Current Discovery Progress of Some Emerging Anti-infective Chalcones: Highlights from 2016 to 2017

Author(s): Debarshi K. Mahapatra, Soumajit Ghorai, Sanjay K. Bharti, Asmita G. Patil*, Shovanlal Gayen*

Journal Name: Current Drug Discovery Technologies

Volume 17 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The anti-infective potentials of the natural products are very well known for centuries and are a part of traditional healing. The foremost therapeutic classes include flavones, isoflavones, flavonols, flavanones, flavanols, proanthocyanidins, anthocyanidins, chalcones, and aurones. The chalcone or 1,3-diphenyl-2E-propene-1-one represents the class of natural products which are comprised of benzylideneacetophenone function; i.e. two aromatic moieties linked together by an α, β-unsaturated carbonyl bridge comprising three-carbons. At present, chalcone is one of the privileged scaffolds that can be synthesized in the laboratory to derive different pharmacologically active compounds. This article is the continued form of the previously published work on anti-infective perspectives of chalcones (highlighted till 2015). The current work emphasizes on the discovery process of the chalcone in the period of 2016 to 2017 on malaria, trypanosomiasis, leishmaniasis, filaria, tuberculosis, netamodes, Human Immunodeficiency Virus (HIV), Tobacco Mosaic Virus (TMV), Severe Acute Respiratory Syndrome (SARS), and miscellaneous conditions. This review comprehensively focuses on the latest progress related with the anti-infective chalcones. The content includes the crucial structural features of chalcone scaffold including structure-activity relationship(s) along with their plausible mechanism of action(s) from the duration Jan 2016 to Dec 2017. This literature will be of prime interest to medicinal chemists in getting ideas and concepts for better rational development of potential anti-infective inhibitors.

Keywords: Chalcone, infective, malaria, parasite, SAR, viral.

[1]
Hotez PJ, Savioli L, Fenwick A. Neglected tropical diseases of the Middle East and North Africa: review of their prevalence, distribution, and opportunities for control. PLoS Negl Trop Dis 2012; 6(2)e1475
[http://dx.doi.org/10.1371/journal.pntd.0001475] [PMID: 22389729]
[2]
Kimberlin DW, Brady MT, Jackson MA, Long SS. Red Book, (2015): 2015 Report of the Committee on Infec-tious Diseases. Am Acad Pediatr 2015.
[3]
Giesecke J. Modern infectious disease epidemiology. 3rd ed. London: CRC Press 2017.
[4]
Pelczar MJ, Chan ECS, Krieg NR. Microbiology. 7th ed. New Delhi: Tata McGraw-Hill Publishing Company Limited 2009.
[5]
Barik TK. Antimalarial drug: From its development to deface. Curr Drug Discov Technol 2015; 12(4): 225-8.
[http://dx.doi.org/10.2174/1570163812666150907100019] [PMID: 26343059]
[6]
Lówbúrý ÉJ, Ayliffe GA, Geddes AM, Williams JD II, Eds. Control of hospital infection: A practical handbook. Philadelphia: Springer 2013.
[7]
Tookes H, Diaz C, Li H, Khalid R, Doblecki-Lewis S. A cost analysis of hospitalizations for infections related to injection drug use at a county safety-net hospital in Miami, Florida. PLoS One 2015; 10(6)e0129360
[http://dx.doi.org/10.1371/journal.pone.0129360] [PMID: 26075888]
[8]
Zhang H, Jampilek J. Anti-infective drug discovery based on diversified plant natural compounds. Curr Org Chem 2017; 21(18): 1775-6.
[http://dx.doi.org/10.2174/138527282118171002153130]
[9]
Scotti L, Junior M, Francisco JB, Scotti MT. Polypharmacology of natural products. Mini Rev Org Chem 2017; 14(4): 255-6.
[http://dx.doi.org/10.2174/1570193X1404170822155702]
[10]
Sharma V, Kumar V, Kumar P. Heterocyclic chalcone analogues as potential anticancer agents. Anticancer Agents Med Chem 2013; 13(3): 422-32.
[PMID: 22721390]
[11]
Nasir ABS, Jasamai M, Jantan I, Ahmad W. Review of methods and various catalysts used for chalcone synthesis. Mini Rev Org Chem 2013; 10(1): 73-83.
