Insights Into the Explication of Potent Tyrosinase Inhibitors with Reference to Computational Studies

Author(s): Naima Parveen, Sharique Akhtar Ali*, Ayesha Sharique Ali

Journal Name: Letters in Drug Design & Discovery

Volume 16 , Issue 11 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Pigment melanin has primarily a photo defensive role in human skin, its unnecessary production and irregular distribution can cause uneven skin tone ultimately results in hyper pigmentation. Melanin biosynthesis is initiated by tyrosine oxidation through tyrosinase, the key enzyme for melanogenesis. Not only in humans, tyrosinase is also widely distributed in plants and liable for browning of vegetables and fruits. Search for the inhibitors of tyrosinase have been an important target to facilitate development of therapies for the prevention of hyperpigmentary disorders and an undesired browning of vegetables and fruits.

Methods: Different natural and synthetic chemical compounds have been tested as potential tyrosinase inhibitors, but the mechanism of inhibition is not known, and the quest for information regarding interaction between tyrosinase and its inhibitors is one of the recent areas of research. Computer based methods hence are useful to overcome such issues. Successful utilization of in silico tools like molecular docking simulations make it possible to interpret the tyrosinase and its inhibitor’s intermolecular interactions and helps in identification and development of new and potent tyrosinase inhibitors.

Results: The present review has pointed out the prominent role of computer aided approaches for the explication of promising tyrosinase inhibitors with a focus on molecular docking approach. Highlighting certain examples of natural compounds whose antityrosinase effects has been evaluated using computational simulations.

Conclusion: The investigation of new and potent inhibitors of tyrosinase using computational chemistry and bioinformatics will ultimately help millions of peoples to get rid of hyperpigmentary disorders as well as browning of fruits and vegetables.

Keywords: Melanin, photoprotective, tyrosinase, hyperpigmentation, in silico, molecular docking.

[1]
Chang, T.S. An updated review on tyrosinase inhibitors. Int. J. Mol. Sci., 2009, 10, 2400-2475.
[http://dx.doi.org/10.3390/ijms10062440]
[2]
Visscher, M.O. Skin color and pigmentation in ethnic skin. Facial Plast. Surg. Clin. North Am., 2017, 25(1), 119-125.
[http://dx.doi.org/10.1016/j.fsc.2016.08.011]
[3]
Mapunya, M.B.; Nikolova, R.V.; Lall, N. Melanogenesis and antityrosinase activity of selected South African plants. Evid. Based Complement. Alternat. Med., 2012, 1, 1-6.
[http://dx.doi.org/10.1155/2012/374017]
[4]
Kim, Y.J.; Uyama, H. Tyrosinase inhibitors from natural and synthetic sources: Structure, inhibition mechanism and perspective for the future. Cell. Mol. Life Sci., 2005, 62(15), 1707-1723.
[http://dx.doi.org/10.1007/s00018-005-5054-y]
[5]
Khan, M.T. Novel tyrosinase inhibitors from natural re-sources - their computational studies. Curr. Med. Chem., 2012, 19(14), 2262-2272.
[http://dx.doi.org/10.2174/092986712800229041]
[6]
Jia, Y.L.; Zheng, J.; Yu, F.; Cai, Y.X.; Zhan, X.L.; Wang, H.F.; Chen, Q.X. Anti-tyrosinase kinetics and antibacterial process of caffeic acid N-nonyl ester in Chinese Olive (Canarium al-bum) postharvest. Int. J. Biol. Macromol., 2016, 91, 486-495.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.05.098]
[7]
Parvez, S.; Kang, M.; Chung, H.S.; Bae, H. Naturally occurring tyrosinase inhibitors: mechanism and applications in skin health, cosmetics and agriculture industries. Phytother. Res., 2007, 21, 805-816.
[http://dx.doi.org/10.1002/ptr.2184]
[8]
Asadzadeh, A.; Sirous, H.; Pourfarzam, M.; Yaghmaei, P.; Afshin, F. In vitro and in silico studies of the inhibitory ef-fects of some novel kojic acid derivatives on tyrosinase en-zyme. Iran. J. Basic Med. Sci., 2016, 19(2), 132-144.
[9]
Jorgensen, W.L. Efficient drug lead discovery and optimiza-tion. Acc. Chem. Res., 2008, 42, 724-733.
[http://dx.doi.org/10.1021/ar800236t]
[10]
Clark, D.E. What has virtual screening ever done for drug discovery? Exp Opin. Drug Disc ., 2009, 3, 841-851.
[http://dx.doi.org/10.1517/17460441.3.8.841]
[11]
Issa, N.T.; Wathieu, H.; Ojo, A.; Byers, S.W.; Dakshanamurthy, S. Drug metabolism in preclinical drug de-velopment: A survey of the discovery process, toxicology, and computational tools. Curr. Drug Metab., 2017, 18(6), 556-565.
[http://dx.doi.org/10.2174/1389200218666170316093301]
[12]
Chase, M.R.; Raina, K.; Bruno, J.; Sugumaran, M. Purifica-tion, characterization and molecular cloning of prophenoloxi-dases from Sarcophaga bullata. Insect Biochem. Mol. Biol., 2000, 30, 953-967.
[http://dx.doi.org/10.1016/S0965-1748(00)00068-0]
[13]
Oetting, W.S. The tyrosinase gene and oculocutaneous al-binism type 1 (OCA1): A model for understanding the mo-lecular biology of melanin formation. Pigment Cell Res., 2000, 13, 320-325.
