A Walk in Nature: Sesquiterpene Lactones as Multi-Target Agents Involved in Inflammatory Pathways

Author(s): Adriana Coricello, James D. Adams*, Eric J. Lien, Christopher Nguyen, Filomena Perri, Travis J. Williams, Francesca Aiello

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 9 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor


Inflammatory states are among the most common and most treated medical conditions. Inflammation comes along with swelling, pain and uneasiness in using the affected area. Inflammation is not always a simple symptom; more often is part of a defensive response of the body to an external threat or is a sign that the damaged tissue has not healed yet and needs to rest. The management of the pain associated with an inflammatory state could be a tricky task. In fact, most remedies simply quench the pain, leaving the inflammatory state unaltered. This review focuses on sesquiterpene lactones, a class of natural compounds, that represents a future promise in the treatment of inflammation. Sesquiterpene lactones are efficient inhibitors of multiple targets of the inflammatory process. Their natural sources are often ancient remedies with relevant traditional uses in folk medicines. This work also aims to elucidate how these compounds may represent the starting material for the development of new anti-inflammatory drugs.

Keywords: Sesquiterpene lactones, inflammation, NF-κB, MAPK, COX-2, anti-inflammatory drugs, natural compounds.

Salapovic, H.; Geier, J.; Reznicek, G. Quantification of sesquiterpene lactones in asteraceae plant extracts: evaluation of their allergenic potential. Sci. Pharm., 2013, 81(3), 807-818.
[http://dx.doi.org/10.3797/scipharm.1306-17] [PMID: 24106675]
Chaturvedi, D. Sesquiterpene lactones: Structural diversity and their biological activities in: Opportunity, challenge and scope of natural products in medicinal chemistry, Tiwari, V.K; Mishra, B.B. (Eds.), Ed.; Research Signpost, 2011, pp. 313-334.
Tu, Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat. Med., 2011, 17(10), 1217-1220.
[http://dx.doi.org/10.1038/nm.2471] [PMID: 21989013]
Liu, Y.; Rakotondraibea, L.H.; Brodie, P.J.; Wiley, J.D.; Cassera, M.B.; Goetzc, M.; Kingstona, D.G. Antiproliferative and antimalarial sesquiterpene lactones from Piptocoma antillana from Puerto Rico. Nat. Prod. Commun., 2014, 9(10), 1403-1406.
[http://dx.doi.org/10.1177/1934578X1400901002] [PMID: 25522525]
Gach, K.; Janecka, A. alpha-Methylene-gamma-lactones as a novel class of anti-leukemic agents. Anticancer. Agents Med. Chem., 2014, 14(5), 688-694.
[http://dx.doi.org/10.2174/1871520614666140313095010] [PMID: 24628266]
Merfort, I. Perspectives on sesquiterpene lactones in inflammation and cancer. Curr. Drug Targets, 2011, 12(11), 1560-1573.
[http://dx.doi.org/10.2174/138945011798109437] [PMID: 21561425]
Adams, J.D.; Haworth, I.S.; Coricello, A.; Perri, F.; Nguyen, C.; Aiello, F.; Williams, T.J.; Lien, E.J. The treatment of pain with topical sesquiterpenes. Frontiers in Natural Product Chemistry, 2017, 3(20), 176-195.
Karunaweera, N.; Raju, R.; Gyengesi, E.; Münch, G. Plant polyphenols as inhibitors of NF- κB induced cytokine production-a potential anti-inflammatory treatment for Alzheimer’s disease? Front. Mol. Neurosci., 2015, 8, 24.
[http://dx.doi.org/10.3389/fnmol.2015.00024] [PMID: 26136655]
Carullo, G.; Galligano, F.; Aiello, F. Structure-activity relationships for the synthesis of selective cyclooxygenase 2 inhibitors: an overview (2009-2016). MedChemComm, 2016, 8(3), 492-500.
[http://dx.doi.org/10.1039/C6MD00569A] [PMID: 30108767]
Sharma, J.N.; Al-Omran, A.; Parvathy, S.S. Role of nitric oxide in inflammatory diseases. Inflammopharmacology, 2007, 15(6), 252-259.
