Anti-Ophidian Properties of Herbal Medicinal Plants: Could it be a Remedy for Snake Bite Envenomation?

Author(s): Subhamay Panda*, Leena Kumari.

Journal Name: Current Drug Discovery Technologies

Volume 16 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Snake bite envenoming causes high rates of morbidity and mortality and is one of the serious health-related concerns all over the globe. Around 3200 species of snakes have been discovered till date. Amid these species, about 1300 species of snakes are venomous. On account of its severity, World Health Organization (WHO) recently included snakebite envenoming in the list of neglected tropical diseases. Immunotherapy has partially solved the issues related to snakebite envenomation. However, it is associated with numerous adverse effects, due to which alternative treatment strategies are required for the treatment of snakebite. Traditionally, a large repository of herbal medicinal plants is known to possess activity against snake venom. An exploration of the therapeutic benefits of these medicinal plants used for the treatment of snakebites reveals the presence of various potential phytochemicals. The aim of the present review is to provide an outline regarding poisonous snakes all over the world, various compositions of snake venom, adverse effects related to anti-snake venom and numerous medicinal plants used for the anti-ophidian activity.

Keywords: Herbal medicinal plants, snake venom, snake bite, anti-snake venom, herbal drugs, anti-ophidian properties.

[1]
Arias AS, Rucavado A, Gutiérrez JM. Peptidomimetic hydroxamate metalloproteinase inhibitors abrogate local and systemic toxicity induced by Echis ocellatus (saw-scaled) snake venom. Toxicon 2017; 132: 40-9.
[2]
World Health Organization (WHO). Rabies and envenoming A neglected public health issue: report consultative meeting. Geneva: World Health Organization 2007.
[3]
Panagides N, Jackson TN, Ikonomopoulou MP, et al. How the cobra got its flesh-eating venom: Cytotoxicity as a defensive innovation and its co-Evolution with hooding, aposematic marking, and spitting. Toxins 2017; 9E103
[4]
Gutiérrez JM, Williams D, Fan HW, Warrell DA. Snakebite envenoming from a global perspective: Towards an integrated approach. Toxicon 2010; 56: 1223-35.
[5]
Kindhauser MK. Communicable diseases 2002: Global defense against the infectious disease threat. World Health Organization, Geneva 2003.
[6]
Chippaux JP, Lang J, Eddine SA, et al. Clinical safety of a polyvalent F(ab’)2 equine antivenom in 223 African snake envenomations: a field trial in Cameroon. VAO (Venin Afrique de l’Ouest) Investigators. Trans R Soc Trop Med Hyg 1998; 92: 657-62.
[7]
Zornetta I, Caccin P, Fernandez J, Lomonte B, Gutierrez JM, Montecucco C. Envenomations by Bothrops and Crotalus snakes induce the release of mitochondrial alarmins. PLoS Negl Trop Dis 2012; 6e1526
[8]
Moreira V, Teixeira C, da Silva HB, Lima MRDI, Dos-Santos MC. The role of TLR2 in the acute inflammatory response induced by Bothrops atrox snake venom. Toxicon 2016; 118: 121-8.
[9]
Fry BG, Wickramaratana JC, Lemme S, et al. Novel natriuretic peptides from the venom of the inland taipan (Oxyuranus microlepidotus): isolation, chemical and biological characterisation. Biochem Biophys Res Commun 2005; 327: 1011-5.
[10]
Birrell GW, Earl S, Masci PP, et al. Molecular diversity in venom from the Australian Brown snake, Pseudonaja textilis. Mol Cell Proteomics 2006; 5: 379-9.
[11]
Chandrashekara KT, Nagaraju S, Nandini SU, Kemparaju K. Neutralization of local and systemic toxicity of Daboia russelii venom by Morus alba plant leaf extract. Phytother Res 2009; 23: 1082-7.
[12]
Laustsen AH, Lomonte B, Lohse B, Fernández J, Gutiérrez JM. Unveiling the nature of black mamba (Dendroaspis polylepis) venom through venomics and antivenom immunoprofiling: identification of key toxin targets for antivenom development. J Proteomics 2015; 119: 126-42.