[http://dx.doi.org/10.2174/1570193X11310010006]
[12]
Sahu NK, Balbhadra SS, Choudhary J, Kohli DV. Exploring pharmacological significance of chalcone scaffold: a review. Curr Med Chem 2012; 19(2): 209-25.
[http://dx.doi.org/10.2174/092986712803414132] [PMID: 22320299]
[13]
Mahapatra DK, Bharti SK, Asati V. Anti-cancer chalcones: Structural and molecular target perspectives. Eur J Med Chem 2015; 98: 69-114.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.004] [PMID: 26005917]
[14]
Mahapatra DK, Bharti SK. Therapeutic potential of chalcones as cardiovascular agents. Life Sci 2016; 148: 154-72.
[http://dx.doi.org/10.1016/j.lfs.2016.02.048] [PMID: 26876916]
[15]
Mahapatra DK, Bharti SK, Asati V. Chalcone scaffolds as anti-infective agents: structural and molecular target perspectives. Eur J Med Chem 2015; 101: 496-524.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.052] [PMID: 26188621]
[16]
Mahapatra DK, Bharti SK, Asati V. Chalcone derivatives: Anti-inflammatory potential and molecular targets perspectives. Curr Top Med Chem 2017; 17(28): 3146-69.
[http://dx.doi.org/10.2174/1568026617666170914160446] [PMID: 28914193]
[17]
Mahapatra DK, Asati V, Bharti SK. Chalcones and their therapeutic targets for the management of diabetes: structural and pharmacological perspectives. Eur J Med Chem 2015; 92: 839-65.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.051] [PMID: 25638569]
[18]
Le Bail JC, Pouget C, Fagnere C, Basly JP, Chulia AJ, Habrioux G. Chalcones are potent inhibitors of aromatase and 17β-hydroxysteroid dehydrogenase activities. Life Sci 2001; 68(7): 751-61.
[http://dx.doi.org/10.1016/S0024-3205(00)00974-7] [PMID: 11205867]
[19]
Cho S, Kim S, Jin Z, et al. Isoliquiritigenin, a chalcone compound, is a positive allosteric modulator of GABAA receptors and shows hypnotic effects. Biochem Biophys Res Commun 2011; 413(4): 637-42.
[http://dx.doi.org/10.1016/j.bbrc.2011.09.026] [PMID: 21945440]
[20]
de Campos-Buzzi F, Padaratz P, Meira AV, Corrêa R, Nunes RJ, Cechinel-Filho V. 4′-Acetamidochalcone derivatives as potential antinociceptive agents. Molecules 2007; 12(4): 896-906.
[http://dx.doi.org/10.3390/12040896] [PMID: 17851442]
[21]
Sato Y, He JX, Nagai H, Tani T, Akao T. Isoliquiritigenin, one of the antispasmodic principles of Glycyrrhiza ularensis roots, acts in the lower part of intestine. Biol Pharm Bull 2007; 30(1): 145-9.
[http://dx.doi.org/10.1248/bpb.30.145] [PMID: 17202675]
[22]
Wang L, Chen G, Lu X, et al. Novel chalcone derivatives as hypoxia-inducible factor (HIF)-1 inhibitor: synthesis, anti-invasive and anti-angiogenic properties. Eur J Med Chem 2015; 89: 88-97.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.036] [PMID: 25462229]
[23]
Jamal H, Ansari WH, Rizvi SJ. Evaluation of chalcones--a flavonoid subclass, for, their anxiolytic effects in rats using elevated plus maze and open field behaviour tests. Fundam Clin Pharmacol 2008; 22(6): 673-81.
[http://dx.doi.org/10.1111/j.1472-8206.2008.00639.x] [PMID: 19049672]
[24]
Ortolan XR, Fenner BP, Mezadri TJ, Tames DR, Corrêa R, de Campos Buzzi F. Osteogenic potential of a chalcone in a critical-size defect in rat calvaria bone. J Craniomaxillofac Surg 2014; 42(5): 520-4.
[http://dx.doi.org/10.1016/j.jcms.2013.07.020] [PMID: 24041609]
[25]
Aggarwal S, Paliwal D, Kaushik D, Gupta GK, Kumar A. Pyrazole schiff base hybrids as anti-malarial agents: Synthesis, in vitro screening and computational study. Comb Chem High Throughput Screen 2018; 21(3): 194-203.