[http://dx.doi.org/10.1007/s10787-007-0013-x] [PMID: 18236016]
Smith, W.L.; DeWitt, D.L.; Garavito, R.M. Cyclooxygenases: structural, cellular, and molecular biology. Annu. Rev. Biochem., 2000, 69, 145-182.
[http://dx.doi.org/10.1146/annurev.biochem.69.1.145] [PMID: 10966456]
Li, Y.; Zhang, H.; Kosturakis, A.K.; Cassidy, R.M.; Zhang, H.; Kennamer-Chapman, R.M.; Jawad, A.B.; Colomand, C.M.; Harrison, D.S.; Dougherty, P.M. MAPK signaling downstream to TLR4 contributes to paclitaxel-induced peripheral neuropathy. Brain Behav. Immun., 2015, 49, 255-266.
[http://dx.doi.org/10.1016/j.bbi.2015.06.003] [PMID: 26065826]
Cuschieri, J.; Billgren, J.; Maier, R.V. Phosphatidylcholine-specific phospholipase C (PC-PLC) is required for LPS-mediated macrophage activation through CD14. J. Leukoc. Biol., 2006, 80(2), 407-414.
[http://dx.doi.org/10.1189/jlb.1105622] [PMID: 16754725]
Leicht, D.T.; Balan, V.; Zhu, J.; Kaplun, A.; Bronisz, A.; Rana, A.; Tzivion, G. MEK-1 activates C-Raf through a Ras-independent mechanism. Biochim. Biophys. Acta, 2013, 1833(5), 976-986.
[http://dx.doi.org/10.1016/j.bbamcr.2013.01.015] [PMID: 23360980]
Cuenda, A.; Rousseau, S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim. Biophys. Acta, 2007, 1773(8), 1358-1375.
[http://dx.doi.org/10.1016/j.bbamcr.2007.03.010] [PMID: 17481747]
Cargnello, M.; Roux, P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev., 2011, 75(1), 50-83.
[http://dx.doi.org/10.1128/MMBR.00031-10] [PMID: 21372320]
Yuan, Z.; Gong, S.; Luo, J.; Zheng, Z.; Song, B.; Ma, S.; Guo, J.; Hu, C.; Thiel, G.; Vinson, C.; Hu, C.D.; Wang, Y.; Li, M. Opposing roles for ATF2 and c-Fos in c-Jun-mediated neuronal apoptosis. Mol. Cell. Biol., 2009, 29(9), 2431-2442.
[http://dx.doi.org/10.1128/MCB.01344-08] [PMID: 19255142]
Bleckmann, S.C.; Blendy, J.A.; Rudolph, D.; Monaghan, A.P.; Schmid, W.; Schütz, G. Activating transcription factor 1 and CREB are important for cell survival during early mouse development. Mol. Cell. Biol., 2002, 22(6), 1919-1925.
[http://dx.doi.org/10.1128/MCB.22.6.1919-1925.2002] [PMID: 11865068]
Majdi, M.; Liu, Q.; Karimzadeh, G.; Malboobi, M.A.; Beekwilder, J.; Cankar, K.; Vos, Rd.; Todorović, S.; Simonović, A.; Bouwmeester, H. Biosynthesis and localization of parthenolide in glandular trichomes of feverfew (Tanacetum parthenium L. Schulz Bip.). Phytochemistry, 2011, 72(14-15), 1739-1750.
[http://dx.doi.org/10.1016/j.phytochem.2011.04.021] [PMID: 21620424]
Popiolek-Barczyk, K.; Kolosowska, N.; Piotrowska, A.; Makuch, W.; Rojewska, E.; Jurga, A.M.; Pilat, D.; Mika, J. Parthenolide relieves pain and promotes M2 microglia/macrophage polarization in rat model of neuropathy. Neural Plast., 2015, 2015676473
[http://dx.doi.org/10.1155/2015/676473] [PMID: 26090236]
Kwok, B.H.; Koh, B.; Ndubuisi, M.I.; Elofsson, M.; Crews, C.M. The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IkappaB kinase. Chem. Biol., 2001, 8(8), 759-766.
[http://dx.doi.org/10.1016/S1074-5521(01)00049-7] [PMID: 11514225]
Picman, A.K.; Rodríguez, E.; Towers, G.H.N. Formation of adducts of parthenin and related sesquiterpene lactones with cysteine and glutathione. Chem. Biol. Interact., 1979, 28(1), 83-89.