[13]
Lee ML, Tan NH, Fung SY, Sekaran SD. Antibacterial action of a heat-stable form of L-amino acid oxidase isolated from king cobra (Ophiophagus hannah) venom. Comp Biochem Physiol C Toxicol Pharmacol 2011; 153: 237-42.
[14]
Sanz L, Escolano J, Ferretti M, et al. Snake venomics of the South and Central American Bushmasters. Comparison of the toxin composition of Lachesis muta gathered from proteomic versus transcriptomic analysis. J Proteomics 2008; 71: 46-60.
[15]
Isbister GK, O’Leary MA, Elliott M, Brown SG. Tiger snake (Notechis spp) envenoming: Australian snakebite project (ASP-13). Med J Aust 2012; 197: 173-7.
[16]
Currier RB, Harrison RA, Rowley PD, Laing GD, Wagstaff SC. Intra-specific variation in venom of the African Puff Adder (Bitis arietans): Differential expression and activity of snake venom metalloproteinases (SVMPs). Toxicon 2010; 55: 864-73.
[17]
Castoe TA, Spencer CL, Parkinson CL. Phylogeographic structure and historical demography of the western diamondback rattlesnake (Crotalus atrox): a perspective on North American desert biogeography. Mol Phylogenet Evol 2007; 42: 193-212.
[18]
Kamiguti AS, Theakston RD, Sherman N, Fox JW. Mass spectrophotometric evidence for P-III/P-IV metalloproteinases in the venom of the Boomslang (Dispholidus typus). Toxicon 2000; 38: 1613-20.
[19]
Anil A, Singh S, Bhalla A, Sharma N, Agarwal R, Simpson ID. Role of neostigmine and polyvalent antivenom in Indian common krait (Bungarus caeruleus) bite. J Infect Public Health 2010; 3: 83-7.
[20]
German BT, Hack JB, Brewer K, Meggs WJ. Pressure-immobilization bandages delay toxicity in a porcine model of eastern coral snake (Micrurus fulvius fulvius) envenomation. Ann Emerg Med 2005; 45: 603-8.
[21]
Schneemann M, Cathomas R, Laidlaw ST, El Nahas AM, Theakston RD, Warrell DA. Life-threatening envenoming by the Saharan horned viper (Cerastes cerastes) causing micro-angiopathic haemolysis, coagulopathy and acute renal failure: clinical cases and review. QJM 2004; 97: 717-27.
[22]
Wickramaratna JC, Hodgson WC. A pharmacological examination of venoms from three species of death adder (Acanthophis antarcticus, Acanthophis praelongus and Acanthophis pyrrhus). Toxicon 2001; 39: 209-16.
[23]
Halassy B, Brgles M, Habjanec L, et al. Intraspecies variability in Vipera ammodytes ammodytes venom related to its toxicity and immunogenic potential. Comp Biochem Physiol C Toxicol Pharmacol 2011; 153: 223-30.
[24]
Lomonte B, Escolano J, Fernández J, et al. Snake venomics and antivenomics of the arboreal neotropical pitvipers Bothriechis lateralis and Bothriechis schlegelii. J Proteome Res 2008; 7: 2445-57.
[25]
Petricevich VL, Teixeira CF, Tambourgi DV, Gutiérrez JM. Increments in serum cytokine and nitric oxide levels in mice injected with Bothrops asper and Bothrops jararaca snake venoms. Toxicon 2000; 38: 1253-66.
[26]
Mahadeswaraswamy YH, Nagaraju S, Girish KS, Kemparaju K. Local tissue destruction and procoagulation properties of Echis carinatus venom: inhibition by Vitis vinifera seed methanol extract. Phytother Res 2008; 22: 963-9.
[27]
Cogo JC, Lilla S, Souza GH, Hyslop S, de Nucci G. Purification, sequencing and structural analysis of two acidic phospholipases A2 from the venom of Bothrops insularis (Jararaca ilhoa). Biochimie 2006; 88: 1947-59.
[28]
Leong PK, Sim SM, Fung SY, Sumana K, Sitprija V, Tan NH. Cross neutralization of Afro-Asian cobra and Asian krait venoms by a Thai polyvalent snake antivenom (Neuro Polyvalent Snake Antivenom). PLoS Negl Trop Dis 2012; 6e1672
[29]
Lauridsen LP, Laustsen AH, Lomonte B, Gutiérrez JM. Toxicovenomics and antivenom profiling of the Eastern green mamba snake (Dendroaspis angusticeps). J Proteomics 2016; 136: 248-61.
