Generic placeholder image

Current Biochemical Engineering (Discontinued)

Editor-in-Chief

ISSN (Print): 2212-7119
ISSN (Online): 2212-7127

Research Article

Culture Miniaturization of Lipase Production by Yarrowia lipolytica

Author(s): Ariane Gaspar Santos, Bernardo Dias Ribeiro, Felipe Valle do Nascimento and Maria Alice Zarur Coelho*

Volume 5, Issue 1, 2019

Page: [12 - 20] Pages: 9

DOI: 10.2174/2212711905666180730101010

Abstract

Background: The proposal to perform scale-down of culture systems (2 to 4 mL) could be more efficient for screen multiple formulations and operational conditions. For such, is important to evaluate if the kinetic parameters of a bioprocess are comparative to conventional lab-scale reactors. In the present study, the effects of different miniaturized systems were evaluated on growth and lipase production of Yarrowia lipolytica IMUFRJ 50682.

Methods: Cultivations were conducted in a mini-scale version of Erlenmeyer flask of 10 mL (10EF); 24 deep-well microplate of 11 ml (24MTP/11 mL) and 24 deep-well microplate of 25 ml (24MTP/25 mL).

Results: Similar specific growth rate (μ) was observed between miniaturized cultivations (0.27 h-1). Different lipase productivities values were obtained, the highest was achieved in 10EF (181 U.L-1.h-1). Volumetric oxygen transfer coefficient (kLa) and maximum lipase production were improved with culture miniaturization in comparison with conventional shake-flasks. Bioreactor (1.5 L) cultivation showed similar growth kinetic, pH profile and kLa values, but an increase in the maximum productivity was observed. These finding showed the advantages of Y. lipolytica cultivations scale-down.

Conclusion: These findings show the advantages of Y. lipolytica scale-down cultivations, and to perform scale-up for benchtop bioreactor directly from these miniaturized cultivations, without the need of gradual scale-up, representing a reduction in costs and working time. Taking into consideration the rare works about miniaturized cultivation with Y. lipolytica, this work opens the way to a better understanding of bioprocess and alternatives for process conduction.

Keywords: Lipase, miniaturization, deep-well microplates, Yarrowia lipolytica, kLa, shaken bioreactor.

