Recent Developments in the Synthesis of Cinnoline Derivatives

Author(s): Kamal Usef Sadek*, Ramadan Ahmed Mekheimer, Mohamed Abd-Elmonem

Journal Name: Mini-Reviews in Organic Chemistry

Volume 16 , Issue 6 , 2019


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Crinnolines can serve as unique and versatile class of heterocycles especially in fields related to synthetic and pharmaceutical chemistry owing to their potent biological activities. They possess diversity of pharmaceutical activities as anticancer, antibacterial, anti-inflammatory, anti-allergic as well as anti-hypertensive activities. Since the first synthesis of cinnoline by Richter (1883) numerous protocols for their synthesis have been developed utilizing arenediazonium salts, aryl hydrazines and arylhydhydrazones precursors. Recently metal catalyzed C-C and C-N bond formation reactions have emerged as efficient tools for synthesis of cinnoline derivatives. This review aims to focus on the recent synthetic routes used for the synthesis of cinnoline derivatives. An effort has been carried out to provide an overview of practical methods for preparing cinnolines. Furthermore the reaction mechanisms have been described in brief.

Keywords: Cinnolines, Cross-Dehydrogenative Coupling (CDC), [2+2+2]cycloaddition, benzyne intermediate, pyridazines, metal-catalyzed synthesis.

[1]
Sato, Y.; Suzuki, Y.; Yamamoto, K.; Kuroiwa, S.; Maruyama, S. Novel 3-phenyltetrahydrocinnolin-5-ol derivative and medicinal use thereof. Jpn. Pat. JP2005/10494, WO 2005121105, December 12, 2005.
[2]
Hennequin, L.F.; Thomas, A.P.; Johnstone, C.; Stokes, E.S.E.; Plé, P.A.; Lohmann, J.J.M.; Ogilvie, D.J.; Dukes, M.; Wedge, S.R.; Curwen, J.O.; Kendrew, J.; Lambert-van der Brempt, C. Design and structure-activity relationship of a new class of potent VEGF receptor tyrosine kinase inhibitors. J. Med. Chem., 1999, 42, 5369-5389.
[3]
Ruchelman, A.L.; Singh, S.K.; Ray, A.; Wu, X.; Yang, J.M.; Zhou, N.; Liu, A.; Liu, L.F.; La Voie, E.J. 11H-isoquino [4,3-c]cinnolin-12-ones: Novel anticancer agents with potent topoisomerase I-targeting activity and cytotoxicity. Bioorg. Med. Chem., 2004, 12, 795-806.
[4]
Yu, Y.; Singh, S.K.; Liu, A.; Li, T.K.; Liu, L.F.; La Voie, E.J. Substituted dibenzo[c,h]cinnolines: Topoisomerase I-targeting anticancer agents. Bioorg. Med. Chem., 2003, 11, 1475-1491.
[5]
Stefańska, B.; Arciemiuk, M.; Bontemps-Gracz, M.M.; Dzieduszycka, M.; Kupiec, A.; Martelli, S.; Borowski, E. Synthesis and biological evaluation of 2,7-Dihydro-3H-dibenzo[de,h]cinno-line-3,7-dione derivatives, a novel group of anticancer agents active on a multidrug resistant cell line. Bioorg. Med. Chem., 2003, 11, 561-572.
[6]
Suzuki, I.; Nakadate, M.; Nakashima, T.; Nagasawa, N. Synthesis of cinnoline 1,2-dioxide. Tetrahedron Lett., 1966, 7, 2899-2903.
[7]
Parrino, B.; Carbone, A.; Muscarella, M.; Spanò, V.; Montalbano, A.; Barraja, P.; Salvador, A.; Vedaldi, D.; Cirrincione, G.; Diana, P. 11H-Pyrido[3′,2′:4,5]pyrrolo [3,2-c]cinnoline and Pyrido[3′,2′:4,5] pyrrolo [1,2-c][2,2,3]benzotriazine: Two new ring systems with antitumor activity. J. Med. Chem., 2014, 57, 9495-9511.
