Optimization of Total Phenol and Tannin Content and Biological Activity of Dittrichia graveolens (L.) GREUTER.

Author(s): Mahsa Souri, Alireza Shakeri*

Journal Name: Current Bioactive Compounds

Volume 16 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Dittrichia graveolens (L.) is a strongly aromatic plant distributed in Mediterranean regions. This research concerns the optimization of the Total Phenolic Content (TPC) and the Total Tannin Content (TTC) of Dittrichia graveolens (L.) extracts using Response Surface Methodology for Ultrasound Assisted Extraction (UAE) and Microwave Assisted Extraction (MAE). Central Composite Design (CCD) was used to evaluate the effect of the solvent concentration and the extraction time, in different methods on TTC and TPC. The antioxidant activities and antibacterial activities were evaluated.

Methods: The plant extracts were prepared using maceration, microwave and ultrasound assisted extraction. TPC and TTC were measured using Folin-Ciocalteu method. The antioxidant activities were studied using DPPH reagent and disc diffusion method was used to study the antibacterial activities.

Results: This study showed the optimum condition for UAE was 49.96% methanol concentration and 11.2 min sonication, while for MAE was 55.44% methanol concentration and 2.26 min microwave extraction. It also indicated that MAE was the most effective method in comparison to UAE and maceration. The antioxidant activities of MAE extract (IC50=7.7mg/mL) were more than UAE extract (IC50=21.5mg/mL) and maceration (IC50=32.3mg/mL).

Conclusion: As a conclusion, it was indicated that MAE was the most effective method. The higher total phenolic content caused higher antioxidant activities as MAE extract had the highest antioxidant activities. The antibacterial test showed the great potential of this plant as an antibacterial compound resource against different bacteria.

Keywords: Microwave assisted extraction, ultrasound assisted extraction, phenol, tannis, antioxidant, antibacterial.