[http://dx.doi.org/10.1034/j.1600-0749.2000.130503.x]
[14]
Zaidi, K.U.; Ali, A.S.; Ali, S.A. Melanogenic effect of purified mushroom tyrosinase on B16F10 melanocytes: A phase contrast and immunofluores-cence microscopic study. J. Microscop. Ultrastruct., 2016, 5(2), 82-89.
[http://dx.doi.org/10.1016/j.jmau.2016.07.002.]
[15]
Cooksey, C.J.; Garratt, P.J.; Land, E.J.; Pavel, S.; Ramsden, C.A.; Riley, P.A.; Smit, N.P.M. Evidence of the indirect for-mation of the catecholic intermediate substrate responsible for the autoactivation kinetics of tyrosinase. J. Biol. Chem., 1997, 272(42), 26226-26235.
[http://dx.doi.org/10.1074/jbc.272.42.26226]
[16]
Kumar, C.M.; Sathisha, U.V.; Dharmesh, S.; Rao, A.G.; Singh, S.A. Interaction of sesamol (3,4-methylenedioxyphenol) with tyrosinase and its effect on melanin synthesis. Biochimie, 2011, 93(3), 562-569.
[http://dx.doi.org/10.1016/j.biochi.2010.11.014]
[17]
Jaenicke, E.; Decker, H. Tyrosinases from crustaceans form hexamers. Biochem. J., 2003, 371(2), 515-523.
[http://dx.doi.org/10.1042/bj20021058]
[18]
Mayer, A.M. Polyphenol oxidases in plants and fungi: Going places? A review. Phytochemistry, 2006, 67(21), 2318-2331.
[http://dx.doi.org/10.1016/j.phytochem.2006.08.006]
[19]
Solomon, E.I.; Sundaram, U.M.; Machonkin, T.E. Multicop-per oxidases and oxygenases. Chem. Rev., 1996, 96, 2563-2606.
[http://dx.doi.org/10.1021/cr950046o]
[20]
Lind, T.; Siegbahn, P.E.M.; Crabtree, R.H. A quantum chemi-cal study of the mechanism of tyrosinase. J. Phys. Chem., 1999, 103(7), 1193-1202.
[http://dx.doi.org/10.1021/jp982321r]
[21]
Decker, H.; Tuczek, F. Tyrosinase catechol activity of hemo-cyanins: structural basis and molecular mechanism. Trends Biochem. Sci., 2000, 25(8), 392-397.
[http://dx.doi.org/10.1016/S0968-0004(00)01602-9]
[22]
Piquemal, J.P.; Pilmé, J. Comments on the nature of the bond-ing in oxygenated dinuclear copper enzymes models. J. Mol. Struct., 2006, 764(1-3), 77-86.
[http://dx.doi.org/10.1016/j.theochem.2006.02.013]
[23]
Gherman, B.F.; Cramer, C.J. Quantum chemical studies of molecules incorporating a Cu2O2 2+ core. Coord. Chem. Rev., 2009, 253(5-6), 723-753.
[http://dx.doi.org/10.1016/j.ccr.2007.11.018]
[24]
Matoba, Y.; Kumagai, T.; Yamamoto, A.; Yoshitsu, H.; Sugiyama, M. Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. J. Biol. Chem., 2006, 281(13), 8981-8990.
[http://dx.doi.org/10.1074/jbc.M509785200]
[25]
Sendovski, M.; Kanteev, M.; Ben-Yosef, V.S.; Adir, N.; Fishman, A. First structures of an active bacterial tyrosinase reveal copper plasticity. J. Mol. Biol., 2011, 405(1), 227-237.
[http://dx.doi.org/10.1016/j.jmb.2010.10.048]
[26]
Ismaya, W.T.; Rozeboom, H.J.; Weijn, A.; Mes, J.J.; Fusetti, F.; Wichers, H.J.; Dijkstra, B.W. Crystal structure of Agaricus bisporus mushroom tyrosinase: Identity of the tetramer subu-nits and interaction with tropolone. Biochem, 2011, 50(24), 5477-5486.
[http://dx.doi.org/10.1021/bi200395t]
[27]
Zekiri, F.; Molitor, C.; Mauracher, S.G.; Michael, C.; Mayer, R.L.; Gerner, C.; Rompel, A. Purification and characterization of tyrosinase from walnut leaves. Phytochemistry, 2014, 101, 5-15.
[http://dx.doi.org/10.1016/j.phytochem.2014.02.010]
[28]
Bijelic, A.; Pretzler, M.; Molitor, C.; Zekiri, F.; Rompel, A. The Structure of a plant tyrosinase from walnut leaves reveals the importance of “Substrate-guiding residues” for enzymatic specificity. Angew. Chem. Int. Ed. Engl., 2015, 54(49), 14677-14680.
[http://dx.doi.org/10.1002/anie.201506994]
[29]
Lai, X.; Lopez, M.S.; Wichers, H.J.; Dijkstra, B.W. Large-scale recombinant expression and purification of human tyro-sinase suitable for structural studies. PLoS One, 2016, 11(8), 1-16.
[http://dx.doi.org/10.1371/journal.pone.0161697]
[30]
Solomon, E.I.; Sundaram, U.M.; Machonkim, T.E. Multicop-per oxidases and oxygenases. Chem. Rev., 1996, 96(7), 2563-2605.