[8]
Barraja, P.; Diana, P.; Lauria, A.; Passannanti, A.; Almerico, A.M.; Minnei, C.; Longu, S.; Congiu, D.; Musiu, C.; La Colla, P. Indolo [3,2-c]cinnolines with antiproliferative, antifungal, and antibacterial activity. Bioorg. Med. Chem., 1999, 7, 1591-1596.
[9]
Cirrincione, G.; Almerico, A.M.; Diana, P.; Grimaudo, S.; Dattolo, G.; Aiello, E.; Barraja, P.; Mingoia, F. Polycondensed nitrogen heterocycles. Part 27. Indolo [3,2-c]cinnoline. Synthesis and antileukemic activity. Farmaco, 1995, 50, 849-852.
[10]
Yu, Y.; Singh, S.K.; Liu, A.; Li, T.K.; Liu, L.F.; La Voie, E.J. Substituted dibenzo[c,h]cinnolines: Topoisomerase I-targeting anti-cancer agents. Bioorg. Med. Chem., 2003, 11, 1475-1491.
[11]
Brzezińska, E.; Stańczak, A.; Ochocki, Z. Structure and biological activity of some 4-amino-3-cinnolinecarboxylic acid derivatives. QSAR analysis of cinnoline derivatives with antibacterial properties. Acta Pol. Pharm., 2003, 60, 15-20.
[12]
Gavini, E.; Juliano, C.; Mulè, A.; Pirisino, G.; Murineddu, G.; Pinna, G.A. Synthesis and “in vitro” antimicrobial properties of N-Oxide derivatives based on tricyclic Indeno [2,1-c]pyridazine and Benzo[f]cinnoline systems. Arch. Pharm., 2000, 333, 341-346.
[13]
Choudhari, B.P.; Mulwad, V.V. Synthesis and antimicrobial screening of 3H,11H-9-methyl-3-oxopyrano [2,3-f]cinnolino [3,4-c]pyrrazole and its derivatives. IJC-B, 2006, 45B, 309-313.
[14]
Hu, E.; Kunz, R.K.; Rumfelt, S.; Chen, N.; Bürli, R.; Li, C.; Andrews, K.L.; Zhang, J.; Chmait, S.; Kogan, J.; Lindstrom, M.; Hitchcock, S.A.; Treanor, J. Discovery of potent, selective, and metabolically stable 4-(pyridin-3-yl)cinnolines as novel phosphodiesterase 10A (PDE10A) inhibitors. Bioorg. Med. Chem. Lett., 2012, 22, 2262-2265.
[15]
Mishra, P.; Middha, A.; Saxena, V.; Saxena, A. Synthesis and evaluation of anti-inflammatory activity of some cinnoline derivatives-4(-2-amino-thiophene) cinnoline-3-carboxamide. J. Pharm. Biosci., 2016, 4, 64-68.
[16]
Mishra, P.; Saxena, V.; Minu, K.; Abhishek, S. Synthesis, characterization and anti-inflammatory activity of cinnolines (pyrazole) derivatives. J. Pharm. Biol. Sci, 2015, 10, 77-82.
[17]
Nargund, L.V.G.; Badiger, V.V.; Yarnal, S.M. Synthesis and antimicrobial and anti-inflammatory activities of substituted 2-me-rcapto-3-(n-aryl)pyrimido [5,4-c]cinnolin-4-(3H)-ones. J. Pharm. Sci., 1992, 81, 365-366.
[18]
Mishra, P.; Middha, A.; Saxena, V.; Saxena, A. Synthesis and evaluation of anti-inflammatory activity of some cinnoline derivatives-4(-2-amino-thiophene) Cinnoline-3-carboxamide. UKJPB, 2016, 4, 64-68.
[19]
Holland, D.; Jones, G.; Marshall, P.W.; Tringham, G.D. Cinnoline-3-propionic acids, a new series of orally active anti-allergic substances. J. Med. Chem., 1976, 19, 1225-1228.