[1]
Bar, H.; Bhui, D.K.; Sahoo, G.P.; Sarkar, P.; De, S.P.; Misra, A. Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids and surfaces A: Physicochemical and engineering aspects, 2009, 339(1), 134-139.
[http://dx.doi.org/10.1016/j.colsurfa.2009.02.008]
[2]
Kumar, B.V.; Naik, H.S.B.; Girija, D.; Kumar, B.V. ZnO nanoparticle as catalyst for efficient green one-pot synthesis of coumarins through Knoevenagel condensation. J. Chem. Sci., 2011, 123(5), 615-621.
[http://dx.doi.org/10.1007/s12039-011-0133-0]
[3]
Aghel, N.; Mahmoudabadi, A.Z.; Darvishi, L. Volatile constituents and anticandida activity of the aerial parts essential oil of Dittrichia graveolens (L.) Greuter grown in Iran. Afr. J. Pharm. Pharmacol., 2011, 5(6), 772-775.
[http://dx.doi.org/10.5897/AJPP10.145]
[4]
Dikshit; A.; Shahi S.K.; Pandey, K.; Patra, M.; Shukla, A.C. Aromatic plants: A source of natural chemo-therapeutants. Natl. Acad. Sci. Lett., 2004, 27(5-6), 145-164.
[5]
Keffous, F.; Belboukhari, N.; Djaradi, H.; Cheriti, A.; Sekkoum, K.Y.; Aboul-Enein, H. Total antioxidant capacity, reducing power and cyclic voltammetry of Zilla macroptera (Brassicaceae) Aqueous extract. Curr. Bioact. Compd., 2016, 12(1), 39-43.
[http://dx.doi.org/10.2174/1573407212666160210230707]
[6]
Balunas, M.J.; Kinghorn, A.D. Drug discovery from medicinal plants. Life Sci., 2005, 78(5), 431-441.
[http://dx.doi.org/10.1016/j.lfs.2005.09.012] [PMID: 16198377]
[7]
Vivekananda Mandal Harneet Kaur Kala, R.M. Kamal Kumar Sen, Roshni Tandey, Kavi Bhushan Singh Chouhan, S. Kitchlu, Developing microwave based extraction as a tool to valorize extraction of phenolics to boost nutraceutical industries: A case study on Taraxcum officinale. Curr. Bioact. Compd., 2018.
[8]
Elmastaş, M.; Turkekul, I.; Oztürk, L.; Gülçin, I.; Isildak, O.; Aboul-Enein, H.Y. Antioxidant activity of two wild edible mushrooms (Morchella vulgaris and Morchella esculanta) from North Turkey. Comb. Chem. High Throughput Screen., 2006, 9(6), 443-448.
[http://dx.doi.org/10.2174/138620706777698544] [PMID: 16842225]
[9]
Cragg, G.M.; Newman, D.J. Plants as a source of anti-cancer agents. J. Ethnopharmacol., 2005, 100(1-2), 72-79.
[http://dx.doi.org/10.1016/j.jep.2005.05.011] [PMID: 16009521]
[10]
Lee, C.C.; Houghton, P. Cytotoxicity of plants from Malaysia and Thailand used traditionally to treat cancer. J. Ethnopharmacol., 2005, 100(3), 237-243.
[http://dx.doi.org/10.1016/j.jep.2005.01.064] [PMID: 15888378]
[11]
Zaidan, M.R.; Noor Rain, A.; Badrul, A.R.; Adlin, A.; Norazah, A.; Zakiah, I. In vitro screening of five local medicinal plants for antibacterial activity using disc diffusion method. Trop. Biomed., 2005, 22(2), 165-170.
[PMID: 16883283]
[12]
Brullo, S.; de Marco, G. Taxonomical revision of the genus Dittrichia (Asteraceae). Portugaliae Acta Biologica, 2000, 19(1), 341-354.
[13]
Mitic, V.; Stankov Jovanovic, V.; Ilic, M.; Jovanovic, O.; Djordjevic, A.; Stojanovic, G. Dittrichia graveolens (L.) Greuter essential oil: Chemical composition, multivariate analysis, and antimicrobial activity. Chem. Biodivers., 2016, 13(1), 85-90.
[http://dx.doi.org/10.1002/cbdv.201500028] [PMID: 26765355]
[14]
Topcu, G.; Oksuz, S.; Shieh, H.L.; Cordell, G.A.; Pezzuto, J.M.; Bozokjohansson, C. Cytotoxic and antibacterial sesquiterpenes from inula-graveolens. Phytochemistry, 1993, 33(2), 407-410.
[http://dx.doi.org/10.1016/0031-9422(93)85529-Z]
[15]
Mahboubi, M. Chemical composition, antimicrobial and antioxidant activities of Dittrichia graveolens (L.) Greuter essential oil. Herba Pol., 2011, 57(3)
[16]
Mazandarani, M.; Ghafourian, M.; Khormali, A. Ethnopharmacology, antibacterial and antioxidant activity of Dittrichia graveolens (L.) W. Greuter. Which has been used as remedies antirheumatic, anti-inflammation and anti-infection against leishmaniasis in the traditional medicine of gorgan, Iran. Crescent J. Med. Biol. Sci., 2014, 1(4), 125-129.
[17]
Abu Irmaileh, B.; Salem, N.; Al Aboudi, A.; Abu Zarqa, M.; Abdeen, A. Antifungal activity of the stinkwort (Inula graveolens) extracts. J. Plant Pathol. Microbiol., 2017, 8(417), 2.
[http://dx.doi.org/10.4172/2157-7471.1000417]
[18]