[30]
Pelander L, Ljungvall I, Häggström J. Myocardial cell damage in 24 dogs bitten by the common European viper (Vipera berus). Vet Rec 2010; 166: 687.
[31]
Inn-Ho TS, Ying-Ming WA, Yi-Hsuan CH, Tein-Shun TS, Ming-Chung TU. Venom phospholipases A2 of bamboo viper (Trimeresurus stejnegeri): Molecular characterization, geographic variations and evidence of multiple ancestries. Biochem J 2004; 377: 215-23.
[32]
Panunto PC, Da Silva MA, Linardi A, et al. Biological activities of a lectin from Bothrops jararacussu snake venom. Toxicon 2006; 47: 21-31.
[33]
Kharin VE, Cheblukov VP. On first reliable record of the sea snake Chitulia belcheri (Gray, 1849) from Australian waters, with notes on species composition and taxonomic status of the genus Chitulia (Serpentes, Hydrophiidae). Russ J Mar Biol 2007; 33: 161-5.
[34]
Harvey AL. Snake toxins. New York: Pergamon Press 1991.
[35]
Calvete JJ, Sanz L, Angulo Y, Lomonte B, Gutierrez JM. Venoms, venomics, antivenomics. FEBS Lett 2009; 583: 1736-43.
[36]
Vidal N, Hedges SB. The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. C R Biol 2005; 328: 1000-8.
[37]
Phelps T. Poisonous snakes. New York: Blandford Press 1981.
[38]
Ernst CH, Barbour RW. Snakes of eastern North America. Lanham: George Mason University Press 1989.
[39]
Kang TS, Georgieva D, Genov N, et al. Enzymatic toxins from snake venom: structural characterization and mechanism of catalysis. FEBS J 2011; 278: 4544-76.
[40]
Stafford PJ. Snakes. Washington: Smithsonian Institute Press Natural History Museum 2000.
[41]
Gutiérrez JM, León G, Burnouf T. Antivenoms for the treatment of snakebite envenomings: the road ahead. Biologicals 2011; 39: 129-42.
[42]
Gutiérrez JM, Solano G, Pla D, et al. Assessing the preclinical efficacy of antivenoms: From the lethality neutralization assay to antivenomics. Toxicon 2013; 69: 168-79.
[43]
Williams DJ, Jensen SD, Nimorakiotakis B, Muller R, Winkel KD. Antivenom use, premedication and early adverse reactions in the management of snake bites in rural Papua New Guinea. Toxicon 2007; 49: 780-92.
[44]
Soares AM, Ticli FK, Marcussi S, et al. Medicinal plants with inhibitory properties against snake venoms. Curr Med Chem 2005; 12: 2625-41.
[45]
Paul R, Datta KA, Mandal A, Ghosh KB, Halder S. Snake bite, snake venom, anti-venom and herbal antidote-A review. Int J Res Ayurveda Pharm 2011; 2: 1060-7.
[46]
Oron U, Bdolah A. Regulation of protein synthesis in the venom gland of viperid snakes. J Cell Biol 1973; 56: 177-90.
[47]
Viana LG, Valente RH, Heluany CS, et al. Bothrops jararaca venom gland secretory cells in culture: Effects of noradrenaline on toxin production and secretion. Toxicon 2017; 133: 1-9.
[48]
Tu AT. Overview of snake venom chemistry. In: Natural Toxins 2. Springer, Boston, MA 1996; pp. 37-62.
[49]
Koh DC, Armugam A, Jeyaseelan K. Snake venom components and their applications in biomedicine. Cell Mol Life Sci 2006; 63: 3030-41.
[50]
Fraenkel-Conrat H. Snake venom neurotoxins related to phospholipase A2. J Toxicol Toxin Rev 1982; 1: 205-21.
[51]
Yee JS, Nanling G, Afifiyan F, et al. Snake postsynaptic neurotoxins: gene structure, phylogeny and applications in research and therapy. Biochim 2004; 86: 137-49.