[20]
Wieslawa, L.; Andrzej, S. Cinnoline derivatives with biological activity. Arch. Pharm., 2007, 340, 65-80.
[21]
Alhambra, C.; Becker, C.; Blake, T.; Chang, A.; Damewood, Jr, J.R.; Daniels, T.; Dembofsky, B.T.; Gurley, D.A.; Hall, J.E.; Herzog, K.J.; Horchler, C.L.; Ohnmacht, C.J.; Schmiesing, R.J.; Dudley, A.; Ribadeneira, M.D.; Knappenberger, K.S.; Maciag, C.; Stein, M.M.; Chopra, M.; Liu, X.F.; Christian, E.P.; Arriza, J.L.; Chapdelaine, M.J. Development and SAR of functionally selective allosteric modulators of GABAA receptors. Bioorg. Med. Chem., 2011, 19, 2927-2938.
[22]
Scott, D.A.; Dakin, L.A.; Del Valle, D.J.; Bruce Diebold, R.; Drew, L.; Gero, T.W.; Ogoe, C.A.; Omer, C.A.; Repik, G.; Thakur, K.; Ye, Q.; Zheng, X. 3-Amido-4-anilinocinnolines as a novel class of CSF-1R inhibitor. Bioorg. Med. Chem. Lett., 2011, 21, 1382-1384.
[23]
Parasuraman, P.; Shanmugarajan, R.S.; Aravazhi, T.; Nehru, K.; Mathiazhaga, T.; Rajakumari, R. Synthesis, characterization and antimicrobial evaluation of some substituted 4-amino cinnoline-3-carboxamide derivatives. Int. J. Pharm. Life Sci., 2012, 3, 1430-1436.
[24]
Ryu, C.K.; Lee, J.Y. Synthesis and antifungal activity of 6-hydroxycinnolines. Bioorg. Med. Chem. Lett., 2006, 16, 1850-1853.
[25]
Nargund, L.; Badiger, V.; Yarnal, S. Synthesis and antimicrobial and anti-inflammatory activities of substituted 2-mercapt-3-(N-aryl)pyrlmido [5,4-c]cinnolin-4-(3H)ones. J. Pharm. Sci., 1992, 81, 365-366.
[26]
Mishra, P.; Middha, A.; Saxena, V.; Saxena, A. Synthesis, biological evaluation and comparative study of some cinnoline derivatives. UKJPB, 2016, 4, 74-80.
[27]
Li, X.; Yeh, V.; Molteni, V. Liver X receptor modulators: A review of recently patented compounds (2007-2009). Expert Opin. Ther. Pat., 2010, 20, 535-562.
[28]
HU, B.; Wrobel, J.E.; Collini, M.D.; Unwalla, R.J. Cinnoline compounds and their use as liver x receptor modilators. Google Patent WO 2006094034 A1, September 8. 2006.
[29]
Hu, B.; Unwalla, R.; Collini, M.; Quinet, E.; Feingold, I.; Goos-Nilsson, A.; Wihelmsson, A.; Nambi, P.; Wrobel, J. Discovery and SAR of cinnolines/quinolines as Liver X Receptor (LXR) agonists with binding selectivity for LXRβ. Bioorg. Med. Chem., 2009, 17, 3519-3527.
[30]
Keneford, J.R.; Simpson, J.C.E. 170. Synthetic antimalarials. Part XX. Cinnolines. Part XIII. Synthesis and antimalarial action of 4-aminoalkylaminocinnolines. J. Chem. Soc., 1947, 917-920.
[31]
Simpson, J.C.E.; Schofield, K. Antimalarial action of cinnoline derivatives. Nature, 1946, 157, 439-440.
[32]
Stanczak, A.; Lewgowd, W.; Pakulska, W. Synthesis and biological activity of some 4-amino-3-cinnoline carboxylic acid derivatives. Part 4: 2,4-Dioxo-1,2,3,4-tetrahydropyrimido [5,4-c]cinnolines. Pharmazie, 1998, 53, 156-161.