Abu Irmaileh, B.E.; Al-Aboudi, A.M.; Abu Zarga, M.H.; Awwadi, F.; Haddad, S.F. Selective phytotoxic activity of 2,3,11β,13-tetrahydroaromaticin and ilicic acid isolated from Inula graveolens. Nat. Prod. Res., 2015, 29(10), 893-898.
[http://dx.doi.org/10.1080/14786419.2014.955489] [PMID: 25190268]
[19]
Teoh, E.S. Secondary metabolites of plants. Medicinal Orchids of Asia; Springer, 2016, pp. 59-73.
[http://dx.doi.org/10.1007/978-3-319-24274-3_5]
[20]
Wink, M. Annual plant reviews, biochemistry of plant secondary metabolism, 2nd ed; John Wiley & Sons: New Jersey, USA, 2011.
[21]
Makkar, H.P.S.; Siddhuraju, P.; Becker, K. Plant secondary metabolites. Methods Mol. Biol., 2017, 393, 1-122.
[http://dx.doi.org/10.1007/978-1-59745-425-4]
[22]
Brand-Williams, W.; Cuvelier, M-E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol., 1995, 28(1), 25-30.
[http://dx.doi.org/10.1016/S0023-6438(95)80008-5]
[23]
Rohmer, M. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat. Prod. Rep., 1999, 16(5), 565-574.
[http://dx.doi.org/10.1039/a709175c] [PMID: 10584331]
[24]
De Martino, L.; Mancini, E.; de Almeida, L.F.; De Feo, V. The antigerminative activity of twenty-seven monoterpenes. Molecules, 2010, 15(9), 6630-6637.
[http://dx.doi.org/10.3390/molecules15096630] [PMID: 20877249]
[25]
Montgomery, D.C. Desing and analysis of experiments, 6th ed; John Wiley & Sons: New Jersey, USA, 2007.
[26]
Fang, X.; Wang, J.; Hao, J.; Li, X.; Guo, N. Simultaneous extraction, identification and quantification of phenolic compounds in Eclipta prostrata using microwave-assisted extraction combined with HPLC-DAD-ESI-MS/MS. Food Chem., 2015, 188, 527-536.
[http://dx.doi.org/10.1016/j.foodchem.2015.05.037] [PMID: 26041227]
[27]
Dai, J.; Mumper, R.J. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 2010, 15(10), 7313-7352.
[http://dx.doi.org/10.3390/molecules15107313] [PMID: 20966876]
[28]
Vinatoru, M.; Toma, M.; Radu, O.; Filip, P.I.; Lazurca, D.; Mason, T.J. The use of ultrasound for the extraction of bioactive principles from plant materials. Ultrason. Sonochem., 1997, 4(2), 135-139.
[http://dx.doi.org/10.1016/S1350-4177(97)83207-5] [PMID: 11237031]
[29]
Ricárdez, O.F.; Ruiz-Jiménez, J.; Lagunez-Rivera, L.; de Castro, M.D. Fast ultrasound-assisted extraction of polar (phenols) and nonpolar (lipids) fractions in Heterotheca inuloides Cass. Phytochem. Anal., 2011, 22(6), 484-491.
[http://dx.doi.org/10.1002/pca.1305] [PMID: 21433159]
[30]
Ballard, T.S.; Mallikarjunan, P.; Zhou, K.; O’Keefe, S. Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins. Food Chem., 2010, 120(4), 1185-1192.
[http://dx.doi.org/10.1016/j.foodchem.2009.11.063]
[31]
Kim, I.; Lee, J. Comparison of different extraction solvents and sonication times for characterization of antioxidant activity and polyphenol composition in mulberry (Morus alba L.). Appl. Biol. Chem., 2017, 60(5), 509-517.
[http://dx.doi.org/10.1007/s13765-017-0303-y]
[32]
Hong, N.; Yaylayan, V.A.; Raghavan, G.S.; Paré, J.R.; Bélanger, J.M. Microwave-assisted extraction of phenolic compounds from grape seed. Nat. Prod. Lett., 2001, 15(3), 197-204.
[http://dx.doi.org/10.1080/10575630108041280] [PMID: 11858552]
[33]
Proestos, C.; Komaitis, M. Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds. Lebensm. Wiss. Technol., 2008, 41(4), 652-659.
[http://dx.doi.org/10.1016/j.lwt.2007.04.013]
[34]
Miliauskas, G.; Venskutonis, P.; Van Beek, T. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem., 2004, 85(2), 231-237.
[http://dx.doi.org/10.1016/j.foodchem.2003.05.007]
[35]
Lou, S-N.; Lai, Y-C.; Hsu, Y-S.; Ho, C-T. Phenolic content, antioxidant activity and effective compounds of kumquat extracted by different solvents. Food Chem., 2016, 197(Pt A), 1-6.
[http://dx.doi.org/10.1016/j.foodchem.2015.10.096] [PMID: 26616917]
[36]
Bamuamba, K.; Gammon, D.W.; Meyers, P.; Dijoux-Franca, M-G.; Scott, G. Anti-mycobacterial activity of five plant species used as traditional medicines in the Western Cape Province (South Africa). J. Ethnopharmacol., 2008, 117(2), 385-390.
[http://dx.doi.org/10.1016/j.jep.2008.02.007] [PMID: 18384988]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 2
Year: 2020
Page: [124 - 132]
Pages: 9
DOI: 10.2174/1573407214666180730110830
Price: $65

Article Metrics

PDF: 13
HTML: 2
EPUB: 2
PRC: 2