Optimized Trace Analysis of Verapamil in Biological Fluids Using Solvent Bar Micro Extraction Technique Coupled with HPLC-UV Detection

Author(s): Farzaneh Farazmand, Mahnaz Qomi*

Journal Name: Current Analytical Chemistry

Volume 16 , Issue 6 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Introduction: Verapamil (Verap) is an antidysrhythmic agent and a calcium channel blocker, indicated for angina, hypertension, supraventricular arrhythmias, and migraine.

Objective: Drug monitoring plays a critical role in patient survival. In order to prevent the onset of drug toxicity, trace levels of this drug should be determined.

Methods: For this reason, solvent bar microextraction technique coupled with high-performance liquid chromatography was implemented.

Results: Under optimum condition, verapamil was micro-extracted from a donor solution (pH=11) to an acceptor solution (pH=3.2). It was transferred through n-octanol as the organic solvent, which was impregnated in the pores of the hollow fiber. Salt addition (30%) had the major effect on the efficiency of the method. Interaction of time (65 min), temperature (25°C), and stirring rate (818 rpm) had a significant effect too. It all resulted in a limit of detection and quantification of 15 ng mL-1 and 50 ng mL-1, respectively. The relative standard deviations of analysis were 4.9% within a day (n=3) and 5.7% between days (n=9). The calibration curves represented good linearity for urine and plasma samples with coefficient estimations higher than 0.99 with a linearity range of 50-5000 ng mL-1. The relative standard deviation for intra- (n=3) and inter-(n=9) day was 4.2% and 5.7%, respectively.

Conclusion: It could be concluded that the application of this method for dose monitoring can be done at hospital and healthcare facilities.

Keywords: Biological fluids, HPLC-UV, microextraction, minitab, solvent bar, verapamil.