[http://dx.doi.org/10.1016/0009-2797(79)90116-9] [PMID: 498366]
Carlisi, D.; D’Anneo, A.; Angileri, L.; Lauricella, M.; Emanuele, S.; Santulli, A.; Vento, R.; Tesoriere, G. Parthenolide sensitizes hepatocellular carcinoma cells to TRAIL by inducing the expression of death receptors through inhibition of STAT3 activation. J. Cell. Physiol., 2011, 226(6), 1632-1641.
[http://dx.doi.org/10.1002/jcp.22494] [PMID: 21413021]
Materazzi, S.; Benemei, S.; Fusi, C.; Gualdani, R.; De Siena, G.; Vastani, N.; Andersson, D.A.; Trevisan, G.; Moncelli, M.R.; Wei, X.; Dussor, G.; Pollastro, F.; Patacchini, R.; Appendino, G.; Geppetti, P.; Nassini, R. Parthenolide inhibits nociception and neurogenic vasodilatation in the trigeminovascular system by targeting the TRPA1 channel. Pain, 2013, 154(12), 2750-2758.
[http://dx.doi.org/10.1016/j.pain.2013.08.002] [PMID: 23933184]
Lu, X.; Min, L.; Wei, J.; Gou, H.; Bao, Z.; Wang, J.; Wang, Z.; Huang, Y.; An, B. Heliangin inhibited lipopolysaccharide-induced inflammation through signaling NF- κB pathway on LPS-induced RAW 264.7 cells. Biomed. Pharmacother., 2017, 88, 102-108.
[http://dx.doi.org/10.1016/j.biopha.2017.01.041] [PMID: 28095354]
Pan, L.; Sinden, M.R.; Kennedy, A.H.; Chai, H.; Watson, L.E.; Graham, T.L.; Kinghorn, A.D. Bioactive constituents of Helianthus tuberosus (Jerusalem artichoke). Phytochem. Lett., 2009, 2, 15-18.
Shen, Y.C.; Lo, K.L.; Kuo, Y.H.; Khalil, A.T. Cytotoxic sesquiterpene lactones from Eupatorium kiirunense, a coastal plant of Taiwan. J. Nat. Prod., 2005, 68(5), 745-750.
[http://dx.doi.org/10.1021/np040214k] [PMID: 15921421]
Spring, O.; Zipper, R.; Klaiber, I.; Reeb, S.; Vogler, B. Sesquiterpene lactones in Viguiera eriophora and Viguiera puruana (Heliantheae; Asteraceae). Phytochemistry, 2000, 55(3), 255-261.
[http://dx.doi.org/10.1016/S0031-9422(00)00276-4] [PMID: 11142852]
Li, H.; Kim, J.Y.; Hyeon, J.; Lee, H.J.; Ryu, J.H. In vitro antiinflammatory activity of a new sesquiterpene lactone isolated from Siegesbeckia glabrescens. Phytother. Res., 2011, 25(9), 1323-1327.
[http://dx.doi.org/10.1002/ptr.3420] [PMID: 21308823]
Feltenstein, M.W.; Schühly, W.; Warnick, J.E.; Fischer, N.H.; Sufka, K.J. Anti-inflammatory and anti-hyperalgesic effects of sesquiterpene lactones from Magnolia and Bear’s foot. Pharmacol. Biochem. Behav., 2004, 79(2), 299-302.
[http://dx.doi.org/10.1016/j.pbb.2004.08.008] [PMID: 15501305]
Ahmed, M.; Rahman, M.T.; Alimuzzaman, M.; Shilpi, J.A. Analgesic sesquiterpene dilactone from Mikania cordata. Fitoterapia, 2001, 72(8), 919-921.
[http://dx.doi.org/10.1016/S0367-326X(01)00318-5] [PMID: 11731117]
Ballero, M.; Bruni, A.; Sacchetti, G.; Poli, F. Le piante utilizzate nella medicina popolare nel comune di Tempio (Sardegna settentrionale). Acta Phytother, 1997, 1, 23-29.
Verotta, L.; Belvisi, L.; Bertacche, V.; Loi, M.C. Complete characterization of extracts of Onopordum illyricum L. (Asteraceae) by HPLC/PDA/ESIMS and NMR. Nat. Prod. Commun., 2008, 3, 2037-2042.