[http://dx.doi.org/10.2174/1386207321666180213092911] [PMID: 29436997]
[26]
Gomes PS, Morrot A. Therapeutic approaches blocking glycan synthesis as targeting strategy for malaria. Curr Clin Pharmacol 2017; 12(1): 26-30.
[http://dx.doi.org/10.2174/1574884711666161220152827] [PMID: 28000556]
[27]
Barmade MA, Murumkar PR, Sharma MK, Shingala KP, Giridhar RR, Yadav MR. Discovery of anti-malarial agents through application of in silico studies. Comb Chem High Throughput Screen 2015; 18(2): 151-87.
[http://dx.doi.org/10.2174/1386207318666141229125852] [PMID: 25543680]
[28]
Achieng AO, Rawat M, Ogutu B, et al. Antimalarials: molecular drug targets and mechanism of action. Curr Top Med Chem 2017; 17(19): 2114-28.
[http://dx.doi.org/10.2174/1568026617666170130115323] [PMID: 28137233]
[29]
Marella A, Verma G, Shaquiquzzaman M, Akhter M, Alam M. Malaria: hitches and hopes. Mini Rev Med Chem 2014; 14(5): 453-70.
[http://dx.doi.org/10.2174/1389557514666140428111051] [PMID: 24766385]
[30]
Corey VC, Lukens AK, Istvan ES, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun 2016; 7(7): 11901.
[http://dx.doi.org/10.1038/ncomms11901] [PMID: 27301419]
[31]
Syahri J, Purwono B, Armunanto R. Design of new potential antimalaria compound based on QSAR analysis of chalcone derivatives. Int J Pharm Sci Rev Res 2016; 36: 71-6.
[32]
Thillainayagam M, Malathi K, Ramaiah S. In-Silico molecular docking and simulation studies on novel chalcone and flavone hybrid derivatives with 1, 2, 3-triazole linkage as vital inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase. J Biomol Struct Dyn 2018; 36(15): 1-17.
[PMID: 29132266]
[33]
Thillainayagam M, Anbarasu A, Ramaiah S. Comparative molecular field analysis and molecular docking studies on novel aryl chalcone derivatives against an important drug target cysteine protease in Plasmodium falciparum. J Theor Biol 2016; 403: 110-28.
[http://dx.doi.org/10.1016/j.jtbi.2016.05.019] [PMID: 27185536]
[34]
Singh P, Kumari K, Awasthi SK, Ch R. Virtual screening and docking studies of synthesized chalcones: Potent anti-malarial drug. Int J Drug Devel Res 2016; 8(1): 49-56.
[35]
Kumar S, Saini A, Gut J, Rosenthal PJ, Raj R, Kumar V. 4-Aminoquinoline-chalcone/-N-acetylpyrazoline conjugates: Synthesis and antiplasmodial evaluation. Eur J Med Chem 2017; 138: 993-1001.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.041] [PMID: 28756265]
[36]
Singh A, Rani A, Gut J, Rosenthal PJ, Kumar V. Piperazine-linked 4-aminoquinoline-chalcone/ferrocenyl-chalcone conjugates: Synthesis and antiplasmodial evaluation. Chem Biol Drug Des 2017; 90(4): 590-5.
[http://dx.doi.org/10.1111/cbdd.12982] [PMID: 28332319]
[37]
Singh A, Gut J, Rosenthal PJ, Kumar V. 4-Aminoquinoline-ferrocenyl-chalcone conjugates: Synthesis and anti-plasmodial evaluation. Eur J Med Chem 2017; 125: 269-77.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.044] [PMID: 27688182]
[38]
Smit FJ, Bezuidenhout JJ, Bezuidenhout CC, N’Da DD. Synthesis and in vitro biological activities of ferrocenyl–chalcone amides. Med Chem Res 2016; 25(4): 568-84.
[http://dx.doi.org/10.1007/s00044-016-1509-y]
[39]
Dohutia C, Chetia D, Gogoi K, Sarma K. Design, in silico and in vitro evaluation of curcumin analogues against Plasmodium falciparum. Exp Parasitol 2017; 175: 51-8.
[http://dx.doi.org/10.1016/j.exppara.2017.02.006] [PMID: 28188731]
[40]
Syahri J, Rullah K, Armunanto R, et al. Synthesis, biological evaluation, QSAR analysis, and molecular docking of chalcone derivatives for antimalarial activity. Asian Pac J Trop Dis 2017; 7(1): 8-13.