[2]
Cohen, A.S.; Matharu, M.S.; Goadsby, P.J. Electrocardiographic abnormalities in patients with cluster headache on verapamil therapy. Neurology, 2007, 69(7), 668-675.
[http://dx.doi.org/10.1212/01.wnl.0000267319.18123.d3] [PMID: 17698788]
[3]
Dadashzadeh, S.; Javadian, B.; Sadeghian, S. The effect of gender on the pharmacokinetics of verapamil and norverapamil in human. Biopharm. Drug Dispos., 2006, 27(7), 329-334.
[http://dx.doi.org/10.1002/bdd.512] [PMID: 16892180]
[4]
Krecic-Shepard, M.E.; Barnas, C.R.; Slimko, J.; Jones, M.P.; Schwartz, J.B. Gender-specific effects on verapamil pharmacokinetics and pharmacodynamics in humans. J. Clin. Pharmacol., 2000, 40(3), 219-230.
[http://dx.doi.org/10.1177/00912700022008883] [PMID: 10709150]
[5]
Fraser, J. F.; Maniskas, M.; Trout, A.; Lukins, D.; Parker, L.; Stafford, W. L.; Alhajeri, A.; Roberts, J.; Bix, G. J. Intra-arterial verapamil post-thrombectomy is feasible, safe, and neuroprotective in stroke. J. Cerebral Blood Flow Metabol., 2017, 27, 1678X17-705259.
[http://dx.doi.org/10.1177/0271678X17705259]
[6]
Sawicki, W. A validated method for the determination of verapamil and norverapamil in human plasma. J. Pharm. Biomed. Anal., 2001, 25(3-4), 689-695.
[http://dx.doi.org/10.1016/S0731-7085(00)00585-9] [PMID: 11377051]
[7]
Hubert, P.; Chiap, P.; Ceccato, A.; Bechet, I.; Sibenaler-Dechamps, R.; Maes, P. Determination of verapamil and norverapamil in human plasma by liquid chromatography: Comparison between a liquid—liquid extraction procedure and an automated liquid-solid Extraction method for sample preparation. J. Pharmaceut. Biomed., 1992, 10, 937-942.
[8]
Ceccato, A.; Chiap, P.; Hubert, P.; Toussaint, B.; Crommen, J. Automated determination of verapamil and norverapamil in human plasma with on-line coupling of dialysis to high-performance liquid chromatography and fluorometric detection. J. Chromatogr. A, 1996, 750(1-2), 351-360.
[http://dx.doi.org/10.1016/0021-9673(96)00471-2] [PMID: 8938391]
[9]
Li, S.; Liu, G.; Jia, J.; Liu, Y.; Pan, C.; Yu, C.; Cai, Y.; Ren, J. Simultaneous determination of ten antiarrhythic drugs and a metabolite in human plasma by liquid chromatography--tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 847(2), 174-181.
[http://dx.doi.org/10.1016/j.jchromb.2006.10.013 ] [PMID: 17113839]
[10]
von Richter, O.; Eichelbaum, M.; Schönberger, F.; Hofmann, U. Rapid and highly sensitive method for the determination of verapamil, [2H7]verapamil and metabolites in biological fluids by liquid chromatography-mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl., 2000, 738(1), 137-147.
[http://dx.doi.org/10.1016/S0378-4347(99)00508-3] [PMID: 10778935]
[11]
Ivanova, V.; Zendelovska, D.; Stefova, M.; Stafilov, T. HPLC method for determination of verapamil in human plasma after solid-phase extraction. J. Biochem. Biophys. Methods, 2008, 70(6), 1297-1303.
[http://dx.doi.org/10.1016/j.jbbm.2007.09.009] [PMID: 17977602]
[12]
Rambla-Alegre, M.; Gil-Agustí, M.T.; Capella-Peiró, M.E.; Carda-Broch, S.; Esteve-Romero, J.S. Direct determination of verapamil in urine and serum samples by micellar liquid chromatography and fluorescence detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2006, 839(1-2), 89-94.
[http://dx.doi.org/10.1016/j.jchromb.2006.03.054] [PMID: 16621741]
[13]
Jouyban, A.; Sorouraddin, M.H.; Farajzadeh, M.A.; Somi, M.H.; Fazeli-Bakhtiyari, R. Determination of five antiarrhythmic drugs in human plasma by dispersive liquid-liquid microextraction and high-performance liquid chromatography. Talanta, 2015, 134, 681-689.
[http://dx.doi.org/10.1016/j.talanta.2014.12.008] [PMID: 25618722]
[14]
Fazeli-Bakhtiyari, R.; Sorouraddin, M.H.; Farajzadeh, M.A.; Jouyban, A. Detection limit enhancement of antiarrhythmic drugs in human plasma using capillary electrophoresis with dispersive liquid-liquid microextraction and field-amplified sample stacking method. Bioanalysis, 2015, 7(1), 21-37.
[http://dx.doi.org/10.4155/bio.14.175] [PMID: 25558933]
[15]
Jouyban, A.; Hamidi, S. Dispersive micro solid phase extraction using carbon‐based adsorbents for sensitive determination of verapamil in plasma samples coupled with CE. J. Sep. Sci., 2017.
[http://dx.doi.org/10.1002/jssc.201700385]
[16]
Jiang, X.; Lee, H.K. Solvent bar microextraction. Anal. Chem., 2004, 76(18), 5591-5596.
[http://dx.doi.org/10.1021/ac040069f] [PMID: 15362925]
[17]
Minaii, M.; Qomi, M.; Hoseini, S.S.; Sadri, A. Preconcentration and determination of cyproheptadine by using liquid phase microextraction and solvent bar in biological fluids in trace level. Biosci. Biotechnol. Res. Asia, 2015, 12, 521-529.
[http://dx.doi.org/10.13005/bbra/1693]
[18]