[52]
Osipov AV, Utkin YN. Snake venom toxins targeted at the nervous system. Snake Venoms 2017; pp. 189-214.
[53]
Rosenberry TL, Rabl CR, Neumann E. Binding of the neurotoxin fasciculin 2 to the acetylcholinesterase peripheral site drastically reduces the association and dissociation rate constants for N-methylacridinium binding to the active site. Biochem 1996; 35: 685-90.
[54]
Chen KC, Kao PH, Lin SR, Chang LS. The mechanism of cytotoxicity by Naja naja atra cardiotoxin 3 is physically distant from its membrane-damaging effect. Toxicon 2007; 50: 816-24.
[55]
Lu Q, Clemetson JM, Clemetson KJ. Snake venoms and hemostasis. J Thromb Haemost 2005; 3: 1791-9.
[56]
Slotta KH, Gonzalez J, Roth S. The direct and indirect hemolytic factors from animal venoms RUSSELL Animal Toxins. Elsevier: Amsterdam, The Netherlands 2016; pp. 369-77.
[57]
Li R, Chen G, Guo H, et al. Prolonged cardiac allograft survival in presensitized rats after a high activity Yunnan-cobra venom factor therapy. In Transplantation proceedings 2006; 38: 3263-5.
[58]
Cotton J, Hayashi MA, Cuniasse P, et al. Selective inhibition of the C-domain of angiotensin I converting enzyme by bradykinin potentiating peptides. Biochem 2002; 41: 6065-71.
[59]
Arce-Bejarano R, Lomonte B, Gutiérrez JM. Intravascular hemolysis induced by the venom of the Eastern coral snake, Micrurus fulvius, in a mouse model: Identification of directly hemolytic phospholipases A2. Toxicon 2014; 90: 26-35.
[60]
Ahmed M, Rocha JB, Mazzanti CM, et al. Malathion, carbofuran and paraquat inhibit Bungarus sindanus (krait) venom acetylcholinesterase and human serum butyrylcholinesterase in vitro. Ecotoxicology 2007; 16: 363.
[61]
Braud S, Bon C, Wisner A. Snake venom proteins acting on hemostasis. Biochim 2000; 82: 851-9.
[62]
Silva HA, Ryan NM, Silva HJ. Adverse reactions to snake antivenom, and their prevention and treatment. Br J Clin Pharmacol 2016; 81: 446-52.
[63]
Cannon R, Ruha AM, Kashani J. Acute hypersensitivity reactions associated with administration of crotalidae polyvalent immune Fab antivenom. Ann Emerg Med 2008; 51: 407-11.
[64]
Gupta YK, Peshin SS. Do herbal medicines have potential for managing snake bite envenomation? Toxicol Int 2012; 19: 89-99.
[65]
Dhanya S, Bindu L, Hema C, Dhanya T. Antisnake venom use: A retrospective analysis in a tertiary care centre. Cal Med J 2009; 7: 1-7.
[66]
Shashidharamurthy R, Kemparaju K. Region-specific neutralization of Indian cobra (Naja naja) venom by polyclonal antibody raised against the eastern regional venom: A comparative study of the venoms from three different geographical distributions. Int Immunopharmacol 2007; 7: 61-9.
[67]
McCleary RJ, Sridharan S, Dunstan NL, Mirtschin PJ, Kini RM. Proteomic comparisons of venoms of long-term captive and recently wild-caught Eastern brown snakes (Pseudonaja textilis) indicate venom does not change due to captivity. J Proteomics 2016; 144: 51-62.
[68]
Martz W. Plants with a reputation against snakebite. Toxicon 1992; 30: 1131-42.
[69]
Alam MI, Alam MA, Alam O, Nargotra A, Taneja SC, Koul S. Molecular modeling and snake venom phospholipase A2 inhibition by phenolic compounds: Structure–activity relationship. Eur J Med Chem 2016; 114: 209-19.
[70]
Mors WB, Do Nascimento MC, Pereira BMR, Pereira NA. Plant natural products active against snake bite-the molecular approach. Phytochemistry 2000; 55: 627-42.
[71]
Hostettmann K. History of a plant: The example of Echinacea. Forsch Komplementarmed Klass Naturheilkd 2003; 10: 9-12.