Graphical Abstract
[1]
C. Lattermann, and J. Büchs, "Microscale and miniscale fermentation and screening", Curr. Opin. Biotechnol., vol. 35, no. 0, pp. 1-6, 2015.
[http://dx.doi.org/10.1016/j.copbio.2014.12.005] [PMID: 25544012]
[2]
J.I. Betts, S.D. Doig, and F. Baganz, "Characterization and application of a miniature 10 mL stirred-tank bioreactor, showing scale-down equivalence with a conventional 7 L reactor", Biotechnol. Prog., vol. 22, no. 3, pp. 681-688, 2006.
[http://dx.doi.org/10.1021/bp050369y] [PMID: 16739949]
[3]
J. Hemmerich, S. Noack, W. Wiechert, and M. Oldiges, "Microbioreactor systems for accelerated bioprocess development", Biotechnol. J., vol. 13, no. 4, 2018.e1700141
[http://dx.doi.org/10.1002/biot.201700141] [PMID: 29283217]
[4]
A. Schmideder, T.S. Severin, J.H. Cremer, and D. Weuster-Botz, "A novel milliliter-scale chemostat system for parallel cultivation of microorganisms in stirred-tank bioreactors", J. Biotechnol., vol. 210, pp. 19-24, 2015.
[http://dx.doi.org/10.1016/j.jbiotec.2015.06.402] [PMID: 26116137]
[5]
A. Schmideder, J.H. Cremer, and D. Weuster-Botz, "Parallel steady state studies on a milliliter scale accelerate fed-batch bioprocess design for recombinant protein production with Escherichia coli", Biotechnol. Prog., vol. 32, no. 6, pp. 1426-1435, 2016.
[http://dx.doi.org/10.1002/btpr.2360] [PMID: 27604066]
[6]
Q. Long, X. Liu, Y. Yang, L. Li, L. Harvey, B. McNeil, and Z. Bai, The development and application of high throughput cultivation technology in bioprocess development. J. Biotechnol., vol. 192, no. Pt B, pp. 323-338, 2014.
[http://dx.doi.org/10.1016/j.jbiotec.2014.03.028] [PMID: 24698846]
[7]
I. Huth, J. Schrader, and D. Holtmann, "Microtiter plate-based cultivation to investigate the growth of filamentous fungi", Eng. Life Sci., vol. 17, no. 10, pp. 1064-1070, 2017.
[http://dx.doi.org/10.1002/elsc.201700041]
[8]
W.A. Duetz, L. Rüedi, R. Hermann, K. O’Connor, J. Büchs, and B. Witholt, "Methods for intense aeration, growth, storage, and replication of bacterial strains in microtiter plates", Appl. Environ. Microbiol., vol. 66, no. 6, pp. 2641-2646, 2000.
[http://dx.doi.org/10.1128/AEM.66.6.2641-2646.2000] [PMID: 10831450]
[9]
H. Waegeman, J. Beauprez, J. Maertens, M. De Mey, L. Demolder, M.R. Foulquié-Moreno, N. Boon, D. Charlier, and W. Soetaert, "Validation study of 24 deepwell microtiterplates to screen libraries of strains in metabolic engineering", J. Biosci. Bioeng., vol. 110, no. 6, pp. 646-652, 2010.
[http://dx.doi.org/10.1016/j.jbiosc.2010.07.008] [PMID: 20696615]
[10]
K. Isett, H. George, W. Herber, and A. Amanullah, "Twenty-four-well plate miniature bioreactor high-throughput system: assessment for microbial cultivations", Biotechnol. Bioeng., vol. 98, no. 5, pp. 1017-1028, 2007.
[http://dx.doi.org/10.1002/bit.21484] [PMID: 17486656]
[11]
K. Chaturvedi, S.Y. Sun, T. O’Brien, Y.J. Liu, and J.W. Brooks, "Comparison of the behavior of CHO cells during cultivation in 24-square deep well microplates and conventional shake flask systems", Biotechnol. Rep. (Amst.), vol. 1-2, no. 2, pp. 22-26, 2014.
[http://dx.doi.org/10.1016/j.btre.2014.04.001] [PMID: 28435799]
[12]
H. Giese, P. Kruithof, K. Meier, M. Sieben, E. Antonov, R.W. Hommes, and J. Büchs, "Improvement and scale-down of a Trichoderma reesei shake flask protocol to microtiter plates enables high-throughput screening", J. Biosci. Bioeng., vol. 118, no. 6, pp. 702-709, 2014.
[http://dx.doi.org/10.1016/j.jbiosc.2014.05.016] [PMID: 24982019]
[13]