Melwanki, M.B.; Huang, S-D.; Fuh, M-R. Three-phase solvent bar microextraction and determination of trace amounts of clenbuterol in human urine by liquid chromatography and electrospray tandem mass spectrometry. Talanta, 2007, 72(2), 373-377.
[http://dx.doi.org/10.1016/j.talanta.2006.10.034] [PMID: 19071627]
[19]
Afshari, A.R.; Qomi, M. A novel application of three phase hollow fiber based liquid phase microextraction (HF-LPME) for the HPLC determination of tamsulosin from biological fluids. Curr. Pharm. Anal., 2016, 12(3), 258-265.
[http://dx.doi.org/10.2174/1573412911666151026220542]
[20]
Akhavan, S.; Qomi, M.; Charmahali, G.; Akhavan, S. Hollow fiber based liquid phase microextraction combined high performance liquid chromatograph for the determination trace amounts of zopiclone in biological fluids. Biomed. Pharmacol. J., 2015, 8(1), 503-512.
[21]
Boloori, V.; Qomi, M.; Piroozi, F.; Raofie, F. Development of a simple and efficient method for preconcentration and determination of trace levels of fexofenadine in plasma and urine samples. J. Appl. Chem. Res., 2016, 10(3), 7-14.
[22]
Charmahali, G.; Qomi, M.; Akhavan, S.; Chaharmahali, M.; Tafti, F.F. Determination of trace amounts of risperidone in human urine sample by hollow fiber liquid-phase microextraction combined with high performance liquid chromatography. Biosci. Biotechnol. Res. Asia, 2015, 12(1), 539-548.
[http://dx.doi.org/10.13005/bbra/1695]
[23]
Darvish, M.; Qomi, M.; Akhgari, M.; Raoufi, P. Determination of trace amounts of methamphetamine in biological samples by hollow fiber liquid-phase microextraction followed by high performance liquid chromatography. Biosci. Biotechnol. Res. Asia, 2015, 12(1), 587-597.
[http://dx.doi.org/10.13005/bbra/1701]
[24]
Emadzadeh, S.; Qomi, M.; Saadat, M.; Piroozi, F. Three-phase hollow fiber liquid-phase micro extraction for determination and analysis of terazosin in biological fluids via high performance liquid chromatography at trace levels. Curr. Anal. Chem., 2016, 12(5), 489-495.
[http://dx.doi.org/10.2174/1573411012666151030212948]
[25]
Miraee, S.N.; Qomi, M.; Shamshiri, F.; Raoufi, P. Hollow-fiber liquid-phase microextraction followed by high performance liquid chromatography for the determination of trace amounts of methylphenidate hydrochloride in biological fluids. Biomed. Pharmacol. J., 2014, 7(2), 715-725.
[http://dx.doi.org/10.13005/bpj/546]
[26]
Piroozi, F.; Ghasemi, E.; Qomi, M.; Rezaee, R.; Hashemian, F. Hollow fiber liquid phase microextraction combined with high performance liquid chromatography for preconcentration and determination of cabergoline in biological samples. J. Liq. Chromatogr. Relat. Technol., 2014, 37(5), 760-771.
[http://dx.doi.org/10.1080/10826076.2012.758142]
[27]
Rezaee, R.; Qomi, M.; Piroozi, F. Hollow-fiber micro-extraction combined with HPLC for the determination of sitagliptin in urine samples. J. Serb. Chem. Soc., 2015, 80(10), 1311-1320.
[http://dx.doi.org/10.2298/JSC141227046R]
[28]
Solmaz, F.; Mahnaz, Q.; Marjan, G. preconcentration and determination of cabergoline using the green practical solvent bar liquid phase microextraction technique in biological fluids. Curr. Pharm. Anal., 2017, 13, 1-6.
[29]
Leardi, R. Experimental design in chemistry: A tutorial. Anal. Chim. Acta, 2009, 652(1-2), 161-172.
[http://dx.doi.org/10.1016/j.aca.2009.06.015 PMID: 19786177]
[30]
Tabaraki, R.; Nateghi, A. Optimization of ultrasonic-assisted extraction of natural antioxidants from rice bran using response surface methodology. Ultrason. Sonochem., 2011, 18(6), 1279-1286.
[http://dx.doi.org/10.1016/j.ultsonch.2011.05.004 PMID: 21612968]
[31]
Ashrafzadeh, T.; Qomi, M. Preconcentration and determination of solifenacin using hollow fiber microextraction coupled with HPLC. Curr. Anal. Chem., 2016, 12(6), 594-601.
[http://dx.doi.org/10.2174/1573411012666160606170219]
[32]
Gerivani, Z.; Ghasemi, N.; Qomi, M.; Abdollahi, M.; Maleki Rad, A.A. Prediction of rizatriptan trace level in biological samples: An application of the adaptive-network-based fuzzy inference system (ANFIS) in assisting drug dose monitoring. J. Liq. Chromatogr. Relat. Technol., 2018, 41(3), 101-106.
[http://dx.doi.org/10.1080/10826076.2017.1419961]
[33]
Kiani, M.; Qomi, M.; Hashemian, F.; Rajabi, M. Multivariate optimization of solvent bar microextraction combined with HPLCUV for determination of trace amounts of vincristine in biological fluids. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1072, 397-404.
[http://dx.doi.org/10.1016/j.jchromb.2017.10.054] [PMID: 29174461]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 6
Year: 2020
Page: [753 - 760]
Pages: 8
DOI: 10.2174/1573411014666180730114456
Price: $65

Article Metrics

PDF: 16
HTML: 1