[72]
Zhao Q, Gao J, Li W, Cai D. Neurotrophic and neurorescue effects of Echinacoside in the subacute MPTP mouse model of Parkinson’s disease. Brain Res 2010; 1346: 224-36.
[73]
Li QB, Pan R, Wang GF, Tang SX. Anisodamine as an effective drug to treat snakebites. J Nat Toxins 1999; 8: 327-30.
[74]
Meenatchisundaram S. Anti-venom activity of medicinal plants-A mini review. Ethnobot Leaflets 2008; 2008: 162.
[75]
Da Silva SL, Calgarotto AK, Chaar JS, Marangoni S. Isolation and characterization of ellagic acid derivatives isolated from Casearia sylvestris aqueous extract with anti-PLA2 activity. Toxicon 2008; 52: 655-66.
[76]
Huntley AL, Thompson Coon J, Ernst E. The safety of herbal medicinal products derived from Echinacea species: A systematic review. Drug Saf 2005; 28: 387-400.
[77]
Tan NH, Fung SY, Sim SM, Marinello E, Guerranti R, Aguiyi JC. The protective effect of Mucuna pruriens seeds against snake venom poisoning. J Ethnopharmacol 2009; 123: 356-8.
[78]
Kumar A, Gupta C, Nair DT, Salunke DM. MP-4 contributes to snake venom neutralization by Mucuna pruriens seeds through an indirect antibody-mediated mechanism. J Biol Chem 2016; 291: 11373-84.
[79]
Guerranti R, Aguiyi JC, Ogueli IG, et al. Protection of Mucuna pruriens seeds against Echis carinatus venom is exerted through a multiform glycoprotein whose oligosaccharide chains are functional in this role. Biochem Biophys Res Commun 2004; 323: 484-90.
[80]
Scirè A, Tanfani F, Bertoli E, et al. The belonging of gpMuc, a glycoprotein from Mucuna pruriens seeds, to the Kunitz-type trypsin inhibitor family explains its direct anti-snake venom activity. Phytomedicine 2011; 18: 887-95.
[81]
Memmi A, Sansa G, Rjeibi I, et al. Use of medicinal plants against scorpionic and ophidian venoms. Archives de l'Institut Pasteur de Tunis 2007; 84: 49-55.
[82]
Castro KN, Carvalho AL, Almeida AP, et al. Preliminary in vitro studies on the Marsypianthes chamaedrys (boia-caá) extracts at fibrinoclotting induced by snake venoms. Toxicon 2003; 41: 929-32.
[83]
de Almeida L, Cintra AC, Veronese EL, et al. Anticrotalic and antitumoral activities of gel filtration fractions of aqueous extract from Tabernaemontana catharinensis (Apocynaceae). Comp Biochem Physiol C 2004; 137: 19-27.
[84]
Pereira PS, França SD, Oliveira PV, et al. Chemical constituents from Tabernaemontana catharinensis root bark: A brief NMR review of indole alkaloids and in vitro cytotoxicity. Quim Nova 2008; 31: 20-4.
[85]
Alam MI, Gomes A. Viper venom-induced inflammation and inhibition of free radical formation by pure compound (2-hydroxy-4-methoxy benzoic acid) isolated and purified from anantamul (Hemidesmus indicus R. BR) root extract. Toxicon 1998; 36: 207-15.
[86]
Saha K, Gomes A. Russell’s viper venom induced nephrotoxicity, myotoxicity, and hepatotoxicity—Neutralization with gold nanoparticle conjugated 2-hydroxy-4-methoxy benzoic acid in vivo. Indian J Exp Biol 2017; 55: 7-14.
[87]
Asuzu IU, Harvey AL. The antisnake venom activities of Parkia biglobosa (Mimosaceae) stem bark extract. Toxicon 2003; 42: 763-8.
[88]
Ibrahim MA, Habila JD, Koorbanally NA, Islam MS. Butanol fraction of Parkia biglobosa (Jacq.) G. Don leaves enhance pancreatic β-cell functions, stimulates insulin secretion and ameliorates other type 2 diabetes-associated complications in rats. J Ethnopharmacol 2016; 183: 103-11.
[89]
Shirwaikar A, Rajendran K, Bodla R, Kumar CD. Neutralization potential of Viper russelli russelli (Russell’s viper) venom by ethanol leaf extract of Acalypha indica. J Ethnopharmacol 2004; 94: 267-73.