[http://dx.doi.org/10.1021/cr950046o]
[31]
Zaidi, K.U.; Ali, A.S.; Ali, S.A. Purification and characterization of melanogenic enzyme tyrosinase from button mushroom. Enzyme Res 2014, 2014, 2014, 1-6.
[32]
Zaidi, K.U.; Ali, A.S.; Ali, S.A.; Naaz, I. Microbial tyrosinases: Promising enzymes for pharmaceutical, food bioprocessing, and environmental industry. Biochem. Res. Int 2014, 2014, (2014), 1-6.
[33]
Zaidi, K.U.; Ali, A.S.; Ali, S.A. Purification and characteriza-tion of high potential tyrosinase from macrofungi and its ap-pliance in food engineering. J. Microbiol. Biotechnol. Food Sci., 2015, 5(3), 203-206.
[http://dx.doi.org/10.15414/jmbfs.2015.5.3.203-206]
[34]
Kim, D.; Park, J.; Kim, J.; Han, C.; Yoon, J.; Kim, N.; Seo, J.; Lee, C. Flavonoids as mushroom tyrosinase inhibitors: A flu-orescence quenching study. J. Agric. Food Chem., 2006, 54(3), 935-941.
[http://dx.doi.org/10.1021/jf0521855]
[35]
Zhang, C.; Lu, Y.; Tao, L.; Tao, X.; Su, X.; Wei, D. Tyrosi-nase inhibitory effects and inhibition mechanisms of nobiletin and hesperidin from citrus peel crude extracts. J. Enzyme Inhib. Med. Chem., 2007, 22(1), 83-90.
[http://dx.doi.org/10.1080/14756360600953876]
[36]
Itoh, K.; Hirata, N.; Masuda, M.; Naruto, S.; Murata, K.; Wakabayashi, K.; Matsuda, H. Inhibitory effects of Citrus hassaku extract and its flavanone glycosides on melanogenesis. Biol. Pharm. Bull., 2009, 32(3), 410-415.
[http://dx.doi.org/10.1248/bpb.32.410]
[37]
Lee, S.H.; Choi, S.Y.; Kim, H.; Hwang, J.S.; Lee, B.G.; Gao, J.J.; Kim, S.Y. Mulberroside F isolated from the leaves of Morus alba inhibits melanin biosynthesis. Biol. Pharm. Bull., 2002, 25(8), 1045-1048.
[http://dx.doi.org/10.1248/bpb.25.1045]
[38]
Miyazawa, M.; Tamura, N. Inhibitory compound of tyrosinase activity from the sprout of Polygonum hydropiper L. (Benitade). Biol. Pharm. Bull., 2007, 30(3), 595-597.
[http://dx.doi.org/10.1248/bpb.30.595]
[39]
Kubo, I.; Kinst-Hori, I. Flavonols from saffron flower: tyrosinase inhibitory activity and inhibition mechanism. J. Agric. Food Chem., 1999, 47(10), 4121-4125.
[http://dx.doi.org/10.1021/jf990201q]
[40]
Kubo, I.; Kinst-Hori, I.; Chaudhuri, S.K.; Kubo, Y.; Sánchez, Y.; Ogura, T. Flavonols from Heterotheca inuloides: Tyrosinase inhibitory activity and structural criteria. Bioorg. Med. Chem., 2000, 8(7), 1749-1755.
[http://dx.doi.org/10.1016/S0968-0896(00)00102-4]
[41]
Xie, L.P.; Chen, Q.X.; Huang, H.; Wang, H.Z.; Zhang, R.Q. Inhibitory effects of some flavonoids on the activity of mush-room tyrosinase. Biochemistry, 2003, 68(4), 487-491.
[42]
Nugroho, A.; Choi, J.K.; Park, J.H.; Lee, K.T.; Cha, B.C.; Park, H.J. Two new flavonol glycosides from Lamium am-plexicaule L. and their In vitro free radical scavenging and ty-rosinase inhibitory activities. Planta Med., 2009, 75(4), 364-366.
[http://dx.doi.org/10.1055/s-0028-1112216]
[43]
Galgut, J.M.; Ali, S.A. Effect and mechanism of action of resveratrol:A novel melanolytic compound from the peanut skin of Arachis hypogaea. J. Recept. Signal Transduct. Res., 2011, 31(15), 374-380.
[http://dx.doi.org/10.3109/10799893.2011.607170]
[44]
Kuniyoshi, S.; Seiji, Y.; Ryuichiro, K. A new stilbene with tyrosinase inhibitory activity form Chlorophora excelsa. Chem. Pharm. Bull. (Tokyo), 2003, 51(3), 318-319.
[http://dx.doi.org/10.1248/cpb.51.318]
[45]
Ohguchi, K.; Tanaka, T.; Iliya, I.; Ito, T.; Iinuma, M.; Matsu-moto, K.; Akao, Y.; Nozawa, Y. Gnetol as a potent tyrosinase inhibitor from genus Gnetum. Biosci. Biotechnol. Biochem., 2003, 67(3), 663-665.
[http://dx.doi.org/10.1271/bbb.67.663]
[46]
Yokozawa, T.; Kim, Y.J. Piceatannol inhibits melanogene-sis by its antioxidative actions. Biol. Pharm. Bull., 2007, 30(11), 2007-2011.