[33]
Gomtsyan, A.; Bayburt, E.K.; Schmidt, R.G.; Zheng, G.Z.; Perner, R.J.; Didomenico, S.; Koenig, J.R.; Turner, S.; Jinkerson, T.; Drizin, I.; Hannick, S.M.; Macri, B.S.; McDonald, H.A.; Honore, P.; Wismer, C.T.; Marsh, K.C.; Wetter, J.; Stewart, K.D.; Oie, T.; Jarvis, M.F.; Surowy, C.S.; Faltynek, C.R.; Lee, C.H. Novel transient receptor potential vanilloid 1 receptor antagonists for the treatment of pain: Structure-activity relationships for ureas with quinoline, isoquinoline, quinazoline, phthalazine, quinoxaline, and cinnoline moieties. J. Med. Chem., 2005, 48, 744-752.
[34]
Kalyani, G.; Bethi, S.; Sastry, K.V.; Kuchana, V. Synthesis of novel cinnoline fused mannich bases: Pharmacological evaluation of antibacterial, analgesic and anti-inflammatory activities. IJPCR, 2017, 9, 515-520.
[35]
Molina, A.; Vaquero, J.J.; Garcia-Navio, J.L.; Alvarez-Builla, J.; De Pascual-Teresa, B.; Gago, F.; Rodrigo, M.M. Novel DNA intercalators based on the pyridazino[1‘,6‘:1,2]pyrido [4,3-b]indol-5-inium system. J. Org. Chem., 1999, 64, 3907-3915.
[36]
Abdelrazek, F.M.; Metz, P.; Metwally, N.H.; El-Mahrouky, S.F. Synthesis and molluscicidal activity of new cinnoline and pyrano [2,3‐c]pyrazole derivatives. Arch. Pharm., 2006, 339, 456-460.
[37]
Lamberth, C. Pyridazine chemistry in crop protection. J. Heterocycl. Chem., 2017, 54, 2974-2984.
[38]
Shen, Y.; Shang, Z.; Yang, Y.; Zhu, S.; Qian, X.; Shi, P.; Zheng, J.; Yang, Y. Structurally rigid 9-amino-benzo[c]cinnoliniums make up a class of compact and large stokes-shift fluorescent dyes for cell-based imaging applications. J. Org. Chem., 2015, 80, 5906-5911.
[39]
Mitsumori, T.; Bendikov, M.; Sedó, J.; Wudl, F. Synthesis and properties of novel highly fluorescent pyrrolopyridazine derivatives. Chem. Mater., 2003, 15, 3759-3768.
[40]
Rajapakse, A.; Gates, K.S. Hypoxia-selective, enzymatic conversion of 6-nitroquinoline into a fluorescent helicene: Pyrido [3,2-f]quinolino [6,5-c]cinnoline 3-Oxide. J. Org. Chem., 2012, 77, 3531-3537.
[41]
Chapoulaud, V.G.; Plé, N.; Turck, A.; Quéguiner, G. Synthesis of 4,8-diarylcinnolines and quinazolines with potential applications in nonlinear optics. diazines. part 28. Tetrahedron, 2000, 56, 5499-5507.
[42]
Busch, A.; Turck, A.; Nowicka, K.; Barasella, A.; An-draud, C.; Plé, N. Molecular design and synthesis of 4,8-di(hetero)aryl-quinazolines with potential applications in quadratic nonlinear optics diazines part 48. Heterocycles, 2007, 71, 1723-1741.
[43]
Richter, V. Ueber cinnolinderivate. Chem. Ber., 1883, 16, 677-683.
[44]
Bradford, M.P.; Michael, G.E.; Frank, G.F. Name reaction and reagents in organic synthesis, 2nd ed; Wiley: Hoboken, 2005.
[45]
Vinogradova, O.V.; Balova, I.A. Methods for the synthesis of cinnolines (review). Chem. Heterocycl. Compd., 2008, 44, 501-522.