[90]
Zahidin NS, Saidin S, Zulkifli RM, Muhamad II, Ya’akob H, Nur H. A review of Acalypha indica L. (Euphorbiaceae) as traditional medicinal plant and its therapeutic potential. J Ethnopharmacol 2017; 207: 146-73.
[91]
Shrikanth VM, Janardhan B, More SS. MMuddapur U, KMirajkar K. In vitro anti snake venom potential of Abutilon indicum Linn leaf extracts against Echis carinatus (Indian saw scaled viper). J Pharmacogn Phytochem 2014; 3: 111-7.
[92]
Meenatcisundaram S, Sindhu M. In Vivo and In Vitro Studies on Neutralizing Effects of Acorus calamus and Withania somnifera root extracts against Echis carinatus venom. Iran J Pharm Therap 2011; 10: 26-30.
[93]
Ushanandini S, Nagaraju S, Nayaka SC, Kumar KH, Kemparaju K, Girish KS. The anti-ophidian properties of Anacardium occidentale bark extract. Immunopharmacol Immunotoxicol 2009; 31: 607-15.
[94]
Gopi K, Renu K, Raj M, Kumar D, Muthuvelan B. The neutralization effect of methanol extract of Andrographis paniculata on Indian cobra Naja naja snake venom. J Pharm Res 2011; 4: 1010-2.
[95]
Meenatchisundaram S, Parameswari G, Michael A. Studies on antivenom activity of Andrographis paniculata and Aristolochia indica plant extracts against Daboia russelli venom by in vivo and in vitro methods. Indian J Sci Technol 2009; 2: 76-9.
[96]
Sakthivel G, Dey A, Nongalleima K, et al. In vitro and in vivo evaluation of polyherbal formulation against Russell’s viper and cobra venom and screening of bioactive components by docking studies. Evid Based Complement Alternat Med 2013; 2013781216
[97]
Janardhan B, Shrikanth VM, Mirajkar KK, More SS. In vitro screening and evaluation of antivenom phytochemicals from Azima tetracantha Lam. leaves against Bungarus caeruleus and Vipera russelli. J Venom Anim Toxins Incl Trop Dis 2014; 20: 12.
[98]
Januário AH, Santos SL, Marcussi S, et al. Neo-clerodane diterpenoid, a new metalloprotease snake venom inhibitor from Baccharis trimera (Asteraceae): Anti-proteolytic and anti-hemorrhagic properties. Chem Biol Interact 2004; 150: 243-51.
[99]
Núñez V, Otero R, Barona J, et al. Neutralization of the edema-forming, defibrinating and coagulant effects of Bothrops asper venom by extracts of plants used by healers in Colombia. Braz J Med Biol Res 2004; 37: 969-77.
[100]
Chacko N, Ibrahim M, Shetty P, Shastry CS. Evaluation of antivenom activity of Calotropis gigantea plant extract against Vipera russelli snake venom. Int J Pharm Sci Res 2012; 3: 2272.
[101]
Janardhan B, Shrikanth VM, Mirajkar KK, More SS. In vitro Anti-Snake Venom Properties of Carisssa spinarum Linn Leaf Extracts. J Herbs Spices Med Plants 2015; 21: 283-93.
[102]
Cavalcante WL, Campos TO, Dal Pai-Silva M, et al. Neutralization of snake venom phospholipase A2 toxins by aqueous extract of Casearia sylvestris (Flacourtiaceae) in mouse neuromuscular preparation. J Ethnopharmacol 2007; 112: 490-7.
[103]
Soni P, Bodakhe SH. Antivenom potential of ethanolic extract of Cordia macleodii bark against Naja venom. Asian Pac J Trop Biomed 2014; 4: S449-54.
[104]
Ticli FK, Hage LI, Cambraia RS, et al. Rosmarinic acid, a new snake venom phospholipase A2 inhibitor from Cordia verbenacea (Boraginaceae): Antiserum action potentiation and molecular interaction. Toxicon 2005; 46: 318-27.
[105]
Shastry CS, Aswathanarayana BJ. Antivenom activity of ethanolic extract of Crescentia cujete fruit. Int J Phytomed 2012; 4: 108.