Formisano, C.; Sanna, C.; Ballero, M.; Chianese, G.; Sirignano, C.; Rigano, D.; Millán, E.; Muñoz, E.; Taglialatela-Scafati, O. Anti-inflammatory sesquiterpene lactones from Onopordum illyricum L. (Asteraceae), an Italian medicinal plant. Fitoterapia, 2017, 116, 61-65.
[http://dx.doi.org/10.1016/j.fitote.2016.11.006] [PMID: 27871974]
Ghadiri, E.; Ahmadi, R.; Moridikya, A.; Mahdavi, E.; Tavakoli, P. Laurus nobilis has antibacterial activity against staphylococcus aureus. International Conference on Food, Biological and Medical Sciences, Bangkok, Thailand2014, pp. 75-76.
Butturini, E.; Di Paola, R.; Suzuki, H.; Paterniti, I.; Ahmad, A.; Mariotto, S.; Cuzzocrea, S. Costunolide and Dehydrocostuslactone, two natural sesquiterpene lactones, ameliorate the inflammatory process associated to experimental pleurisy in mice. Eur. J. Pharmacol., 2014, 730, 107-115.
[http://dx.doi.org/10.1016/j.ejphar.2014.02.031] [PMID: 24625594]
Wang, J.; Yu, Z.; Wang, C.; Tian, X.; Huo, X.; Wang, Y.; Sun, C.; Feng, L.; Ma, J.; Zhang, B.; Yang, Q.; Ma, X.; Xu, Y. Dehydrocostus lactone, a natural sesquiterpene lactone, suppresses the biological characteristics of glioma, through inhibition of the NF-κB/COX-2 signaling pathway by targeting IKKβ. Am. J. Cancer Res., 2017, 7(6), 1270-1284.
[PMID: 28670490]
Schmidt, B.M.; Belolipov, I.V.; Kurmukov, A.; Zarikov, S.; Raskin, I. Sesquiterpene lactone extract from artemisia leucodes for reducing inflammation and down-regulating proinflammatory gene expression. U.S. Patent 2,008,145,465 (A1),. 2008.
Adams, J.D. The use of California sagebrush (artemisia californica) liniment to control pain. Pharmaceuticals (Basel), 2012, 5(10), 1045-1053.
[http://dx.doi.org/10.3390/ph5101045] [PMID: 24281255]
Sun, Z.; Li, G.; Tong, T.; Chen, J. Micheliolide suppresses LPS-induced neuroinflammatory responses. PLoS One, 2017, 12(10), e0186592
[http://dx.doi.org/10.1371/journal.pone.0186592] [PMID: 29040306]
Zhao, Y.; Chen, S.; Wnag, J.; Niu, H.; Jia, Q.; Chen, X.; Du, X.; Lu, L.; Huang, B.; Zhang, Q.; Chen, Y.; Long, H. Sesquiterpene lactones inhibit advanced oxidation protein product-induced MCP-1 expression in podocytes via an IKK/NF-B-dependent mechanism. Oxid. Med. Cell. Longev., 2015, 2015934058
[http://dx.doi.org/10.1155/2015/934058] [PMID: 25664142]
Wesołowska, A.; Nikiforuk, A.; Michalska, K.; Kisiel, W.; Chojnacka-Wójcik, E. Analgesic and sedative activities of lactucin and some lactucin-like guaianolides in mice. J. Ethnopharmacol., 2006, 107(2), 254-258.
[http://dx.doi.org/10.1016/j.jep.2006.03.003] [PMID: 16621374]
Tambewagh, U.U.; Kandhare, A.D.; Honmore, V.S.; Kadam, P.P.; Khedkar, V.M.; Bodhankar, S.L.; Rojatkar, S.R. Anti-inflammatory and antioxidant potential of Guaianolide isolated from Cyathocline purpurea: Role of COX-2 inhibition. Int. Immunopharmacol., 2017, 52, 110-118.
[http://dx.doi.org/10.1016/j.intimp.2017.09.001] [PMID: 28888779]
Joshi, R.K. Chemical constituents and antibacterial property of the essential oil of the roots of Cyathocline purpurea. J. Ethnopharmacol., 2013, 145(2), 621-625.
