Abnormal Signal Transduction via Over-expression of Pim-1 Regulated Senescence, Cell Cycle, Apoptosis and Metastatic Invasion: Novel Anticancer Targets and Their Potent Inhibitors from Marine Sources

Author(s): Ankita Sharma, Sisir Nandi*

Journal Name: Current Signal Transduction Therapy

Volume 15 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Existing cancer chemotherapeutics can kill normal as well as malignant cells. To solve these issues, scientists are now more concerned about the design and discovery of potential anticancer, least toxic leads, which can promote apoptosis process and inhibition of abnormal signal transduction via hyperactivation of protein kinases such as Pim-1 due to overexpression or mutation of proto-oncogenes and tumor suppressor genes related to molecular mechanisms of senescence, cell cycle, apoptosis and metastatic invasion, thus leading to anticancer activities. Natural scaffolds play a great role in this aspect.

Objective: Sea is full of biodiverse natural resources of medicinal compounds derived from marine plants, sponges, actinomycetes, cynobacteria, fungi, corals and animals. Many anticancer compounds were successfully discovered. But there are few potent compounds developed against abnormal signal transduction mechanism.

Materials and Methods: Therefore, an attempt has been made in the present review to focus on molecular mechanisms of various targets in connection with the over-expression of Pim-1 mediated senescence, cell cycle, apoptosis and metastatic invasion and their potent inhibitors.

Results: Biochemical mechanisms of the potent marine sourced inhibitors keeping activities against abnormal signal transduction were discussed in this study. It gives great attention to expand the capabilities in these upcoming areas to remain globally relevant.

Conclusion: Existed marine sourced anticancer compounds tabulated in this study could be used as a template for further design and synthesis of promising congeneric synthetic compounds against another disease by the application of in silico high throughput screening through drug repositioning.

Keywords: Abnormal signal transduction, Pim-1 kinase, drug targets related to senescence, cell cycle, apoptosis and metastatic invasion, marine sourced natural inhibitors.