[106]
Alam MI. Inhibition of toxic effects of Viper and Cobra venom by Indian medicinal plants. Pharmacol Pharm 2014; 5: 828.
[107]
Abubakar MS, Sule MI, Pateh UU, Abdurahman EM, Haruna AK, Jahun BM. In vitro snake venom detoxifying action of the leaf extract of Guiera senegalensis. J Ethnopharmacol 2000; 69: 253-7.
[108]
Alam MI, Auddy B, Gomes A. Isolation, purification and partial characterization of viper venom inhibiting factor from the root extract of the Indian medicinal plant sarsaparilla (Hemidesmus indicus R. Br.). Toxicon 1994; 32: 1551-7.
[109]
Dhananjaya BL, Zameer F, Girish KS. DSouza CJ. Anti-venom potential of aqueous extract of stem bark of Mangifera indica L. against Daboia russellii (Russell’s viper) venom. Indian J Biochem Biophys 2011; 48: 175-83.
[110]
Maiorano VA, Marcussi S, Daher MA, et al. Antiophidian properties of the aqueous extract of Mikania glomerata. J Ethnopharmacol 2005; 102: 364-70.
[111]
Meenatchisundaram S, Michael A. Preliminary studies on antivenom activity of Mimosa pudica root extracts against russell’s viper and saw scaled viper venom by in vivo and in vitro methods. Pharmacologyonline 2009; 2: 372-4.
[112]
Meenatchisundaram S, Priyagrace S, Vijayaraghavan R, Velmurugan A, Parameswari G, Michael A. Antitoxin activity of Mimosa pudica root extracts against Naja naja and Bangarus caerulus venoms. Bangladesh J Pharmacol 2009; 4: 105-9.
[113]
Meenatchisundaram S, Michael A. Antitoxin activity of Mucuna pruriens aqueous extracts against Cobra and Krait venom by in vivo and in vitro methods. Int J Pharm Tech Res 2010; 2: 870-4.
[114]
Borges MH, Alves DL, Raslan DS, et al. Neutralizing properties of Musa paradisiaca L.(Musaceae) juice on phospholipase A2, myotoxic, hemorrhagic and lethal activities of crotalidae venoms. J Ethnopharmacol 2005; 98: 21-9.
[115]
Shenoy PA, Nipate SS, Sonpetkar JM, Salvi NC, Waghmare AB, Chaudhari PD. Anti-snake venom activities of ethanolic extract of fruits of Piper longum L.(Piperaceae) against Russell’s viper venom: characterization of piperine as active principle. J Ethnopharmacol 2013; 147: 373-82.
[116]
Rajasree PH, Singh R, Sankar C. Anti-venom activity of ethanolic extract of Rauwolfia serpentina against Naja naja (Cobra) venom. IJDDHR 2013; p. 3.
[117]
James T, Dinesh MD, Uma MS, Vadivelan AS, Meenatchisundaram S, Shanmugam V. In vivo and in vitro neutralizing potential of Rauvolfia serpentine plant extract against Daboia russelli venom. Adv Biol Res 2013; 7: 276-81.
[118]
Chatterjee I, Chakravarty AK, Gomes A. Antisnake venom activity of ethanolic seed extract of Strychnos nux vomica Linn. Indian J Exp Biol 2004; 42: 468-75.
[119]
Lakshmi KS, Vadivu R. The anti-snake venom activity of the leaves of Symplocos cochinchinensis (Lour.) S. Moore ssp. laurina (Symplocaceae). Pharm Lett 2010; 2: 77-81.
[120]
Vineetha MS, Bhavya J, Mirjakar KM, More SS. In vitro evaluation of active phytochemicals from Tabernaemontana alternifolia (Roxb) root against the Naja naja and Echis carinatus Indian snake venom. J Biol Act Prod from Nat 2014; 4: 286-94.
[121]
Ushanandini S, Nagaraju S, Harish Kumar K, et al. The anti‐snake venom properties of Tamarindus indica (leguminosae) seed extract. Phytother Res 2006; 20: 851-8.