[46]
Evangeline, M.P.; Balamurugan, B.K.; Perm, P.K. A concise literature review on synthesis and pharmacological actions of 1, 2 benzodiazine (cinnolines). Int. J. Pharm. Pharm. Sci., 2017, 2, 31-39.
[47]
Gogoi, P.; Gogoi, S.R.; Devi, N.; Barman, P. Aluminium chloride–catalyzed synthesis of 4-benzyl cinnolines from aryl hydrazones. Synth. Commun., 2014, 44, 1142-1148.
[48]
Zhu, C.; Yamane, M. Synthesis of 3,4-disubstituted cinnolines by the Pd-catalyzed annulation of 2-iodophenyltriazenes with an internal alkyne. Tetrahedron, 2011, 67, 4933-4938.
[49]
Danilkina, N.A.; Vlasov, P.S.; Vodianik, S.M.; Kruchinin, A.A.; Vlasov, Y.G.; Balova, I.A. Synthesis and chemosensing properties of cinnoline-containing poly(arylene ethynylene)s. Beilstein J. Org. Chem., 2015, 11, 373-384.
[50]
Kimball, D.B.; Weakley, T.J.R.; Herges, R.; Haley, M.M. Deciphering the mechanistic dichotomy in the cyclization of 1-(2-Ethynylphenyl)-3,3-dialkyltriazenes: Competition between pericyclic and pseudocoarctate pathways. J. Am. Chem. Soc., 2002, 124, 13463-13473.
[51]
Kimball, D.B.; Herges, R.; Haley, M.M. Two unusual, competitive mechanisms for (2-ethynylphenyl)triazene cyclization: Pseudocoarctate versus pericyclic reactivity. J. Am. Chem. Soc., 2002, 124, 1572-1573.
[52]
Kimball, D.B.; Weakley, T.J.R.; Haley, M.M. Cyclization of 1-(2-Alkynylphenyl)-3,3-dialkyltriazenes: A convenient, high-yield synthesis of substituted cinnolines and isoindazoles. J. Am. Chem. Soc., 2002, 67, 6395-6405.
[53]
Shirtcliff, L.D.; Weakley, T.J.R.; Haley, M.M.; Köhler, F.; Herges, R. Experimental and theoretical investigation of the coarctate cyclization of (2-ethynylphenyl)phenyldiazenes. J. Am. Chem. Soc., 2004, 69, 6979-6985.
[54]
Shirtcliff, L.D.; Hayes, A.G.; Haley, M.M.; Köhler, F.; Hess, K.; Herges, R. Biscyclization reactions in butadiyne- and ethyne-linked triazenes and diazenes: Concerted versus stepwise coarctate cyclizations. J. Am. Chem. Soc., 2006, 128, 9711-9721.
[55]
Shirtcliff, L.D.; Haley, M.M.; Herges, R. CuCl-induced formation and migration of isoindazolyl carbenoids. J. Am. Chem. Soc., 2007, 72, 2411-2418.
[56]
Mc Clintock, S.P.; Forster, N.; Herges, R.; Haley, M.M. Synthesis of α-Ketoester- and α-Hydroxyester-substituted isoindazoles via the thermodynamic coarctate cyclization of ester-terminated azo-ene-yne systems. J. Org. Chem., 2009, 74, 6631-6636.
[57]
Vinogradova, O.V.; Balova, I.A.; Popik, V.V. Synthesis and reactivity of cinnoline-fused cyclic enediyne. J. Org. Chem., 2011, 76, 6937-6941.
[58]
Dey, R.; Ranu, B.C. A convenient and efficient protocol for the synthesis of 4(1H)-cinnolones, 1,4-dihydrocinnolines, and cinnolines in aqueous medium: Application for detection of nitrite ions. Tetrahedron, 2011, 67, 8918-8924.