[http://dx.doi.org/10.1016/j.jep.2012.11.045] [PMID: 23220198]
Ferrari, F.C.; Ferreira, L.C.; Souza, M.R.; Grabe-Guimaraes, A.; Paula, C.A.; Rezende, S.A.; Sande-Guimaraes, D.A. Anti-inflammatory sesquiterpene lactones from lychnophora trichocarpha spreng. (Brazilian arnica). Phytother. Res., 2013, 27(3), 384-389.
[http://dx.doi.org/10.1002/ptr.4736] [PMID: 22619042]
Staneva, J.; Denkova, P.; Todorova, M.; Evstatieva, L. Quantitative analysis of sesquiterpene lactones in extract of Arnica montana L. by 1H NMR spectroscopy. J. Pharm. Biomed. Anal., 2011, 54(1), 94-99.
[http://dx.doi.org/10.1016/j.jpba.2010.08.018] [PMID: 20837387]
Lyss, G.; Knorre, A.; Schmidt, T.J.; Pahl, H.L.; Merfort, I. The anti-inflammatory sesquiterpene lactone helenalin inhibits the transcription factor NF-kappaB by directly targeting p65. J. Biol. Chem., 1998, 273(50), 33508-33516.
[http://dx.doi.org/10.1074/jbc.273.50.33508] [PMID: 9837931]
Tornhamre, S.; Schmidt, T.J.; Näsman-Glaser, B.; Ericsson, I.; Lindgren, J.A. Inhibitory effects of helenalin and related compounds on 5-lipoxygenase and leukotriene C(4) synthase in human blood cells. Biochem. Pharmacol., 2001, 62(7), 903-911.
[http://dx.doi.org/10.1016/S0006-2952(01)00729-8] [PMID: 11543725]
Park, E.J.; Kim, J. Cytotoxic sesquiterpene lactones from Inula britannica. Planta Med., 1998, 64(8), 752-754.
[http://dx.doi.org/10.1055/s-2006-957573] [PMID: 9933993]
Whan Han, J.; Gon Lee, B.; Kee Kim, Y.; Woo Yoon, J.; Kyoung Jin, H.; Hong, S.; Young Lee, H.; Ro Lee, K.; Woo Lee, H. Ergolide, sesquiterpene lactone from Inula britannica, inhibits inducible nitric oxide synthase and cyclo-oxygenase-2 expression in RAW 264.7 macrophages through the inactivation of NF-kappaB. Br. J. Pharmacol., 2001, 133(4), 503-512.
[http://dx.doi.org/10.1038/sj.bjp.0704099] [PMID: 11399667]
Tamura, R.; Morimoto, K.; Hirano, S.; Wang, L.; Zhao, M.; Ando, M.; Kataoka, T. Santonin-related compound 2 inhibits the nuclear translocation of NF- κB subunit p65 by targeting cysteine 38 in TNF-alpha-induced NF- κB signaling pathway. Biosci. Biotechnol. Biochem., 2012, 76(12), 2360-2363.
[http://dx.doi.org/10.1271/bbb.120619] [PMID: 23221713]
al-Harbi, M.M.; Qureshi, S.; Ahmed, M.M.; Raza, M.; Miana, G.A.; Shah, A.H. Studies on the antiinflammatory, antipyretic and analgesic activities of santonin. Jpn. J. Pharmacol., 1994, 64(3), 135-139.
[http://dx.doi.org/10.1254/jjp.64.135] [PMID: 8022114]
Wang, K.S.; Junbo, L.; Wang, Z.; Mi, C.; Ma, J.; Piao, L.X.; Xu, G.H.; Li, X.; Jin, X. Artemisinin inhibits inflammatory response via regulating NF- κB and MAPK signaling pathways. Immunopharmacol. Immunotoxicol., 2017, 39(1), 28-36.
[http://dx.doi.org/10.1080/08923973.2016.1267744] [PMID: 28000518]
Pareek, A.; Suthar, M.; Rathore, G.S.; Bansal, V. Feverfew (Tanacetum parthenium L.): A systematic review. Pharmacogn. Rev., 2011, 5(9), 103-110.