[http://dx.doi.org/10.1248/bpb.30.2007]
[47]
Jones, K.; Hughes, J.; Hong, M.; Jia, Q.; Orndorff, S. Modula-tion of melanogenesis by aloesin: A competitive inhibitor of tyrosinase. Pigment Cell Res., 2002, 15(5), 335-340.
[http://dx.doi.org/10.1034/j.1600-0749.2002.02014.x]
[48]
Choi, S.; Lee, S.K.; Kim, J.E.; Chung, M.H.; Park, Y.I. Al-oesin inhibits hyperpigmentation induced by UV radiation. Clin. Exp. Dermatol., 2002, 27(6), 513-515.
[http://dx.doi.org/10.1046/j.1365-2230.2002.01120.x]
[49]
Masamoto, Y.; Ando, H.; Murata, Y.; Shimoishi, Y.; Tada, M.; Takahata, K. Mushroom tyrosinase inhibitory activity of esculetin isolated from seeds of Euphorbia lathyris L. Biosci. Biotechnol. Biochem., 2003, 67(3), 631-634.
[http://dx.doi.org/10.1271/bbb.67.631]
[50]
Piao, X.L.; Baek, S.H.; Park, M.K.; Park, J.H. Tyrosinase-inhibitory furanocoumarin from Angelica dahurica. Biol. Pharm. Bull., 2004, 27, 1144-1146.
[http://dx.doi.org/10.1248/bpb.27.1144]
[51]
Ahmad, V.U.; Ullah, F.; Hussain, J.; Farooq, U.; Zubair, M.; Khan, M.T.; Choudhary, M.I. Tyrosinase inhibitors from Rhododendron collettianum and their structure-activity relationship (SAR) studies. Chem. Pharm. Bull. (Tokyo), 2004, 52(12), 1458-1461.
[http://dx.doi.org/10.1248/cpb.52.1458]
[52]
Jimenez, M.; Chazarra, S.; Escribano, J.; Cabanes, J.; Garcaí-Carmona, F. Competitive inhibition of mushroom tyrosinase by 4-substituted benzaldehydes. J. Agric. Food Chem., 2001, 49(8), 4060-4063.
[http://dx.doi.org/10.1021/jf010194h]
[53]
Lee, H.S. Tyrosinase inhibitors of Pulsatilla cernua root-derived materials. J. Agric. Food Chem., 2002, 50(6), 1400-1403.
[http://dx.doi.org/10.1021/jf011230f]
[54]
Kubo, I.; Kinst-Hori, I. 2-Hydroxy-4-methoxy benzaldehyde: A potent tyrosinase inhibitor from African medicinal plants. Planta Med., 1999, 65(1), 19-22.
[http://dx.doi.org/10.1055/s-1999-13955]
[55]
Iwai, K.; Kishimoto, N.; Kakino, Y.; Mochida, K.; Fujita, T. In vitro antioxidative effects and tyrosinase inhibitory activities of seven hydroxycinnamoyl derivatives in green coffee beans. J. Agric. Food Chem., 2004, 52(15), 4893-4898.
[http://dx.doi.org/10.1021/jf040048m]
[56]
Lim, J.Y.; Ishiguro, K.; Kubo, I. Tyrosinase inhibitory p-coumaric acid from ginseng leaves. Phytother. Res., 1999, 13(5), 371-375.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199908/09)13:5<371:AID-PTR453>3.0.CO;2-L]
[57]
Miyazawa, M.; Oshima, T.; Koshino, K.; Itsuzaki, Y.; Anzai, J. Tyrosinase inhibitor from black rice bran. J. Agric. Food Chem., 2003, 51(24), 6953-6956.
[http://dx.doi.org/10.1021/jf030388s]
[58]
Kubo, I.; Kinst-Hori, I.; Kubo, Y.; Yamagiwa, Y.; Kamikawa, T.; Haraguchi, H. Molecular design of antibrowning agents. J. Agric. Food Chem., 2000, 48(4), 1393-1399.
[http://dx.doi.org/10.1021/jf990926u]
[59]
Kubo, I.; Kinst-Hori, I.; Nihei, K.; Soria, F.; Takasaki, M.; Calderón, J.S.; Céspedes, C.L. Tyrosinase inhibitors from galls of Rhus javanica leaves and their effects in insects. Z. Naturforsch. C, 2003, 58(9-10), 719-725.
[http://dx.doi.org/10.1515/znc-2003-9-1022]
[60]
Kubo, I.; Chen, Q.X.; Nihei, K. Molecular design of antibrowning agents: antioxidative tyrosinase inhibitors. Food Chem., 2003, 81, 241-247.
[http://dx.doi.org/10.1016/S0308-8146(02)00418-1]
[61]
Khan, M.T.; Choudhary, M.I.; Rahman, A.U.; Mamedova, R.P.; Aqzamova, M.A.; Sultankhodzhaev, M.N.; Isaev, M.I. Tyrosinase inhibition studies of cycloartane and cucurbitane glycosides and their structure-activity relationships. Bioorg. Med. Chem., 2006, 14(17), 6085-6088.
[http://dx.doi.org/10.1016/j.bmc.2006.05.002]
[62]
Ullah, F.; Hussain, H.; Hussain, J.; Bukhari, I.A.; Khan, M.T.; Choudhary, M.I.; Gilani, A.H.; Ahmad, V.U. Tyrosinase in-hibitory pentacyclic triterpenes and analgesic and spasmolytic activities of methanol extracts of Rhododendron collettianum. Phytother. Res., 2007, 21(11), 1076-1081.
