Inhibition of Yeast Growth by Tryptamine and Recovery with Tryptophan

Author(s): Chandrika Kadkol, Ian Macreadie*

Journal Name: Current Bioactive Compounds

Volume 16 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Tryptamine, a biogenic monoamine that is present in trace levels in the mammalian central nervous system, has probable roles as a neurotransmitter and/or a neuromodulator and may be associated with various neuropsychiatric disorders. One of the ways tryptamine may affect the body is by the competitive inhibition of the attachment of tryptophan to tryptophanyl tRNA synthetases.

Methods: This study has explored the effects of tryptamine on growth of six yeast species (Saccharomyces cerevisiae, Candida glabrata, C. krusei, C. dubliniensis, C. tropicalis and C. lusitaniae) in media with glucose or ethanol as the carbon source, as well as recovery of growth inhibition by the addition of tryptophan.

Results: Tryptamine was found to have an inhibitory effect on respiratory growth of all yeast species when grown with ethanol as the carbon source. Tryptamine also inhibited fermentative growth of Saccharomyces cerevisiae, C. krusei and C. tropicalis with glucose as the carbon source. In most cases the inhibitory effects were reduced by added tryptophan.

Conclusion: The results obtained in this study are consistent with tryptamine competing with tryptophan to bind mitochondrial and cytoplasmic tryptophanyl tRNA synthetases in yeast: effects on mitochondrial and cytoplasmic protein synthesis can be studied as a function of growth with glucose or ethanol as a carbon source. Of the yeast species tested, there is variation in the sensitivity to tryptamine and the rescue by tryptophan. The current study suggests appropriate yeast strains and approaches for further studies.

Keywords: Tryptamine, tryptophanyl tRNA synthetase, tryptophan, yeast, microorganisms, hormones.