[1]
Kiu H, Nicholson SE. Biology and significance of the JAK/STAT signalling pathways. Growth Factors 2012; 30(2): 88-106.
[http://dx.doi.org/10.3109/08977194.2012.660936] [PMID: 22339650]
[2]
Zhu N, Ramirez LM, Lee RL, Magnuson NS, Bishop GA, Gold MR. CD40 signaling in B cells regulates the expression of the Pim-1 kinase via the NF-kappa B pathway. J Immunol 2002; 168(2): 744-54.
[http://dx.doi.org/10.4049/jimmunol.168.2.744] [PMID: 11777968]
[3]
Tursynbay Y, Zhang J, Li Z, et al. Pim-1 kinase as cancer drug target: An update. Biomed Rep 2016; 4(2): 140-6.
[http://dx.doi.org/10.3892/br.2015.561] [PMID: 26893828]
[4]
Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature 1997; 387(6630): 299-303.
[http://dx.doi.org/10.1038/387299a0] [PMID: 9153396]
[5]
Zou X, Tsutsui T, Ray D, et al. The cell cycle-regulatory CDC25A phosphatase inhibits apoptosis signal-regulating kinase 1. Mol Cell Biol 2001; 21(14): 4818-28.
[http://dx.doi.org/10.1128/MCB.21.14.4818-4828.2001] [PMID: 11416155]
[6]
Morishita D, Katayama R, Sekimizu K, Tsuruo T, Fujita N. Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels. Cancer Res 2008; 68(13): 5076-85.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0634] [PMID: 18593906]
[7]
Zippo A, De Robertis A, Serafini R, Oliviero S. PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat Cell Biol 2007; 9(8): 932-44.
[http://dx.doi.org/10.1038/ncb1618] [PMID: 17643117]
[8]
Grundler R, Brault L, Gasser C, et al. Dissection of PIM serine/threonine kinases in FLT3-ITD-induced leukemogenesis reveals PIM1 as regulator of CXCL12-CXCR4-mediated homing and migration. J Exp Med 2009; 206(9): 1957-70.
[http://dx.doi.org/10.1084/jem.20082074] [PMID: 19687226]
[9]
Shi D, Gu W. Dual Roles of MDM2 in the Regulation of p53 ubiquitination dependent and ubiquitination independent mechanisms of MDM2 repression of p53 activity. Genes Cancer 2012; 3(3-4): 240-8.
[http://dx.doi.org/10.1177/1947601912455199] [PMID: 23150757]
[10]
Sherr CJ. Divorcing ARF and p53: An unsettled case. Nat Rev Cancer 2006; 6(9): 663-73.
[http://dx.doi.org/10.1038/nrc1954] [PMID: 16915296]
[11]
Nayak SK, Panesar PS, Kumar H. Non-genotoxic p53-activators and their significance as antitumor therapy of future. Curr Med Chem 2011; 18(7): 1038-49.
[http://dx.doi.org/10.2174/092986711794940833] [PMID: 21254973]
[12]
Kussie PH, Gorina S, Marechal V, et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 1996; 274(5289): 948-53.
[http://dx.doi.org/10.1126/science.274.5289.948] [PMID: 8875929]
[13]
Böttger A, Böttger V, Garcia-Echeverria C, et al. Molecular characterization of the hdm2-p53 interaction. J Mol Biol 1997; 269(5): 744-56.
[http://dx.doi.org/10.1006/jmbi.1997.1078] [PMID: 9223638]
[14]
Hogan C, Hutchison C, Marcar L, et al. Elevated levels of oncogenic protein kinase Pim-1 induce the p53 pathway in cultured cells and correlate with increased Mdm2 in mantle cell lymphoma. J Biol Chem 2008; 283(26): 18012-23.
[http://dx.doi.org/10.1074/jbc.M709695200] [PMID: 18467333]
[15]
Strausfeld U, Labbé JC, Fesquet D, et al. Dephosphorylation and activation of a p34cdc2/cyclin B complex in vitro by human CDC25 protein. Nature 1991; 351(6323): 242-5.
[http://dx.doi.org/10.1038/351242a0] [PMID: 1828290]
[16]
Kristjánsdóttir K, Rudolph J. Cdc25 phosphatases and cancer. Chem Biol 2004; 11(8): 1043-51.
[http://dx.doi.org/10.1016/j.chembiol.2004.07.007] [PMID: 15324805]
[17]
Bachmann M, Hennemann H, Xing PX, Hoffmann I, Möröy T. The oncogenic serine/threonine kinase Pim-1 phosphorylates and inhibits the activity of Cdc25C-associated kinase 1 (C-TAK1): a novel role for Pim-1 at the G2/M cell cycle checkpoint. J Biol Chem 2004; 279(46): 48319-28.
[http://dx.doi.org/10.1074/jbc.M404440200] [PMID: 15319445]
[18]
Wang Z, Bhattacharya N, Mixter PF, Wei W, Sedivy J, Magnuson NS. Phosphorylation of the cell cycle inhibitor p21Cip1/WAF1 by Pim-1 kinase. Biochim Biophys Acta 2002; 1593(1): 45-55.