[http://dx.doi.org/10.12980/apjtd.7.2017D6-316]
[41]
Tiwari HK, Kumar P, Jatana N, et al. In vitro antimalarial evaluation of piperidine‐and piperazine‐based chalcones: Inhibition of Falcipain‐2 and Plasmepsin II hemoglobinases activities from Plasmodium falciparum. Chem Select 2017; 2(25): 7684-90.
[http://dx.doi.org/10.1002/slct.201701162]
[42]
Gross AD, Tabanca N, Islam R, et al. Toxicity and synergistic activities of chalcones against Aedes aegypti (Diptera: Culicidae) and Drosophila melanogaster (Diptera: Drosophilidae). J Med Entomol 2017; 54(2): 382-6.
[PMID: 28011724]
[43]
Ilari A, Fiorillo A, Baiocco P, Poser E, Angiulli G, Colotti G. Targeting polyamine metabolism for finding new drugs against leishmaniasis: A review. Mini Rev Med Chem 2015; 15(3): 243-52.
[http://dx.doi.org/10.2174/138955751503150312141044] [PMID: 25769972]
[44]
Vaghela R, Kulkarni PK, Osmani RAM, Bhosale RR, Naga Sravan Kumar Varma V, Naga S. Recent advances in nanosystems and strategies for managing leishmaniasis. Curr Drug Targets 2017; 18(14): 1598-621.
[http://dx.doi.org/10.2174/1389450117666160401124133] [PMID: 27033193]
[45]
Thomaz-Soccol V, Ferreira da Costa ES, Karp SG, Junior Letti LA, Soccol FT, Soccol CR. Recent advances in vaccines against Leishmania based on patent applications. Recent Pat Biotechnol 2018; 12(1): 21-32.
[PMID: 28494723]
[46]
Singh K, Garg G, Ali V. Current therapeutics, their problems and thiol metabolism as potential drug targets in leishmaniasis. Curr Drug Metab 2016; 17(9): 897-919.
[http://dx.doi.org/10.2174/1389200217666160819161444] [PMID: 27549807]
[47]
de Castro MC, da Silva AC, dos Santos TA, et al. Leishmaniasis and Chagas Disease TreatmentTropical Diseases: An Overview of Major Diseases Occurring in the Americas. 1st ed. Dubai: Bemtham Science Publishers 2018; pp. 114-28.
[48]
Elmahallawy EK, Agil A. Treatment of leishmaniasis: a review and assessment of recent research. Curr Pharm Des 2015; 21(17): 2259-75.
[http://dx.doi.org/10.2174/1381612821666141231163053] [PMID: 25543123]
[49]
Barbosa JF, de Figueiredo SM, Monteiro FM, et al. New approaches on Leishmaniasis treatment and prevention: A review of recent patents. Recent Pat Endocr Metab Immune Drug Discov 2015; 9(2): 90-102.
[http://dx.doi.org/10.2174/1872214809666150921111956] [PMID: 26392062]
[50]
Bellera CL, Sbaraglini ML, Balcazar DE, et al. High-throughput drug repositioning for the discovery of new treatments for Chagas disease. Mini Rev Med Chem 2015; 15(3): 182-93.
[http://dx.doi.org/10.2174/138955751503150312120208] [PMID: 25769967]
[51]
Sanchez-Sanchez M, Rivera G, Garcia AE, Bocanegra-garcia V. therapeutic targets for the development of anti-trypanosoma cruzi drugs: A brief review. Mini Rev Org Chem 2016; 13(3): 227-43.
[http://dx.doi.org/10.2174/1570193X13666160510113821]
[52]
Paucar R, Moreno-Viguri E, Pérez-Silanes S. Challenges in chagas disease drug discovery: A review. Curr Med Chem 2016; 23(28): 3154-70.
[http://dx.doi.org/10.2174/0929867323999160625124424] [PMID: 27356544]
[53]
Schijman AG, Burgos JM, Marcet PL. Molecular tools and strategies for diagnosis of Chagas disease and leishmaniasis. Front Parasitol Mol Cell Biol Pathogenic Trypanosom 2017; 1: 394-453.