[122]
Durairaj B, Muthu S, Shreedhar K. In vitro antivenom and antioxidant potential of Vitex negundo leaves (green and blue) against Russell’s viper (Daboia russelli) and Indian cobra (Naja naja) venom. Eur J Exp Biol 2014; 4: 207-19.
[123]
Machiah DK, Girish KS, Gowda TV. A glycoprotein from a folk medicinal plant, Withania somnifera, inhibits hyaluronidase activity of snake venoms. Comp Biochem Physiol C Toxicol Pharmacol 2006; 143: 158-61.
[124]
Muthu C, Ayyanar M, Raja N, Ignacimuthu S. Medicinal plants used by traditional healers in Kancheepuram district of Tamil Nadu, India. J Ethnobiol Ethnomed 2006; 2: 43.
[125]
Devi N. Indian tribe’s and villager’s health and habits: Popularity of apocynaceae plants as medicine. Int J Green Pharm 2017; 11: S256-79.
[126]
Samy RP, Thwin MM, Gopalakrishnakone P, Ignacimuthu S. Ethnobotanical survey of folk plants for the treatment of snakebites in Southern part of Tamilnadu, India. J Ethnopharmacol 2008; 115: 302-12.
[127]
Murthy GP, Harsha R, Leelaja B, Chandrasekhar K, Lokesh S. Snake venom neutralizing effect of validated Herbal Medicine Formula Practiced in Tribal Medicine System (TMS) at BR Hills region of Karnataka, India. Int J Res Pharm Sci 2017; 7: 226-45.
[128]
Bhandari S, Dobhal U, Sajwan M, Bisht N. Trichosanthes tricuspidata: A medicinally important plant. Trees Life J 2008; 3: 1-6.
[129]
Yuvarajan R, Natarajan D, Ragavendran C, Jayavel R. Photoscopic characterization of green synthesized silver nanoparticles from Trichosanthes tricuspidata and its antibacterial potential. J Photochem Photobiol B 2015; 149: 300-7.
[130]
Selvanayagam ZE, Gnanavendhan SG, Balakrishna K, et al. Ehretianone, a novel quinonoid xanthene from Ehretia buxifolia with antisnake venom activity. J Nat Prod 1996; 59: 664-7.
[131]
Pavithra P, Janani V, Charumathi K, Indumathy R, Potala S, Verma RS. Antibacterial activity of plants used in Indian herbal medicine. Int J Green Pharm 2010; 4: 22-8.
[132]
Mahanta M, Mukherjee AK. Neutralisation of lethality, myotoxicity and toxic enzymes of Naja kaouthia venom by Mimosa pudica root extracts. J Ethnopharmacol 2001; 75: 55-60.
[133]
Pithayanukul P, Ruenraroengsak P, Bavovada R, Pakmanee N, Suttisri R, Saen-oon S. Inhibition of Naja kaouthia venom activities by plant polyphenols. J Ethnopharmacol 2005; 97: 527-33.
[134]
Girish K, Mohanakumari HP, Nagaraju S, Vishwanath B, Kemparaju K. Hyaluronidase and protease activities from Indian snake venoms: neutralization by Mimosa pudica root extract. Fitoterapia 2004; 75: 378-80.
[135]
Sikdar M, Dutta U. Traditional phytotherapy among the Nath people of Assam. Ethno-med 2008; 2: 39-45.
[136]
Chakraborty R, De B, Devanna N, Sen S. North-East India an ethnic storehouse of unexplored medicinal plants. J Nat Prod Plant Resour 2012; 2: 143-52.
[137]
Teron R, Borthakur S. Folklore claims of some medicinal plants as antidote against poisons among the Karbis of Assam, India. Pleione 2013; 7: 346-56.
[138]
Dwivedi S, Kaul S. Ethnomedicinal uses of some plant species by ethnic and rural peoples of Indore district of Madhya Pradesh, India. Pharm Rev 2008; 6: 239-45.
[139]
Dwivedi S, Shrivastava S, Dubey D, Kapoor S. Herbal remedies used in the treatment of scorpion sting and snake bite from the Malwa region of Madhya Pradesh. Ethnobotan Leaflets 2009; 13: 326-8.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 4
Year: 2019
Page: [319 - 329]
Pages: 11
DOI: 10.2174/1570163815666180718095655
Price: $65

Article Metrics

PDF: 24
HTML: 5