[http://dx.doi.org/10.4103/0973-7847.79105] [PMID: 22096324]
Navie, S.C.; Mcfadyen, R.E.; Panetta, F.D.; Adkins, S.W. The biology of Australian Weeds 27. Parthenium hysterophorus L. Plant Prot. Q., 1996, 11(2), 76-88.
Setty, A.R.; Sigal, L.H. Herbal medications commonly used in the practice of rheumatology: mechanisms of action, efficacy, and side effects. Semin. Arthritis Rheum., 2005, 34(6), 773-784.
[http://dx.doi.org/10.1016/j.semarthrit.2005.01.011] [PMID: 15942912]
Briese, D.T.; Pettit, W.J.; Swirepik, A.W.A. A strategy for the biological control of Onopordum spp. Thistles in South-Eastern Australia. Biocontrol Sci. Technol., 2002, 12(1), 121-136.
Bock, D.G.; Kane, N.C.; Ebert, D.P.; Rieseberg, L.H. Genome skimming reveals the origin of the Jerusalem Artichoke tuber crop species: neither from Jerusalem nor an artichoke. New Phytol., 2014, 201(3), 1021-1030.
[http://dx.doi.org/10.1111/nph.12560] [PMID: 24245977]
Kang, B.K.; Lee, E.H.; Kim, H.M. Inhibitory effects of Korean folk medicine ‘Hi-Chum’ on histamine release from mast cells in vivo and in vitro. J. Ethnopharmacol., 1997, 57(2), 73-79.
[http://dx.doi.org/10.1016/S0378-8741(97)00047-0] [PMID: 9254108]
Lee, H.N.; Joo, J.H.; Oh, J.S.; Choi, S.W.; Seo, D.W. Regulatory effects of Siegesbeckia glabrescens on non-small cell lung cancer cell proliferation and invasion. Am. J. Chin. Med., 2014, 42(2), 453-463.
[http://dx.doi.org/10.1142/S0192415X1450030X] [PMID: 24707874]
Patrakar, R. mansuriya, m.; Patil, P. Phytochemical and pharmacological review on Laurus Nobilis. Int. J. Pharm. Chem. Sci., 2012, 1(2), 595-602.
Madhuri, K.; Elango, K. Ponnusankar, S. Saussurea lappa (Kuth root): Review of its traditional uses, phytochemistry and pharmacology. Orient. Pharm. Exp. Med., 2011, 12(1)
Timbrook, J. Ethnobotany of chumash Indians, California, based on collections by John P. Harrington. Econ. Bot., 1990, 44, 236-253.
Raja, S.; Koduru, R. A complete profile on michelia champaca - traditional uses, pharmacological activities and phytoconstituents. Int. J. Pharm. Res. Sch., 2014, 3(2), 496-504.
Parrotta, J.A. Healing Plants of Peninsular India; CABI Publication: New York, 2001.
Vitalini, S.; Iriti, M.; Puricelli, C.; Ciuchi, D.; Segale, A.; Fico, G. Traditional knowledge on medicinal and food plants used in Val San Giacomo (Sondrio, Italy)--an alpine ethnobotanical study. J. Ethnopharmacol., 2013, 145(2), 517-529.
[http://dx.doi.org/10.1016/j.jep.2012.11.024] [PMID: 23220197]
European Medicines Agency. Assessment report on Arnica montana l. flos. 2014. Available at: . www.ema.europa.eu/en/documents/herbal-report/final-assessment-report-arnica-montana-l-flos_en.pdf (Accessed Date: 12 February, 2019).
Eisenman, S.W.; Zaurov, D.E.; Struwe, L. Medicinal Plants of Central Asia; Springer: Uzbekistan and Kyrgyzstan, 2012.
Willcox, M. Artemisia species: From traditional medicines to modern antimalarials--and back again. J. Altern. Complement. Med., 2009, 15(2), 101-109.
[http://dx.doi.org/10.1089/acm.2008.0327] [PMID: 19236169]
Siedle, B.; García-Piñeres, A.J.; Murillo, R.; Schulte-Mönting, J.; Castro, V.; Rüngeler, P.; Klaas, C.A.; Da Costa, F.B.; Kisiel, W.; Merfort, I. Quantitative structure-activity relationship of sesquiterpene lactones as inhibitors of the transcription factor NF-kappaB. J. Med. Chem., 2004, 47(24), 6042-6054.