[1]
Karovicova, J.; Kohajdova, Z. Biogenic amines in food. Chem. Pap., 2005, 59, 70-79.
[2]
Borowsky, B.; Adham, N.; Jones, K.A.; Raddatz, R.; Artymyshyn, R.; Ogozalek, K.L.; Durkin, M.M.; Lakhlani, P.P.; Bonini, J.A.; Pathirana, S.; Boyle, N.; Pu, X.; Kouranova, E.; Lichtblau, H.; Ochoa, F.Y.; Branchek, T.A.; Gerald, C. Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc. Natl. Acad. Sci. USA, 2001, 98(16), 8966-8971.
[http://dx.doi.org/10.1073/pnas.151105198] [PMID: 11459929]
[3]
PubChem Compound Database; CID=1150,. https://pubchem.ncbi.nlm.nih.gov/compound/1150 [Accessed Jan 31, 2018]
[4]
Mousseau, D.D. Tryptamine: a metabolite of tryptophan implicated in various neuropsychiatric disorders. Metab. Brain Dis., 1993, 8(1), 1-44.
[http://dx.doi.org/10.1007/BF01000528] [PMID: 8098507]
[5]
[6]
Jones, R.S.G. Tryptamine: a neuromodulator or neurotransmitter in mammalian brain? Prog. Neurobiol., 1982, 19(1-2), 117-139.
[http://dx.doi.org/10.1016/0301-0082(82)90023-5] [PMID: 6131482]
[7]
Williams, B.B.; Van Benschoten, A.H.; Cimermancic, P.; Donia, M.S.; Zimmermann, M.; Taketani, M.; Ishihara, A.; Kashyap, P.C.; Fraser, J.S.; Fischbach, M.A. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe, 2014, 16(4), 495-503.
[http://dx.doi.org/10.1016/j.chom.2014.09.001] [PMID: 25263219]
[8]
Spano, G.; Russo, P.; Lonvaud-Funel, A.; Lucas, P.; Alexandre, H.; Grandvalet, C.; Coton, E.; Coton, M.; Barnavon, L.; Bach, B.; Rattray, F.; Bunte, A.; Magni, C.; Ladero, V.; Alvarez, M.; Fernández, M.; Lopez, P.; de Palencia, P.F.; Corbi, A.; Trip, H.; Lolkema, J.S. Biogenic amines in fermented foods. Eur. J. Clin. Nutr., 2010, 64(Suppl. 3), S95-S100.
[http://dx.doi.org/10.1038/ejcn.2010.218] [PMID: 21045859]
[9]
Facchini, P.J.; Huber-Allanach, K.L.; Tari, L.W. Plant aromatic L-amino acid decarboxylases: evolution, biochemistry, regulation, and metabolic engineering applications. Phytochemistry, 2000, 54(2), 121-138.
[http://dx.doi.org/10.1016/S0031-9422(00)00050-9] [PMID: 10872203]
[10]
Shalaby, A.R. Changes in biogenic amines in mature and germinating legume seeds and their behavior during cooking. Nahrung, 2000, 44(1), 23-27.
[http://dx.doi.org/10.1002/(SICI)1521-3803(20000101)44:1<23:AID-FOOD23>3.0.CO;2-B] [PMID: 10702995]
[11]
Marsden, C.A.; Curzon, G. Effects of lesions and drugs on brain tryptamine. J. Neurochem., 1974, 23(6), 1171-1176.
[http://dx.doi.org/10.1111/j.1471-4159.1974.tb12214.x] [PMID: 4281442]
[12]
Heath-Pagliuso, S.; Rogers, W.J.; Tullis, K.; Seidel, S.D.; Cenijn, P.H.; Brouwer, A.; Denison, M.S. Activation of the Ah receptor by tryptophan and tryptophan metabolites. Biochemistry, 1998, 37(33), 11508-11515.
[http://dx.doi.org/10.1021/bi980087p] [PMID: 9708986]
[13]
Berry, M.D. Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators. J. Neurochem., 2004, 90(2), 257-271.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02501.x] [PMID: 15228583]
[14]
Herrera, F.; Martin, V.; Carrera, P.; García-Santos, G.; Rodriguez-Blanco, J.; Rodriguez, C.; Antolín, I. Tryptamine induces cell death with ultrastructural features of autophagy in neurons and glia: Possible relevance for neurodegenerative disorders. Anat. Rec. A Discov. Mol. Cell. Evol. Biol., 2006, 288(9), 1026-1030.
[http://dx.doi.org/10.1002/ar.a.20368] [PMID: 16892423]
[15]
Yang, X-L.; Schimmel, P.; Ewalt, K.L. Relationship of two human tRNA synthetases used in cell signaling. Trends Biochem. Sci., 2004, 29(5), 250-256.
[http://dx.doi.org/10.1016/j.tibs.2004.03.002] [PMID: 15130561]
[16]
Paley, E.L.; Smelyanski, L.; Malinovskii, V.; Subbarayan, P.R.; Berdichevsky, Y.; Posternak, N.; Gershoni, J.M.; Sokolova, O.; Denisova, G. Mapping and molecular characterization of novel monoclonal antibodies to conformational epitopes on NH2 and COOH termini of mammalian tryptophanyl-tRNA synthetase reveal link of the epitopes to aggregation and Alzheimer’s disease. Mol. Immunol., 2007, 44(4), 541-557.
[http://dx.doi.org/10.1016/j.molimm.2006.02.006] [PMID: 16616781]
[17]
Paley, E.L.; Denisova, G.; Sokolova, O.; Posternak, N.; Wang, X.; Brownell, A.L. Tryptamine induces tryptophanyl-tRNA synthetase-mediated neurodegeneration with neurofibrillary tangles in human cell and mouse models. Neuromolecular Med., 2007, 9(1), 55-82.
[http://dx.doi.org/10.1385/NMM:9:1:55] [PMID: 17114825]
[18]
Frolova LYu, ; Sudomoina, M.A.; Grigorieva AYu, ; Zinovieva, O.L.; Kisselev, L.L. Cloning and nucleotide sequence of the structural gene encoding for human tryptophanyl-tRNA synthetase. Gene, 1991, 109(2), 291-296.
[http://dx.doi.org/10.1016/0378-1119(91)90624-K] [PMID: 1765274]
[19]
Jørgensen, R.; Søgaard, T.M.M.; Rossing, A.B.; Martensen, P.M.; Justesen, J. Identification and characterization of human mitochondrial tryptophanyl-tRNA synthetase. J. Biol. Chem., 2000, 275(22), 16820-16826.
[http://dx.doi.org/10.1074/jbc.275.22.16820] [PMID: 10828066]
[20]
Ghanipour, A.; Jirström, K.; Pontén, F.; Glimelius, B.; Påhlman, L.; Birgisson, H. The prognostic significance of tryptophanyl-tRNA synthetase in colorectal cancer. Cancer Epidemiol. Biomarkers Prev., 2009, 18(11), 2949-2956.
[http://dx.doi.org/10.1158/1055-9965.EPI-09-0456] [PMID: 19900940]
[21]
Richard, D.M.; Dawes, M.A.; Mathias, C.W.; Acheson, A.; Hill-Kapturczak, N.; Dougherty, D.M. L-tryptophan: Basic metabolic functions, behavioral research and therapeutic indications. Int. J. Tryptophan Res., 2009, 2, 45-60.
[http://dx.doi.org/10.4137/IJTR.S2129] [PMID: 20651948]
[22]
Paley, E.L.; Perry, G.; Sokolova, O. Tryptamine induces axonopathy and mitochondriopathy mimicking neurodegenerative diseases via tryptophanyl-tRNA deficiency. Curr. Alzheimer Res., 2013, 10(9), 987-1004.
[http://dx.doi.org/10.2174/15672050113106660164] [PMID: 24117115]
[23]
Otterstedt, K.; Larsson, C.; Bill, R.M.; Ståhlberg, A.; Boles, E.; Hohmann, S.; Gustafsson, L. Switching the mode of metabolism in the yeast Saccharomyces cerevisiae. EMBO Rep., 2004, 5(5), 532-537.
[http://dx.doi.org/10.1038/sj.embor.7400132] [PMID: 15071495]
[24]
John, T.R.; Ghosh, M.; Johnson, J.D. Identification and expression of the Saccharomyces cerevisiae cytoplasmic tryptophanyl-tRNA synthetase gene. Yeast, 1997, 13(1), 37-41.
[http://dx.doi.org/10.1002/(SICI)1097-0061(199701)13:1<37:AID-YEA55>3.0.CO;2-L] [PMID: 9046085]
[25]
Myers, A.M.; Tzagoloff, A. MSW, a yeast gene coding for mitochondrial tryptophanyl-tRNA synthetase. J. Biol. Chem., 1985, 260(28), 15371-15377.
[PMID: 2999114]
[26]
Sainio, E.L.; Pulkki, K.; Young, S.N. L-Tryptophan: Biochemical, nutritional and pharmacological aspects. Amino Acids, 1996, 10(1), 21-47.
[http://dx.doi.org/10.1007/BF00806091] [PMID: 24178430]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 1
Year: 2020
Published on: 20 February, 2020
Page: [48 - 52]
Pages: 5
DOI: 10.2174/1573407214666180713094152
Price: $65

Article Metrics

PDF: 20
HTML: 4
EPUB: 1
PRC: 1