[http://dx.doi.org/10.1002/ptr.2216]
[63]
Maqid, A.A.; Voutquenne-Nazabadioko, L.; Bontemps, G.; Litaudon, M.; Lavaud, C. Tyrosinase inhibitors and sesquit-erpene diglycosides from Guioa villosa. Planta Med., 2008, 74(1), 55-60.
[http://dx.doi.org/10.1055/s-2007-993780]
[64]
Kang, H.S.; Choi, J.H.; Cho, W.K.; Park, J.C.; Choi, J.S. A sphingolipid and tyrosinase inhibitors from the fruiting body of Phellinus linteus. Arch. Pharm. Res., 2004, 27(7), 742-750.
[http://dx.doi.org/10.1007/BF02980143]
[65]
Greer, J.; Erickson, W.J.; Baldwin, J.J.; Varney, M.D. Application of three dimensional structures of protein target molecules in structure based drug design. J. Med. Chem., 1994, 37(8), 1035-1054.
[http://dx.doi.org/10.1021/jm00034a001]
[66]
Muller, B.A. Imatinib and its successor how modern chemistry has changed drug development. Curr. Pharm. Des., 2009, 15(2), 120-133.
[http://dx.doi.org/10.2174/138161209787002933]
[67]
McRobb, F.M.; Negri, A.; Beuming, T.; Sherman, W. Molecular dynamics techniques for modelling G protein-coupled receptors. Curr. Opin. Pharmacol., 2016, 30, 69-75.
[http://dx.doi.org/10.1016/j.coph.2016.07.001]
[68]
Salum, L.B.; Polikarpov, I.; Andricopulo, A.D. Structure-based approach for the study of estrogen receptor binding af-finity and subtype selectivity. J. Chem. Inf. Model., 2008, 48(11), 2243-2253.
[http://dx.doi.org/10.1021/ci8002182]
[69]
Weigelt, J. Structural genomics-Impact on biomedicine and drug discovery. Exp. Cell Res., 2010, 316(8), 1332-1338.
[http://dx.doi.org/10.1016/j.yexcr.2010.02.041]
[70]
Cheng, M.; Chen, Z. Screening of tyrosinase inhibitors by capillary electrophoresis with immobilized enzyme microreactor and molecular docking. Electrophoresis, 2017, 38(3-4), 486-493.
[http://dx.doi.org/10.1002/elps.201600367]
[71]
Kharb, M.; Jat, R.K.; Parjapati, G.; Gupta, A. Review on intro-duction to molecular docking software technique in medicinal chemistry. Int. J. Drug Res. Technol., 2012, 2(2), 189-197.
[72]
Pagadala, N.S.; Syed, K.; Tuszynski, J. Software for molecular docking: a review. Biophys. Rev., 2017, 9(2), 91-102.
[http://dx.doi.org/10.1007/s12551-016-0247-1]
[73]
Huang, S.Y.; Zou, X. Advances and challenges in protein-ligand docking. Int. J. Mol. Sci., 2010, 1(1), 3016-3034.
[http://dx.doi.org/10.3390/ijms11083016]
[74]
Kumar, A.; Zhang, K.Y. A pose prediction approach based on ligand 3D shape similarity. J. Comput. Aided Mol. Des., 2016, 30(6), 457-469.
[http://dx.doi.org/10.1007/s10822-016-9923-2]
[75]
Lengauer, T.; Rarey, M. Computational methods for bio-molecular docking. Curr. Opin. Struct. Biol., 1996, 6(3), 402-406.
[http://dx.doi.org/10.1016/S0959-440X(96)80061-3]
[76]
Chen, V.B.; Arendall, W.B.; Headd, J.J.; Keedy, D.A.; Im-mormino, R.M.; Kapral, G.J.; Murray, L.W.; Richardson, J.S.; Richardson, D.C. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr., 2010, 66(1), 12-21.
[http://dx.doi.org/10.1107/S0907444909042073]
[77]
Dias, R.; de Azevedo, W.F. Jr Molecular docking algorithms. Curr. Drug Targets, 2008, 9(12), 1040-1047.
[http://dx.doi.org/10.2174/138945008786949432]
[78]
Sousa, S.F.; Fernandes, P.A.; Ramos, M.J. Protein-ligand docking: Current status and future challenges. Proteins, 2006, 65(1), 15-26.
[http://dx.doi.org/10.1002/prot.21082]
[79]
Akiyama, S.; Katsumata, S.; Suzuki, K.; Nakaya, Y.; Ishimi, Y.; Uehara, M. Hypoglycemic and hypolipidemic effects of heperidin and cyclodextrin-clathrated hesperitin in Goto-Kakizaki Rats withtype 2 diabetes. Biosci. Biotechnol. Biochem., 2009, 73(12), 2779-2782.
[http://dx.doi.org/10.1271/bbb.90576]
[80]
Ahmed, O.M.; Mahmoud, A.M.; Abdel-Moneim, A.; Ashour, M.B. Antidiabetic effects of hesperidin and naringin in type 2 diabetic rats. Diabetol. Croat., 2012, 41(2), 53-67.
[81]
Li, C.; Schluesener, H. Health-promoting effects of the citrus flavanone hesperidin. Crit. Rev. Food Sci. Nutr., 2015, 57(3), 613-631.