A. Hevekerl, A. Kuenz, and K-D. Vorlop, "Filamentous fungi in microtiter plates-an easy way to optimize itaconic acid production with Aspergillus terreus", Appl. Microbiol. Biotechnol., vol. 98, no. 16, pp. 6983-6989, 2014.
[http://dx.doi.org/10.1007/s00253-014-5743-2] [PMID: 24737061]
[14]
P. Kanmani, J. Aravind, and K. Kumaresan, "An insight into microbial lipases and their environmental facet", Int. J. Environ. Sci. Technol., vol. 12, no. 3, pp. 1147-1162, 2014.
[http://dx.doi.org/10.1007/s13762-014-0605-0]
[15]
R. Gupta, A. Kumari, P. Syal, and Y. Singh, "Molecular and functional diversity of yeast and fungal lipases: Their role in biotechnology and cellular physiology", Prog. Lipid Res., vol. 57, pp. 40-54, 2015.
[http://dx.doi.org/10.1016/j.plipres.2014.12.001] [PMID: 25573113]
[16]
K. Grillitsch, and G. Daum, "Triacylglycerol lipases of the yeast", Front. Biol. (Beijing), vol. 6, no. 3, pp. 219-230, 2011.
[17]
N. Sarmah, D. Revathi, G. Sheelu, K. Yamuna Rani, S. Sridhar, V. Mehtab, and C. Sumana, "Recent advances on sources and industrial applications of lipases", Biotechnol. Prog., vol. 34, no. 1, pp. 5-28, 2018.
[http://dx.doi.org/10.1002/btpr.2581] [PMID: 29086509]
[18]
M.A.Z. Coelho, P.F.F. Amaral, and I. Belo, Yarrowia lipolytica : an industrial workhorse Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology., Badajoz: Formatex, 2010, pp. 930-944.
[19]
A. Méndez-Villas, A.I.S. Brígida, P.F.F. Amaral, L.R.B. Gonçalves, M.H.M. Rocha-leão, and M.A.Z. Coelho, "Yarrowia lipolytica IMUFRJ 50682: Lipase production in a multiphase bioreactor", Curr. Biochem. Eng., vol. 1, pp. 65-74, 2014.
[http://dx.doi.org/10.2174/22127119113019990005]
[20]
P.F.F. Amaral, M.H.M. Rocha-Leão, I.M. Marrucho, J.A.P. Coutinho, and M.A.Z. Coelho, "Improving lipase production using a perfluorocarbon as oxygen carrier", J. Chem. Technol. Biotechnol., vol. 81, no. 8, pp. 1368-1374, 2006.
[http://dx.doi.org/10.1002/jctb.1478]
[21]
L. Ping, X. Yuan, M. Zhang, Y. Chai, and S. Shan, "Improvement of extracellular lipase production by a newly isolated Yarrowia lipolytica mutant and its application in the biosynthesis of L-ascorbyl palmitate", Int. J. Biol. Macromol., vol. 106, pp. 302-311, 2018.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.016] [PMID: 28827135]
[22]
A. Back, T. Rossignol, F. Krier, J-M. Nicaud, and P. Dhulster, "High-throughput fermentation screening for the yeast Yarrowia lipolytica with real-time monitoring of biomass and lipid production", Microb. Cell Fact., vol. 15, no. 1, p. 147, 2016.
[http://dx.doi.org/10.1186/s12934-016-0546-z] [PMID: 27553851]
[23]
H. Sassi, F. Delvigne, T. Kar, J.M. Nicaud, A.M. Coq, S. Steels, and P. Fickers, "Deciphering how LIP2 and POX2 promoters can optimally regulate recombinant protein production in the yeast Yarrowia lipolytica", Microb. Cell Fact., vol. 15, no. 1, p. 159, 2016.
[http://dx.doi.org/10.1186/s12934-016-0558-8] [PMID: 27651221]
[24]
A.N. Hagler, and L.C. Mendonça-Hagler, "Yeasts from marine and estuarine waters with different levels of pollution in the state of rio de janeiro, Brazil", Appl. Environ. Microbiol., vol. 41, no. 1, pp. 173-178, 1981.
[PMID: 16345683]
[25]
F.V. Pereira-Meirelles, and M.H.M. Rocha-Leão, A stable lipase from Candida lipolytica C.E. Wyman, and M. Finkelstein, Eds., Biotechnology for Fuels and Chemicals. Applied Biochemistry and Biotechnology, vol. 65, Humana Press, 1997, no. 1, pp. 73-85.
[26]
J. Charney, and R.M. Tomarelli, "A colorimetric method for the determination of the proteolytic activity of duodenal juice", J. Biol. Chem., vol. 171, no. 2, pp. 501-505, 1947.