[http://dx.doi.org/10.1016/S0167-4889(02)00347-6] [PMID: 12431783]
[19]
Chu IM, Hengst L, Slingerland JM. The Cdk inhibitor p27 in human cancer: Prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 2008; 8(4): 253-67.
[http://dx.doi.org/10.1038/nrc2347] [PMID: 18354415]
[20]
Naud JF, Eilers M. PIM1 and MYC: A changing relationship? Nat Cell Biol 2007; 9(8): 873-5.
[http://dx.doi.org/10.1038/ncb0807-873] [PMID: 17671454]
[21]
Zhang Y, Wang Z, Li X, Magnuson NS. Pim kinase-dependent inhibition of c-Myc degradation. Oncogene 2008; 27(35): 4809-19.
[http://dx.doi.org/10.1038/onc.2008.123] [PMID: 18438430]
[22]
Wang J, Anderson PD, Luo W, Gius D, Roh M, Abdulkadir SA. Pim1 kinase is required to maintain tumorigenicity in MYC-expressing prostate cancer cells. Oncogene 2012; 31(14): 1794-803.
[http://dx.doi.org/10.1038/onc.2011.371] [PMID: 21860423]
[23]
Guo F, Wang Y, Liu J, Mok SC, Xue F, Zhang W. CXCL12/CXCR4: A symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene 2016; 35(7): 816-26.
[http://dx.doi.org/10.1038/onc.2015.139] [PMID: 25961926]
[24]
Santio NM, Eerola SK, Paatero I, et al. Pim kinases promote migration and metastatic growth of prostate cancer xenografts. PLoS One 2015; 10(6): e0130340.
[http://dx.doi.org/10.1371/journal.pone.0130340] [PMID: 26075720]
[25]
Sun X, Cheng G, Hao M, et al. CXCL12/CXCR4/CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev 2010; 29(4): 709-22.
[http://dx.doi.org/10.1007/s10555-010-9256-x] [PMID: 20839032]
[26]
Malloy KL, Choi H, Fiorilla C, Valeriote FA, Matainaho T, Gerwick WH. Hoiamide D, a marine cyanobacteria-derived inhibitor of p53/MDM2 interaction. Bioorg Med Chem Lett 2012; 22(1): 683-8.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.054] [PMID: 22104152]
[27]
Mi Y, Zhang J, He S, Yan X. New peptides isolated from marine cyanobacteria, an overview over the past decade. Mar Drugs 2017; 15(5): 132.
[http://dx.doi.org/10.3390/md15050132] [PMID: 28475149]
[28]
Kato H, Nehira T, Motsuo K, et al. Niphateolide A: Isolation from the marine sponge Niphates olemda and determination of its absolute configuration by an ECD analysis. Tetrahedron 2015; 71(38): 6956-60.
[http://dx.doi.org/10.1016/j.tet.2015.07.009]
[29]
Schneider K, Keller S, Wolter FE, et al. Proximicins A, B, and C are antitumor furan analogues of netropsin from the marine Actinomycete Verrucosispora in-duce upregulation of p53 and the Cyclin Kinase Inhibitor p21. Angrew Chem 2008; 47(17): 3258-61.
[30]
Tsukamoto S, Yoshida T, Hosono H, Ohta T, Yokosawa H. Hexylitaconic acid: A new inhibitor of p53-HDM2 interaction isolated from a marine-derived fungus, Arthrinium sp. Bioorg Med Chem Lett 2006; 16(1): 69-71.
[http://dx.doi.org/10.1016/j.bmcl.2005.09.052] [PMID: 16246554]
[31]
Clement JA, Kitagaki J, Yang Y, et al. Discovery of new pyridoacridine alkaloids from Lissoclinum cf. badium that inhibit the ubiquitin ligase activity of Hdm2 and stabilize p53. Bioorg Med Chem 2008; 16(23): 10022-8.
[http://dx.doi.org/10.1016/j.bmc.2008.10.024] [PMID: 18977148]
[32]
Zhang W, Che Q, Tan H, et al. Marine Streptomyces sp. derived antimycin analogues suppress HeLa cells via depletion HPV E6/E7 mediated by ROS-dependent ubiquitin-proteasome system. Sci Rep 2017; 7: 42180.
[http://dx.doi.org/10.1038/srep42180] [PMID: 28176847]
[33]
Tsukamoto S, Hirota H, Imachi M, et al. Himeic acid A: A new ubiquitin-activating enzyme inhibitor isolated from a marine-derived fungus, Aspergillus sp. Bioorg Med Chem Lett 2005; 15(1): 191-4.
[http://dx.doi.org/10.1016/j.bmcl.2004.10.012] [PMID: 15582438]
[34]
Tsukamoto S, Yamashita K, Tane K, et al. Girolline, an antitumor compound isolated from a sponge, induces G2/M cell cycle arrest and accumulation of polyubiquitinated p53. Biol Pharm Bull 2004; 27(5): 699-701.