[http://dx.doi.org/10.1080/10408398.2014.906382]
[82]
Galgut, J.M.; Ali, S.A. Hesperidin induced melanophore aggregatory responses in tadpole of Bufo melanostictus via α- Adrenoceptors. Pharmacologia, 2012, 3(10), 519-524.
[http://dx.doi.org/10.5567/pharmacologia.2012.519.524]
[83]
Si, Y.X.; Wang, Z.J.; Park, D.; Chung, H.Y.; Wang, S.F.; Yan, L.; Yang, J.M.; Qian, G.Y.; Yin, S.J.; Park, Y.D. Effect of hesperetin on tyrosinase: Inhibition kinetics integrated coputational simulation study. Int. J. Biol. Macromol., 2012, 50(1), 257-262.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.11.001]
[84]
Chen, S.F.; Tsai, H.J.; Hung, T.H.; Chen, C.C.; Lee, C.Y.; Wu, C.H.; Wang, P.Y.; Liao, N.C. Salidroside improves behavioral and histological outcomes and reduces apoptosis via PI3K/Akt signaling after experimental traumatic brain injury. PLoS One, 2012, 7(9)e45763
[http://dx.doi.org/10.1371/journal.pone.0045763]
[85]
Kucinskaite, A.; Briedis, V.; Savickas, A. Experimental analysis of therapeutic properties of Rhodiola rosea L. and its possible application in medicine. Medicina (B. Aires), 2003, 40(7), 614-619.
[86]
Kang, H.S.; Kim, H.R.; Byun, D.S.; Son, B.W.; Nam, T.J.; Choi, J.S. Tyrosinase inhibitors isolated from the edible brown alga Ecklonia stolonifera. Arch. Pharm. Res., 2004, 27(12), 1226-1232.
[http://dx.doi.org/10.1007/BF02975886]
[87]
Zhong, H.; Xin, H.; Wu, L.X.; Zhu, Y.Z. Salidroside attenu-ates apoptosis in ischemic cardiomyocytes: A mechanism through a mitochondria-dependent pathway. J. Pharmacol. Sci., 2009, 114(4), 399-408.
[http://dx.doi.org/10.1254/jphs.10078FP]
[88]
Chiang, H.M.; Chien, Y.C.; Wu, C.H.; Kuo, Y.H.; Wu, W.C.; Pan, Y.Y.; Su, Y.H.; Wen, K.C. Hydroalcoholic extract of Rhodiola rosea L. (Crassulaceae) and its hydrolysate inhibit melanogenesis in B16F0 cells by regulating the CREB/MITF/tyrosinase pathway. Food Chem. Toxicol., 2014, 65, 129-139.
[http://dx.doi.org/10.1016/j.fct.2013.12.032]
[89]
Zhu, Y.; Chen, C.; Zhao, S.; Yang, J.; Song, H.; Ge, F.; Liu, D. Inhibitory Mechanism of Salidroside on Tyrosinase. J. Food Nutr. Res., 2014, 2(10), 698-703.
[http://dx.doi.org/10.12691/jfnr-2-10-8]
[90]
Pengfei, L.; Tiansheng, D.; Xianglin, H.; Jianguo, W. Antioxi-dant properties of isolated isorhamnetin from the sea buck-thorn marc. Plant Foods Hum. Nutr., 2009, 64, 141-145.
[http://dx.doi.org/10.1007/s11130-009-0116-1]
[91]
Upadhyay, N.K.; Kumar, M.S.; Gupta, A. Antioxidant, cyto-protective and antibacterial effects of Sea buckthorn (Hip-pophae rhamnoides L.) leaves. Food Chem. Toxicol., 2010, 48, 3443-3448.
[http://dx.doi.org/10.1016/j.fct.2010.09.019]
[92]
Lee, J.; Lee, J.; Jung, E.; Hwang, W.; Kim, Y.S.; Park, D. Isorhamnetin-induced anti-adipogenesis is mediated by stabilization of beta-catenin protein. Life Sci., 2010, 86, 416-423.
[http://dx.doi.org/10.1016/j.lfs.2010.01.012]
[93]
Hamalainen, M.; Nieminen, R.; Asmawi, M.Z.; Vourela, P.; Vapatalo, H.; Moilanen, E. Effects of flavonoids on prosta-glandin E2 production and on COX-2 and mPGES-1 expres-sions in activated macrophages. Planta Med., 2011, 77, 1504-1511.
[http://dx.doi.org/10.1055/s-0030-1270762]
[94]
Si, Y.X.; Wang, Z.J.; Park, D.; Jeong, H.O.; Ye, S.; Chung, H.Y.; Yang, J.M.; Yin, S.J.; Qian, G.Y. Effect of isorhamnetin on tyrosinase: Inhibition kinetics and computational simula-tion. Biosci. Biotechnol. Biochem., 2012, 76(6), 1091-1097.