[http://dx.doi.org/10.2174/9781681084053117010012]
[54]
Bhambra AS, Ruparelia KC, Tan HL, et al. Synthesis and antitrypanosomal activities of novel pyridylchalcones. Eur J Med Chem 2017; 128: 213-8.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.027] [PMID: 28189085]
[55]
Coa JC, García E, Carda M, et al. Synthesis, leishmanicidal, trypanocidal and cytotoxic activities of quinoline-chalcone and quinoline-chromone hybrids. Med Chem Res 2017; 26(7): 1405-14.
[http://dx.doi.org/10.1007/s00044-017-1846-5]
[56]
Borsari C, Santarem N, Torrado J, et al. Methoxylated 2′-hydroxychalcones as antiparasitic hit compounds. Eur J Med Chem 2017; 126: 1129-35.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.017] [PMID: 28064141]
[57]
Rodrigues DF, Maniscalco DA, Silva FA, et al. Trypanocidal activity of flavokawin B, a component of Po-lygonum ferrugineum Wedd. Planta Med 2017.
[58]
Monzote L, Lackova A, Staniek K, et al. The antileishmanial activity of xanthohumol is mediated by mitochondrial inhibition. Parasitology 2017; 144(6): 747-59.
[http://dx.doi.org/10.1017/S0031182016002389] [PMID: 27938439]
[59]
Mishra M, Srivastava P. Review on computational approaches for identification of new targets and compounds for fighting against filariasis. Open Bioactive Compd J 2017; 5(1): 72-82.
[http://dx.doi.org/10.2174/1874847301705010072]
[60]
Shahab M, Misra-Bhattacharya S. Combating mosquito-borne lymphatic filariasis with genomics technologies: Enabling novel drug discovery for neglected tropical diseases. Curr Pharmacogenomics Person Med 2012; 10(2): 148-58.
[http://dx.doi.org/10.2174/187569212800626421]
[61]
Katiyar D, Singh LK. Filariasis: Current status, treatment and recent advances in drug development. Curr Med Chem 2011; 18(14): 2174-85.
[http://dx.doi.org/10.2174/092986711795656234] [PMID: 21521163]
[62]
Bahekar SP, Hande SV, Agrawal NR, et al. Sulfonamide chalcones: Synthesis and in vitro exploration for therapeutic potential against Brugia malayi. Eur J Med Chem 2016; 124: 262-9.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.042] [PMID: 27592395]
[63]
Elliott DE, Weinstock JV. Nematodes and human therapeutic trials for inflammatory disease. Parasite Immunol 2017; 39(5)e12407
[http://dx.doi.org/10.1111/pim.12407] [PMID: 27977856]
[64]
Hotez PJ, Alvarado M, Basáñez MG, et al. The global burden of disease study 2010: interpretation and implications for the neglected tropical diseases. PLoS Negl Trop Dis 2014; 8(7)e2865
[http://dx.doi.org/10.1371/journal.pntd.0002865] [PMID: 25058013]
[65]
Hadush A, Pal M. Ascariasis: Public Health Importance and its Status in Ethiopia. Air Water Borne Dis 2016; 5(1): 126.
[http://dx.doi.org/10.4172/2167-7719.1000126]
[66]
Khuroo MS, Rather AA, Khuroo NS, Khuroo MS. Hepatobiliary and pancreatic ascariasis. World J Gastroenterol 2016; 22(33): 7507-17.
[http://dx.doi.org/10.3748/wjg.v22.i33.7507] [PMID: 27672273]
[67]
Velikkakam T, Fiuza JA, Gaze ST. Overview of Hookworm Infection in HumansNeglected Tropical Diseases-South Asia. 1st ed. Amsterdam: Springer 2017; pp. 121-35.
[http://dx.doi.org/10.1007/978-3-319-68493-2_4]
[68]
Caboni P, Aissani N, Demurtas M, Ntalli N, Onnis V. Nematicidal activity of acetophenones and chalcones against Meloidogyne incognita and structure-activity considerations. Pest Manag Sci 2016; 72(1): 125-30.
[http://dx.doi.org/10.1002/ps.3978] [PMID: 25641877]
[69]
Sachan M, Srivastava A, Ranjan R, Gupta A, Pandya S, Misra A. Opportunities and challenges for host-directed therapies in tuberculosis. Curr Pharm Des 2016; 22(17): 2599-604.