[http://dx.doi.org/10.1248/bpb.27.699] [PMID: 15133248]
[35]
Tsukamoto S, Takeuchi T, Rotinsulu H, et al. Leucettamol A: A new inhibitor of Ubc13-Uev1A interaction isolated from a marine sponge, Leucetta aff. microrhaphis. Bioorg Med Chem Lett 2008; 18(24): 6319-20.
[http://dx.doi.org/10.1016/j.bmcl.2008.10.110] [PMID: 19006668]
[36]
Gunasekera SP, McCarthy PJ. Kelly-Borges Michelle, Lobkovsky E, Clardy J. Dysidiolide: A novel protein phosphatase inhibitor from the Caribbean sponge Dysidea etheria de Laubenfels. J Am Chem Soc 1996; 118(36): 8759-60.
[http://dx.doi.org/10.1021/ja961961+]
[37]
Nagle DG, Zhou YD, Mora FD, Mohammed KA, Kim YP. Mechanism targeted discovery of antitumor marine natural products. Curr Med Chem 2004; 11(13): 1725-56.
[http://dx.doi.org/10.2174/0929867043364991] [PMID: 15279579]
[38]
Loukaci A, Le Saout I, Samadi M, et al. Coscinosulfate, a CDC25 phosphatase inhibitor from the sponge Coscinoderma mathewsi. Bioorg Med Chem 2001; 9(11): 3049-54.
[http://dx.doi.org/10.1016/S0968-0896(01)00208-5] [PMID: 11597488]
[39]
Erdogan-Orhan I, Sener B, de Rosa S, et al. Polyprenyl-hydroquinones and -furans from three marine sponges inhibit the cell cycle regulating phosphatase CDC25A. Nat Prod Res 2004; 18(1): 1-9.
[http://dx.doi.org/10.1080/1478641031000111534] [PMID: 14974610]
[40]
Skropeta D, Pastro N, Zivanovic A. Kinase inhibitors from marine sponges. Mar Drugs 2011; 9(10): 2131-54.
[http://dx.doi.org/10.3390/md9102131] [PMID: 22073013]
[41]
Schwartsmann G, Brondani da Rocha A, Berlinck RGS, Jimeno J. Marine organisms as a source of new anticancer agents. Lancet Oncol 2001; 2(4): 221-5.
[http://dx.doi.org/10.1016/S1470-2045(00)00292-8] [PMID: 11905767]
[42]
Cherigo L, Lopez D, Martinez-Luis S. Marine natural products as breast cancer resistance protein inhibitors. Mar Drugs 2015; 13(4): 2010-29.
[http://dx.doi.org/10.3390/md13042010] [PMID: 25854646]
[43]
Zhang JY, Tao LY, Liang YJ, et al. Secalonic acid D induced leukemia cell apoptosis and cell cycle arrest of G(1) with involvement of GSK-3β/β-catenin/c-Myc pathway. Cell Cycle 2009; 8(15): 2444-50.
[http://dx.doi.org/10.4161/cc.8.15.9170] [PMID: 19571678]
[44]
Wang R, Zhang Q, Peng X, et al. Stellettin B induces G1 arrest, apoptosis and autophagy in human non-small cell lung cancer A549 cells via blocking PI3K/Akt/mTOR Pathway. Sci Rep 2016; 6: 27071.
[http://dx.doi.org/10.1038/srep27071] [PMID: 27243769]
[45]
Liao N, Zhong J, Zhang R, et al. Protein-bound polysaccharide from Corbicula fluminea inhibits cell growth in MCF-7 and MDA-MB-231 human breast cancer cells. PLoS One 2016; 11(12): e0167889.
[http://dx.doi.org/10.1371/journal.pone.0167889] [PMID: 27959954]
[46]
Barbieri F, Thellung S, Würth R, et al. Emerging targets in pituitary adenomas: Role of the CXCL12/CXCR4-R7 system. Int J Endocrinol 2014; 2014753524
[http://dx.doi.org/10.1155/2014/753524] [PMID: 25484899]
[47]
Vitale RM, Gatti M, Carbone M, et al. Minimalist hybrid ligand/receptor-based pharmacophore model for CXCR4 applied to a small-library of marine natural products led to the identification of phidianidine a as a new CXCR4 ligand exhibiting antagonist activity. ACS Chem Biol 2013; 8(12): 2762-70.
[http://dx.doi.org/10.1021/cb400521b] [PMID: 24102412]
[48]
Kwak JY. Fucoidan as a marine anticancer agent in preclinical development. Mar Drugs 2014; 12(2): 851-70.
[http://dx.doi.org/10.3390/md12020851] [PMID: 24477286]
[49]
Wen WW, Xie S, Xin XL, Geng MY, Ding J, Chen Y. Oligomannurarate sulfate inhibits CXCL12/SDF-1-mediated proliferation and invasion of human tumor cells in vitro. Acta Pharmacol Sin 2013; 34(12): 1554-9.
[http://dx.doi.org/10.1038/aps.2013.83] [PMID: 24141568]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 1
Year: 2020
Page: [3 - 11]
Pages: 9
DOI: 10.2174/1574362413666180724105508

Article Metrics

PDF: 23