Active Cobalt Catalyst for Carbon Powder Growth: Sol-gel Process and Alcohol Catalytic CVD Technique

Author(s): Mohd. Asyadi Azam*, Nor Najihah Zulkapli, Mohamad Huzaifa Mohd. Azman

Journal Name: Nanoscience & Nanotechnology-Asia

Volume 10 , Issue 1 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Introduction: The unique properties of carbon nanotubes trigger a lot of ideas to study the ability of the material in many fields.

Experimental: The research started with the preparation of cobalt catalyst by using the sol-gel method, which used cobalt acetate tetrahydrate and 2-amino ethanol solvent, followed by the actual growth of carbon nanotube by using the prepared catalyst in alcohol catalytic CVD.

Results: The crystal structure, microstructure, and size of particles of the resulting cobalt-based powders were characterized by using X-ray Diffraction, Optical Microscopy, and Particle Size Analyzer, followed by, carbon nanotube growth at 700, 750, 800, and 850°C, where other parameters were fixed in order to determine the effect of CVD processing and temperature on the quality of resulting carbonbased materials. The graphitic structure of the carbon-based materials was analyzed by using Raman Spectroscopy.

Conclusion: It was found that the optimum CVD processing temperature was 850°C with IG/ID ratio of 1.052.

Keywords: Cobalt catalyst, sol-gel method, alcohol catalytic CVD, carbon powder, carbom nanotube, graphene sheets.

Journet, C.; Master, W.K.; Bernier, P.; Loiseau, A.; de la Chapelle, L.M.; Lefrant, S.; Deniard, P.; Lee, R.; Fischer, J.E. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 1997, 388, 756.
Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y.H.; Scuseria, S.G.; Tomanek, D.; Fisher, J.E.; Smalley, R.E. Crystalline ropes of metallic carbon nanotubes. Science, 1996, 273, 483.
Bronikowski, M.J. CVD growth of carbon nanotube bundle arrays. Carbon, 2006, 44, 2822.
Sivakumar, V.M.; Mohamed, A.R.; Abdullah, A.Z.; Chai, S.P. Silica aerogel: Synthesis and applications. J. Nanomater., 2010, 2010, 1.
Dresselhaus, M.S.; Dresselhaus, G.; Avouris, P. Carbon nanotubes; Springer-Verlag: Berlin, Heidelberg, 2001.
Gohier, A.; Ewels, C.P.; Minea, T.M.; Djouadi, M.A. Carbon nanotube growth mechanism switches from tip- to base-growth with decreasing catalyst particle size. Carbon, 2008, 46, 1331.
Basheer, H.J.; Pachot, C.; Lafont, U.; Devaux, X.; Bahlawane, N. Adv. Mater. Interfaces, 2017, 4(18)1700238
Azam, M.A.; Zulkapli, N.N.; Nawi, Z.M.; Azren, N.M. Systematic review of catalyst nanoparticles synthesized by solution process: Towards efficient carbon nanotube growth. J. Sol-Gel Sci. Technol., 2015, 73, 484.
Akhavan, O.; Azimirad, R.; Safa, S.; Larijani, M.M. Visible light photo-induced antibacterial activity of CNT–doped TiO2 thin films with various CNT contents. J. Mater. Chem., 2010, 20(35), 7386-7392.
Juang, Z.Y.; Chien, I.P.; Lai, J.F.; Lai, T.S.; Tsai, C.H. The effects of ammonia on the growth of large-scale patterned aligned carbon nanotubes using thermal chemical vapor deposition method. Diamond Related Materials, 2004, 13, 1203.
Aksak, M.; Kir, S.; Selamet, Y. Effect of the growth temperature on carbon nanotubes grown by thermal chemical vapor deposition method. J. Optoelectron. Adv. Mater., 2009, 1, 281.
Croin, L.; Vittone, E.; Amato, G. In situ control of dewetting of Cu thin films in graphene chemical vapor deposition. Thin Solid Films, 2014, 573, 122.
Zulkapli, N.N.; Azam, M.A.; Zubir, N.M.A.M.; Ithnin, N.A.; Rashid, M.W.A. A simple and room temperature sol-gel process for the fabrication of cobalt nanoparticles as an effective catalyst for carbon nanotube growth. RSC Advances, 2015, 5, 95872.
Lee, K.Y.; Yeoh, W.M.; Chai, S.P.; Ichikawa, S.; Mohamed, A.R. The role of water vapor in carbon nanotube formation via water-assisted chemical vapor deposition of methane. J. Ind. Eng. Chem., 2012, 18, 1504.
Alrehaily, L.M.; Joseph, J.M.; Biesinger, M.C.; Guzonas, D.A.; Wren, J.C. Gamma-radiolysis-assisted cobalt oxide nanoparticle formation. Phys. Chem., 2013, 15, 1014.
Azam, M.A.; Manaf, N.S.A.; Talib, E.; Bistamam, M.S.A. Aligned carbon nanotube from catalytic chemical vapor deposition technique for energy storage device: A review. Ionics, 2013, 19, 1455.
Seah, C.M.; Chai, S.P.; Mohamed, A.R. Synthesis of aligned carbon nanotubes. Carbon, 2011, 49, 4613.
Belin, T.; Epron, F. Characterization methods of carbon nanotubes: A review. Mater. Sci. Eng. B, 2005, 119, 105.
Azam, M.A.; Fujiwara, A.; Shimoda, T. Direct growth of vertically-aligned single-walled carbon nanotubes on conducting substrates using ethanol for electrochemical capacitor. J. New Mater. Electrochem. Syst., 2011, 14, 173.
Zulkapli, N.N.; Ithnin, N.A.; Azam, M.A. Raman analysis of single-walled carbon nanotube grown from spin-coated cobalt catalyst at different temperatures. ARPN J. Eng. Appl. Sci., 2016, 11, 1550.
Berlanga, I.; Mas-Balleste, R.; Zamora, F.; Gonzalez-Julian, J.; Belmonte, M. Carbon nanotubes growth on silicon nitride substrates. Mater. Lett., 2011, 65, 1479.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 23 January, 2020
Page: [68 - 73]
Pages: 6
DOI: 10.2174/2210681208666180730093851
Price: $25

Article Metrics

PDF: 10