[http://dx.doi.org/10.2174/1381612822666160128150636] [PMID: 26818871]
[70]
Bansal R, Sharma D, Singh R. Tuberculosis and its treatment: An overview. Mini Rev Med Chem 2018; 18(1): 58-71.
[PMID: 27553018]
[71]
Laniado-Laborin R. Diagnosis and treatment of drug-resistant tuberculosis: State of the Art. Curr Respir Med Rev 2017; 13(2): 73-81.
[http://dx.doi.org/10.2174/1573398X13666170926154425]
[72]
Sharma D, Yadav JP. An overview of phytotherapeutic approaches for the treatment of tuberculosis. Mini Rev Med Chem 2017; 17(2): 167-83.
[http://dx.doi.org/10.2174/1389557516666160505114603] [PMID: 27145855]
[73]
Rao NS, Shaik AB, Routhu SR, et al. New Quinoline linked chalcone and pyrazoline conjugates: Molecular properties prediction, antimicrobial and antitubercular activities. Chem Select 2017; 2(10): 2989-96.
[http://dx.doi.org/10.1002/slct.201602022]
[74]
Desai V, Desai S, Gaonkar SN, Palyekar U, Joshi SD, Dixit SK. Novel quinoxalinyl chalcone hybrid scaffolds as enoyl ACP reductase inhibitors: Synthesis, molecular docking and biological evaluation. Bioorg Med Chem Lett 2017; 27(10): 2174-80.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.059] [PMID: 28372908]
[75]
Gomes MN, Braga RC, Grzelak EM, et al. QSAR-driven design, synthesis and discovery of potent chalcone derivatives with antitubercular activity. Eur J Med Chem 2017; 137: 126-38.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.026] [PMID: 28582669]
[76]
Simooya OO. Editorial: HIV infection and AIDS in Africa - issues, Lessons learnt and next steps. Open AIDS J 2016; 10: 14-5.
[http://dx.doi.org/10.2174/1874613601610010014] [PMID: 27347267]
[77]
Datta PK, Kaminski R, Hu W, et al. HIV-1 latency and eradication: Past, present and future. Curr HIV Res 2016; 14(5): 431-41.
[http://dx.doi.org/10.2174/1570162X14666160324125536] [PMID: 27009094]
[78]
Bowa K, Kawimbe B, Mugala D, et al. A review of HIV and surgery in Africa. Open AIDS J 2016; 10: 16-23.
[http://dx.doi.org/10.2174/1874613601610010016] [PMID: 27347268]
[79]
Simoni JM, Kutner BA, Horvath KJ. Opportunities and challenges of digital technology for HIV treatment and prevention. Curr HIV/AIDS Rep 2015; 12(4): 437-40.
[http://dx.doi.org/10.1007/s11904-015-0289-1] [PMID: 26412082]
[80]
Detsis M, Tsioutis C, Karageorgos SA, Sideroglou T, Hatzakis A, Mylonakis E. Factors associated with HIV Testing and HIV treatment adherence: A systematic review. Curr Pharm Des 2017; 23(18): 2568-78.
[http://dx.doi.org/10.2174/1381612823666170329125820] [PMID: 28356038]
[81]
Weydert C, De Rijck J, Christ F, Debyser Z. Targeting virus-host interactions of HIV replication. Curr Top Med Chem 2016; 16(10): 1167-90.
[http://dx.doi.org/10.2174/1568026615666150901115106] [PMID: 26324041]
[82]
Cole AL, Hossain S, Cole AM, Phanstiel O IV. Synthesis and bioevaluation of substituted chalcones, coumaranones and other flavonoids as anti-HIV agents. Bioorg Med Chem 2016; 24(12): 2768-76.
[http://dx.doi.org/10.1016/j.bmc.2016.04.045] [PMID: 27161874]
[83]
Hameed A, Abdullah MI, Ahmed E, Sharif A, Irfan A, Masood S. Anti-HIV cytotoxicity enzyme inhibition and molecular docking studies of quinoline based chalcones as potential non-nucleoside reverse transcriptase inhibitors (NNRT). Bioorg Chem 2016; 65: 175-82.