[http://dx.doi.org/10.1271/bbb.110910]
[95]
Liu, Z.J.; Wang, Y.L.; Li, Q.L.; Yang, L. Improved anti-melanogenesis and antioxidant effects of polysaccharide from Cuscuta chinensis Lam seeds after enzymatic hydrolysis. Braz. J. Med. Biol. Res., 2018, 15(7)e7256
[http://dx.doi.org/10.1590/1414-431x20187256]
[96]
Hu, W.J.; Yan, L.; Park, D.; Jeong, H.O.; Chung, H.Y.; Yang, J.M.; Ye, Z.M.; Qian, G.Y. Kinetic, structural and molecular docking studies on the inhibition of tyrosinase induced by arabinose. Int. J. Biol. Macromol., 2012, 50(3), 694-700.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.12.035]
[97]
Liu, H.J.; Ji, S.; Fan, Y.Q.; Yan, L.; Yang, J.M.; Zhou, H.M.; Lee, J.; Wang, Y.L. The effect of D-(−)-arabinose on tyrosinase: An integrated study using computational simulation and inhibition kinetics. Enzyme Res., 2012, 2012(2012)
[98]
Bai, C.Z.; Feng, M.L.; Hao, X.L.; Zhong, Q.M.; Tong, L.G.; Wang, Z.H. Rutin, quercetin, and free amino acid analysis in buckwheat (Fagopyrum) seeds from different locations. Genet. Mol. Res., 2015, 14(4), 19040-19048.
[http://dx.doi.org/10.4238/2015.December.29.11]
[99]
Sattanathan, K.; Dhanapal, C.K.; Umarani, R.; Manavalan, R. Beneficial health effects of rutin supplementation in patients with diabetes mellitus. J. Appl. Pharm. Sci., 2011, 1(8), 227-231.
[100]
Dar, M. A and Tabassum, N. Rutin-potent thrombolytic agent. Int. Curr. Pharm. J., 2012, 1(12), 431-435.
[http://dx.doi.org/10.3329/icpj.v1i12.12454]
[101]
de Freitas, M.M.; Fontes, P.R.; Souza, P.M.; William Fagg, C.; Neves Silva Guerra, E.; de Medeiros Nóbrega, Y.K.; Silveira, D.; Fonseca-Bazzo, Y.; Simeoni, L.A.; Homem-de-Mello, M.; Oliveira Magalhães, P. Extracts of Morus nigra L. Leaves standardized in chlorogenic acid, rutin and isoquercitrin: Tyrosinase inhibition and cytotoxicity. PLoS One, 2016, 11(9)e0163130
[http://dx.doi.org/10.1371/journal.pone.0163130]
[102]
Si, Y.X.; Yin, S.J.; Oh, S.; Wang, Z.J.; Ye, S.; Yan, L.; Yang, J.M.; Park, Y.D.; Lee, J.; Qian, G.Y. An integrated study of tyrosinase inhibition by rutin: Progress using a computational simulation. J. Biomol. Struct. Dyn., 2012, 29(5), 999-1012.
[http://dx.doi.org/10.1080/073911012010525028]
[103]
Arrigoni, O. De Tulio.; M.C. Ascorbic acid: Much more than just an antioxidant. Biochim. Biophys. Acta, 2002, 1569, 1-9.
[http://dx.doi.org/10.1016/S0304-4165(01)00235-5]
[104]
Ros, J.R.; Rodriguez-lopez, J.N.; Garcia-Canovas, F. Effect of L-ascorbic acid on the monophenolase activity of tyrosinase. Biochem. J., 1993, 295(1), 309-312.
[http://dx.doi.org/10.1042/bj2950309]
[105]
Senol, F.S.; Khan, M.T.; Orhan, G.; Gurkas, E.; Orhan, I.E.; Oztekin, N.S.; Ak, F. In silico approach to inhibition of tyrosinase by ascorbic acid using molecular docking simulations. Curr. Top. Med. Chem., 2014, 14(12), 1469-1472.
[http://dx.doi.org/10.2174/1568026614666140610121253]
[106]
Yamazaki, M. The pharmacological studies on matrine and oxymatrine. Yakugaku Zasshi, 2000, 120, 1025-1033.
[http://dx.doi.org/10.1248/yakushi1947.120.10_1025]
[107]
Ma, L.; Wen, S.; Zhan, Y.; He, Y.; Liu, X.; Jiang, J. Anticancer effects of the Chinese medicine matrine on murine hepatocellular carcinoma cells. Planta Med., 2008, 74, 245-251.
[http://dx.doi.org/10.1055/s-2008-1034304]
[108]
Zhang, X.; Jiang, W.; Zhou, A.L.; Zhao, M.; Jiang, D.R. Inhibitory effect of oxymatrine on hepatocyte apoptosis via TLR4/PI3K/Akt/GSK-3β signaling pathway. World J. Gastroenterol., 2017, 23(21), 3839-3849.
[http://dx.doi.org/10.3748/wjg.v23.i21.3839]
[109]
Liu, X.X.; Sun, S.Q.; Wang, Y.J.; Xu, W.; Wang, Y.F.; Park, D.; Zhou, H.M.; Han, H.Y. Kinetics and computational docking studies on the inhibition of tyrosinase induced by oxymatrine. Appl. Biochem. Biotechnol., 2013, 169(1), 145-158.
[http://dx.doi.org/10.1007/s12010-012-9960-9]
[110]
McKay, D.L.; Blumberg, J.B. A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytother. Res., 2006, 20, 519-530.
[http://dx.doi.org/10.1002/ptr.1900]
[111]
Li, R.P.; Zhao, D.; Qu, R.; Fu, Q.; Ma, S.P. The effect of apig-enin on lipopolysaccharide induced depressive like behaviour in mice. Neurosci. Lett., 2015, 594, 17-22.
[http://dx.doi.org/10.1016/j.neulet.2015.03.040]
[112]
Park, S.; Lim, W.; Bazer, F.W.; Song, G. Apigenin induces ROS dependent apoptosis and ER stress in human endometriosis cells. J. Cell. Physiol., 2017, 233(4), 3055-3065.