[PMID: 20272088]
[27]
J.B. Sumner, "The estimation of sugar in diabetic urine, using dinitrosalicylic acid", J. Biol. Chem., vol. 62, no. 2, pp. 287-290, 1924.
[28]
C.M. Cooper, G.A. Fernstrom, and S.A. Miller, "Performance of Agitated Gas-Liquid Contactors", Ind. Eng. Chem., vol. 36, no. 6, pp. 504-509, 1944.
[http://dx.doi.org/10.1021/ie50414a005]
[29]
H.L. Golterman, R.S. Clymo, and M.A.M. Ohnstad, Methods for physical and chemical analysis of freshwaters.. 2nd edBlackwell Scientific: Oxford, 1978.
[30]
P.F.F. Amaral, A.P.R. De Almeida, T. Peixoto, M.H.M. Rocha-Leão, J.A.P. Coutinho, and M.A.Z. Coelho, "Beneficial effects of enhanced aeration using perfluorodecalin in Yarrowia lipolytica cultures for lipase production", World J. Microbiol. Biotechnol., vol. 23, no. 3, pp. 339-344, 2007.
[http://dx.doi.org/10.1007/s11274-006-9229-y]
[31]
R. Hermann, M. Lehmann, and J. Büchs, "Characterization of gas-liquid mass transfer phenomena in microtiter plates", Biotechnol. Bioeng., vol. 81, no. 2, pp. 178-186, 2003.
[http://dx.doi.org/10.1002/bit.10456] [PMID: 12451554]
[32]
F.V. Pereira-Meirelles, M.H.M. Rocha-Leão, and G.L. Sant’Anna, "Lipase location in Yarrowia lipolytica cells", Biotechnol. Lett., vol. 22, no. 1, pp. 71-75, 2000.
[http://dx.doi.org/10.1023/A:1005672731818]
[33]
P. Fickers, J. Destain, and P. Thonart, Improvement of Yarrowia lipolytica lipase production by fed-batch fermentation. J. Basic mMcrobiology, vol. 49, no. 2, pp. 212-215, April 2009.
[34]
F.O.M. Alonso, E.B.L. Oliveira, G.M. Dellamora-Ortiz, and F.V. Pereira-Meirelles, "Improvement of lipase production at different stirring speeds and oxygen levels", Braz. J. Chem. Eng., vol. 22, no. 1, pp. 9-18, 2005.
[http://dx.doi.org/10.1590/S0104-66322005000100002]
[35]
G. Corzo, and S. Revah, "Production and characteristics of the lipase from Yarrowia lipolytica", Bioresour. Technol., vol. 70, pp. 173-180, 1999.
[http://dx.doi.org/10.1016/S0960-8524(99)00024-3]
[36]
W.A. Duetz, and B. Witholt, "Oxygen transfer by orbital shaking of square vessels and deepwell microtiter plates of various dimensions", Biochem. Eng. J., vol. 17, no. 3, pp. 181-185, 2004.
[http://dx.doi.org/10.1016/S1369-703X(03)00177-3]
[37]
W.A. Duetz, and B. Witholt, "Effectiveness of orbital shaking for the aeration of suspended bacterial cultures in square-deepwell microtiter plates", Biochem. Eng. J., vol. 7, no. 2, pp. 113-115, 2001.
[http://dx.doi.org/10.1016/S1369-703X(00)00109-1] [PMID: 11173298]
[38]
F. Kensy, C. Engelbrecht, and J. Büchs, "Scale-up from microtiter plate to laboratory fermenter: evaluation by online monitoring techniques of growth and protein expression in Escherichia coli and Hansenula polymorpha fermentations", Microb. Cell Fact., vol. 8, no. 1, p. 68, 2009.
[http://dx.doi.org/10.1186/1475-2859-8-68] [PMID: 20028556]
[39]
R.S. Islam, D. Tisi, M.S. Levy, and G.J. Lye, "Scale-up of Escherichia coli growth and recombinant protein expression conditions from microwell to laboratory and pilot scale based on matched k(L)a", Biotechnol. Bioeng., vol. 99, no. 5, pp. 1128-1139, 2008.
[http://dx.doi.org/10.1002/bit.21697] [PMID: 17969169]
[40]
F.J. Deive, M.A. Sanromán, and M.A. Longo, "A comprehensive study of lipase production by Yarrowia lipolytica CECT 1240 (ATCC 18942): from shake flask to continuous bioreactor", J. Chem. Technol. Biotechnol., vol. 85, no. 2, pp. 258-266, 2010.
[http://dx.doi.org/10.1002/jctb.2301]

© 2024 Bentham Science Publishers | Privacy Policy