[http://dx.doi.org/10.1016/j.bioorg.2016.02.008] [PMID: 26964017]
[84]
Al-Hazam HA, Al-Shamkani ZA, Al-Masoudi NA, Saeed BA, Pannecouque C. New chalcones and thiopyrimidine analogues derived from mefenamic acid: Microwave-assisted synthesis, anti-HIV activity and cytotoxicity as antileukemic agents. Z Naturforsch B 2017; 72(4): 249-56.
[http://dx.doi.org/10.1515/znb-2016-0223]
[85]
Albanesi M, Chaoul N, Lofano G. Vaccination strategies and immunotherapy against influenza. Clin Immunol Endocr Metab Drugs 2016; 3(1): 25-30.
[http://dx.doi.org/10.2174/2212707003666160728143716]
[86]
Gong J, Xu W, Zhang J. Structure and functions of influenza virus neuraminidase. Curr Med Chem 2007; 14(1): 113-22.
[http://dx.doi.org/10.2174/092986707779313444] [PMID: 17266572]
[87]
Mahapatra DK. Neuraminidase Inhibitors for effective treatment of Influenza. Int J Pharm Res Tech 2014; 4(1): 22-31.
[88]
Tonelli M, Cichero E. Fight against H1N1 influenza A virus: Recent insights towards the development of druggable compounds. Curr Med Chem 2016; 23(18): 1802-17.
[http://dx.doi.org/10.2174/0929867323666160210124930] [PMID: 26861005]
[89]
Sencanski M, Radosevic D, Perovic V, et al. Natural products as promising therapeutics for treatment of influenza disease. Curr Pharm Des 2015; 21(38): 5573-88.
[http://dx.doi.org/10.2174/1381612821666151002113426] [PMID: 26429712]
[90]
Li F, Ma C, Wang J. Inhibitors targeting the influenza virus hemagglutinin. Curr Med Chem 2015; 22(11): 1361-82.
[http://dx.doi.org/10.2174/0929867322666150227153919] [PMID: 25723505]
[91]
Yaeghoobi M, Frimayanti N, Chee CF, et al. QSAR, in silico docking and in vitro evaluation of chalcone derivatives as potential inhibitors for H1N1 virus neuraminidase. Med Chem Res 2016; 25(10): 2133-42.
[http://dx.doi.org/10.1007/s00044-016-1636-5]
[92]
Shi F, Fang H, Xu W. Design, synthesis and biological activity of novel chalcone derivatives as anti-influenza agents. Chem Res Chin Univ 2016; 32(1): 28-34.
[http://dx.doi.org/10.1007/s40242-015-5356-z]
[93]
Zhao L, Hao X, Wu Y. Inhibitory effect of polysaccharide peptide (PSP) against Tobacco mosaic virus (TMV). Int J Biol Macromol 2015; 75: 474-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.01.058] [PMID: 25709019]
[94]
Ye Y, Dong W, Liu C, et al. Chalcones from Desmodium podocarpum and their anti-tobacco mosaic virus activity. Chem Nat Compd 2016; 52(3): 409-12.
[http://dx.doi.org/10.1007/s10600-016-1660-1]
[95]
Gan X, Wang Y, Hu D, Song B. Design, synthesis, and antiviral activity of novel chalcone derivatives containing a purine moiety. Chin J Chem 2017; 35(5): 665-72.
[http://dx.doi.org/10.1002/cjoc.201600568]
[96]
Park JY, Ko JA, Kim DW, et al. Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV. J Enzyme Inhib Med Chem 2016; 31(1): 23-30.
[http://dx.doi.org/10.3109/14756366.2014.1003215] [PMID: 25683083]
[97]
Gopalakrishnan A, Maji C, Dahiya RK, et al. In vitro growth inhibitory efficacy of some target specific novel drug molecules against Theileria equi. Vet Parasitol 2016; 217: 1-6.
[http://dx.doi.org/10.1016/j.vetpar.2015.12.024] [PMID: 26827852]
[98]
Ferraro F, Merlino A, Dell Oca N, et al. Identification of chalcones as Fasciola hepatica cathepsin L inhibitors using a comprehensive experimental and computational approach. PLoS Negl Trop Dis 2016; 10(7) e0004834
[http://dx.doi.org/10.1371/journal.pntd.0004834] [PMID: 27463369]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 1
Year: 2020
Page: [30 - 44]
Pages: 15
DOI: 10.2174/1570163815666180720170030
Price: $65

Article Metrics

PDF: 18
HTML: 3
EPUB: 1
PRC: 1