[http://dx.doi.org/10.1021/jm049937r] [PMID: 15537359]
Schmidt, T.J. Structure-activity relationships of sesquiterpene lactones. Studies in Natural Products Chemistry, 2006, 33, 309-392.
Duplan, V.; Serba, C.; Garcia, J.; Valot, G.; Barluenga, S.; Hoerlé, M.; Cuendet, M.; Winssinger, N. Synthesis of sesquiterpene-inspired derivatives designed for covalent binding and their inhibition of the NF- κB pathway. Org. Biomol. Chem., 2014, 12(2), 370-375.
[http://dx.doi.org/10.1039/C3OB42049C] [PMID: 24263232]
McKinnon, R.; Binder, M.; Zupkó, I.; Afonyushkin, T.; Lajter, I.; Vasas, A.; de Martin, R.; Unger, C.; Dolznig, H.; Diaz, R.; Frisch, R.; Passreiter, C.M.; Krupitza, G.; Hohmann, J.; Kopp, B.; Bochkov, V.N. Pharmacological insight into the anti-inflammatory activity of sesquiterpene lactones from Neurolaena lobata (L.) R.Br. ex Cass. Phytomedicine, 2014, 21(12), 1695-1701.
[http://dx.doi.org/10.1016/j.phymed.2014.07.019] [PMID: 25442279]
Choodej, S.; Pudhom, K.; Mitsunaga, T. Inhibition of TNF-alpha-Induced inflammation by sesquiterpene lactones from saussurea lappa and semi-synthetic analogues. Planta Med., 2018, 84(5), 329-335.
[http://dx.doi.org/10.1055/s-0043-120115] [PMID: 28962049]
Coricello, A.; El-Magboub, A.; Luna, M.; Ferrario, A.; Haworth, I.S.; Gomer, C.J.; Aiello, F.; Adams, J.D. Rational drug design and synthesis of new alpha-Santonin derivatives as potential COX-2 inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(6), 993-996.
[http://dx.doi.org/10.1016/j.bmcl.2018.02.036] [PMID: 29501395]
Abe, Y.; Harukawa, T.; Ishikawa, H.; Miki, T.; Sumi, M.; Toga, T.; Santonin, I. The synthesis of two topically inactive stereoisomers of santonin. J. Am. Chem. Soc., 1953, 75, 2567-2571.
Abe, Y.; Harukawa, T.; Ishikawa, H.; Miki, T.; Sumi, M.; Toga, T.; Santonin, I.I.I. The total synthesis of santonin. J. Am. Chem. Soc., 1956, 78, 1422-1426.
Ando, M.; Ibayashi, K.; Minami, N.; Nakamura, T.; Isogai, K.; Yoshimura, H. Studies on the synthesis of sesquiterpene lactones, 16. the syntheses of 11beta,13-dihydrokauniolide, estafiatin, isodehydrocostuslactone, 2-oxodesoxyligustrin, arborescin, 1,10-epiarborescin, 11beta,13-dihydroludartin, 8-deoxy-11beta,13-dihydrorupicolin b, 8-deox. J. Nat. Prod., 1994, 57, 433-445.
Pirrung, M.C.; Morehead, A.T.; Young, B.G.; Goldsmith, D. The Total Synthesis of Natural Products: Bicyclic and Tricyclic Sesquiterpenes; Wiley: New York, 1999, Vol. 11, .
García-Piñeres, A.J.; Castro, V.; Mora, G.; Schmidt, T.J.; Strunck, E.; Pahl, H.L.; Merfort, I. Cysteine 38 in p65/NF-kappaB plays a crucial role in DNA binding inhibition by sesquiterpene lactones. J. Biol. Chem., 2001, 276(43), 39713-39720.
[http://dx.doi.org/10.1074/jbc.M101985200] [PMID: 11500489]
Wen, W.; Yu, R. Artemisinin biosynthesis and its regulatory enzymes: Progress and perspective. Pharmacogn. Rev., 2011, 5(10), 189-194.
[http://dx.doi.org/10.4103/0973-7847.91118] [PMID: 22279377]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 26 March, 2020
Page: [1501 - 1514]
Pages: 14
DOI: 10.2174/0929867325666180719111123
Price: $65

Article Metrics

PDF: 42
PRC: 2