutra, R.A.; de Lima Filho, J.L. Salmonella spp., importante agente patogênico veiculado em alimentos. Cien. Saude Colet., 2008, 13(5), 1675-1683.
[http://dx.doi.org/10.1590/S1413-81232008000500031] [PMID: 18813668]
[24]
Eng, S.; Pusparajah, P.; Mutalib, N.A.; Ser, H.; Chan, K.; Lee, L. Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Front. Life Sci., 2015, 8(3), 284-293.
[http://dx.doi.org/10.1080/21553769.2015.1051243]
[25]
Guimarães, D.O.; Momesso, L.S.; Pupo, M.T. Antibióticos: Importância Terapêutica e Perspectivas Para a Descoberta e Desenvolvimento de Novos Agentes. Quim. Nova, 2010, 33(3), 667-679.
[http://dx.doi.org/10.1590/S0100-40422010000300035]
[26]
Picoli, S.U.; Mazzoleni, L.E.; Fernández, H.; De Bona, L.R.; Neuhauss, E.; Longo, L.; Prolla, J.C. Resistance to amoxicillin, clarithromycin and ciprofloxacin of Helicobacter pylori isolated from Southern Brazil patients. Rev. Inst. Med. Trop. São Paulo, 2014, 56(3), 197-200.
[http://dx.doi.org/10.1590/S0036-46652014000300003] [PMID: 24878996]
[27]
Abou-Arab, E.; Abu-Salem, F. Evaluation of bioactive compounds of Stevia rebaudiana leaves and callus. Afr. J. Food Sci., 2010, 4(10), 627-634.
[28]
Tadhani, B.M.; Subash, R. In vitro antimicrobial activity of Stevia rebaudiana [Bertoni] leaves. Trop. J. Pharm. Res., 2006, 5(1), 557-560.
[29]
Ghosh, S.; Subudhi, E.; Nayak, S. Antimicrobial assay of Stevia rebaudiana Bertoni leaf extracts against 10 Pathogens. Int. J. Integr. Biol., 2008, 2(1), 27-31.
[30]
Taware, A.S.; Mukadam, D.S.; Chavan, A.M.; Taware, S.D. Antimicrobial activity of different extracts of callus and tissue cultured plantlets of Stevia rebaudiana. Bertoni. J. Appl. Sci. Res., 2010, 6, 883-887.
[31]
Fazal, H.; Ahmad, N.; Kram, U.; Inayat, H.; Khan, L.; Abbasi, B.H. Antibacterial potential in Parthenium hysterophorus, Stevia rebaudiana and Ginkgo biloba. Pak. J. Bot., 2011, 43(2), 1307-1313.
[32]
Satishkumar, J.; Sarvanan, M.M.; Seethalakshmi, I. In-vitro antimicrobial and antitumor activities of Stevia rebaudiana [Asteraceae] leaf extracts. Trop. J. Pharm. Res., 2008, 7(4), 1143-1149.
[http://dx.doi.org/10.4314/tjpr.v7i4.14700]
[33]
Debnath, M. Clonal propagation and antimicrobial activity of an endemic medicinal plant Stevia rebaudiana. J. Med. Plants Res., 2008, 2(2), 45-51.
[34]
Takahashi, K.; Matsuda, M.; Ohashi, K.; Taniguchi, K.; Nakagomi, O.; Abe, Y.; Mori, S.; Sato, N.; Okutani, K.; Shigeta, S. Analysis of anti-rotavirus activity of extract from Stevia rebaudiana. Antiviral Res., 2001, 49(1), 15-24.
[http://dx.doi.org/10.1016/S0166-3542(00)00134-0] [PMID: 11166857]
[35]
Gamboa, F.; Chaves, M. Antimicrobial potential of extracts from Stevia rebaudiana leaves against bacteria of importance in dental caries. Acta Odontol. Latinoam., 2012, 25(2), 171-175.
[PMID: 23230637]
[36]
Loesche, W.J. Role of Streptococcus mutans in human dental decay. Microbiol. Rev., 1986, 50(4), 353-380.
[http://dx.doi.org/10.1128/MMBR.50.4.353-380.1986] [PMID: 3540569]
[37]
Marcotte, H.; Lavoie, M.C. Oral microbial ecology and the role of salivary immunoglobulin A. Microbiol. Mol. Biol. Rev., 1998, 62(1), 71-109.
[http://dx.doi.org/10.1128/MMBR.62.1.71-109.1998] [PMID: 9529888]
[38]
Puri, M.; Sharma, D. Antibacterial activity of stevioside towards food‐borne pathogenic bacteria. Eng. Life Sci., 2011, 11(3), 326-329.
[http://dx.doi.org/10.1002/elsc.201000142]
[39]
DeLano, W.L. The PyMOL Molecular Graphics System; DeLano Scientific LLC: San Carlos, CA, 2002.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 2
Year: 2020
Page: [96 - 101]
Pages: 6
DOI: 10.2174/1573407214666180803140947
Price: $65

Article Metrics

PDF: 15
HTML: 2
EPUB: 1
PRC: 1