[http://dx.doi.org/10.1002/jcp.26054]
[113]
Ha, T.J.; Hwang, S.W.; Jung, H.J.; Park, K.H.; Yang, M.S. Apigenin, tyrosinase inhibitor isolated from the flowers of Hemisteptia lyrata bunge. J. Korean Soc. Appl. Biol. Chem., 2002, 45(4), 170-172.
[114]
Xiong, Z.; Liu, W.; Zhou, L.; Zou, L.; Chen, J. Mushroom (Agaricus bisporus) polyphenoloxidase inhibited by apigenin: Multi-spectroscopic analyses and computational docking simulation. Food Chem., 2016, 203, 430-439.
[http://dx.doi.org/10.1016/j.foodchem.2016.02.045]
[115]
Fang, S.H.; Hou, Y.C.; Chang, W.C.; Hsiu, S.L.; Chao, L.P.D.; Chiang, B.L. Morin sulfates/glucuronides exert anti-inflammatory activity on activated. macrophages and decreased the incidence of septic shock. Life Sci., 2003, 74, 743-756.
[http://dx.doi.org/10.1016/j.lfs.2003.07.017]
[116]
Lee, K.M.; Lee, Y.; Chun, H.J.; Kim, A.H.; Kim, J.Y.; Lee, J.Y.; Ishigami, A.; Lee, J. Neuroprotective and anti-inflammatory effects of morin in a murine model of Parkinson’s disease. J. Neurosci. Res., 2016, 94(10), 865-878.
[http://dx.doi.org/10.1002/jnr.23764]
[117]
Xie, L.P.; Chen, Q.X.; Huang, H.; Wang, H.Z.; Zhang, R.Q. Inhibitory effects of some flavonoids on the activity of mushroom tyrosinase. Biochemistry (Mosc.), 2003, 68(4), 487-491.
[http://dx.doi.org/10.1023/A:1023620501702]
[118]
Wang, Y.; Zhang, G.; Yan, J.; Gong, D. Inhibitory effect of morin on tyrosinase: Insights from spectroscopic and molecular docking studies. Food Chem., 2014, 163, 226-233.
[http://dx.doi.org/10.1016/j.foodchem.2014.04.106]
[119]
Kang, J.I.; Kim, S.C.; Kim, M.K.; Boo, H.J.; Jeon, Y.J.; Koh, Y.S.; Yoo, E.S.; Kang, S.M.; Kang, H.K. Effect of dieckol, a component of Ecklonia cava, on the promotion of hair growth. Int. J. Mol. Sci., 2012, 13(12), 6407-6423.
[http://dx.doi.org/10.3390/ijms13056407]
[120]
Jang, S.K.; Lee, D.I.; Kim, S.T.; Kim, G.H. Park da, W.; Park, J.Y.; Han, D; Choi, J.K.; Lee, Y.B.; Han, N.S.; Kim, Y.B.; Han, J.; Joo, S.S. The anti-aging properties of a human placen-tal hydrolysate combined with dieckol isolated from Ecklonia cava. BMC Complement. Altern. Med., 2015, 15, 345.
[http://dx.doi.org/10.1186/s12906-015-0876-0]
[121]
Li, Y.X.; Li, Y.; Je, J.Y.; Kim, S.K. Dieckol as a novel anti-proliferative and anti-angiogenic agent and computational anti-angiogenic activity evaluation. Environ. Toxicol. Pharmacol., 2015, 39(1), 259-270.
[http://dx.doi.org/10.1016/j.etap.2014.11.027]
[122]
Jeong, S.H.; Jeon, Y.J.; Park, S.J. Inhibitory effects of dieckol on hypoxia-induced epithelial-mesenchymal transition of HT29 human colorectal cancer cells. Mol. Med. Rep., 2016, 14(6), 5148-5154.
[http://dx.doi.org/10.3892/mmr.2016.5872]
[123]
Yang, Y.I.; Woo, J.H.; Seo, Y.J.; Lee, K.T.; Lim, Y.; Choi, J.H. Protective effect of brown alga phlorotannins against hyper-inflammatory responses in lipopolysaccharide-induced sepsis models. J. Agric. Food Chem., 2016, 64(3), 570-578.
[http://dx.doi.org/10.1021/acs.jafc.5b04482]
[124]
Heo, S.J.; Ko, S.C.; Cha, S.H.; Kang, D.H.; Park, H.S.; Choi, Y.U.; Kim, D.; Jung, W.K.; Jeon, Y.J. Effect of phlorotannins isolated from Ecklonia cava on melanogenesis and their protective effect against photo-oxidative stress induced by UV-B radiation. Toxicol. In Vitro, 2009, 23(6), 1123-1130.
[http://dx.doi.org/10.1016/j.tiv.2009.05.013]
[125]
Kang, S.M.; Heo, S.J.; Kim, K.N.; Lee, S.H.; Yang, H.M.; Kim, A.D.; Jeon, Y.J. Molecular docking studies of a phlorotannin, dieckol isolated from Ecklonia cava with tyrosinase inhibitory activity. Bioorg. Med. Chem., 2012, 20(1), 311-316.
[http://dx.doi.org/10.1016/j.bmc.2011.10.078]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 11
Year: 2019
Page: [1182 - 1193]
Pages: 12
DOI: 10.2174/1570180815666180803111021
Price: $65

Article Metrics

PDF: 31
HTML: 2