[59]
Dey, R.; Chatterjee, T.; Ranu, B.C. Facile cyclization of 2-arylethynyl aniline to 4(1H)-cinnolones: A new chemodosimeter for nitrite ions. Tetrahedron Lett., 2011, 52, 461-464.
[60]
Ball, C.J.; Gilmore, J.; Willis, M.C. Copper-catalyzed tandem C-N bond formation: An efficient annulative synthesis of functionalized cinnolines. Angew. Chem. Int. Ed., 2012, 51, 5718-5722.
[61]
Zhang, G.; Miao, J.; Zhao, Y.; Ge, H. Copper-catalyzed aerobic dehydrogenative cyclization of N-methyl-N-phenylhydrazones: Synthesis of cinnolines. Angew. Chem. Int. Ed., 2012, 51, 8318-8832.
[62]
Reddy, B.V.S.; Reddy, C.R.; Reddy, M.R.; Yarlagadda, S.; Sridhar, B. Substrate directed C–H activation for the synthesis of benzo[c]cinnolines through a sequential C–C and C–N bond formation. Org. Lett., 2015, 17, 3730-3733.
[63]
Yan, J.; Tay, G.L.; Neo, C.; Lee, B.R.; Chan, P.W.H. Gold-catalyzed cycloisomerization and diels-alder reaction of 1,6-diyne esters with alkenes and diazenes to hydronaphthalenes and -cinnolines. Org. Lett., 2015, 17, 4176-4179.
[64]
Sun, P.; Wu, Y.; Huang, Y.; Wu, X.; Xu, J.; Yao, H.; Lin, A. Rh(iii)-catalyzed redox-neutral annulation of azo and diazo compounds: One-step access to cinnolines. Org. Chem. Front., 2016, 3, 91-95.
[65]
Simpson, J.C. In: Chemistry of Heterocyclic Compounds: Pyridazine and Pyrazine Rings; Wiley-VCH: Weinheim, 2008, Vol. 5, pp. 39-45.
[66]
Zhao, D.; Wu, Q.; Huang, X.; Song, F.; Lv, T.; You, J. A general method to diverse cinnolines and cinnolinium salts. Chem. Eur. J., 2013, 19, 6239-6244.
[67]
Hu, B.; Unwalla, R.; Collini, M.; Quinet, E.; Feingold, I.; Goos-Nilsson, A.; Wihelmsson, A.; Nambi, P.; Wrobel, J. Discovery and SAR of cinnolines/quinolines as Liver X Receptor (LXR) agonists with binding selectivity for LXRβ. Bioorg. Med. Chem., 2009, 17, 3519-3527.
[68]
Edwards, A.S.; Bennett, D.J.; Carswell, E.L.; Cooke, A.J.; Nimz, O. Design, structure activity relationships and X-ray co-crystallography of non-steroidal LXR agonists. Curr. Med. Chem., 2008, 15, 195-209.
[69]
Khalafy, J.; Rimaz, M.; Ezzati, M.; Prager, R.H. A green one-pot protocol for regioselective synthesis of new substituted 7,8-dihydrocinnoline-5(6H)-ones. Bull. Korean Chem. Soc., 2012, 33, 2890-2896.
[70]
Shu, W.M.; Ma, J.R.; Zheng, K.L.; Wu, A.X. Multicomponent coupling cyclization access to cinnolines via in situ generated diazene with arynes, and α-Bromo Ketones. Org. Lett., 2016, 18, 196-199.
[71]
Lambert, D.J.; Parikh, N.; Messham, S.J.; Edwards, G.; Van Truong, H.; Dempster, N.M.; Drew, M.G.B.; Nahar, L.; Sarker, S.D.; Ismail, F.M.D. One-pot synthesis and negative ion mass spectrometric investigation of a densely functionalized cinnoline. Tetrahedron Lett., 2015, 56, 6980-6983.
[72]
Do, H.Q.; Daugulis, O. An aromatic Glaser−Hay reaction. J. Am. Chem. Soc., 2009, 131, 17052-17053.
[73]
Ibrahim, N.S.; Mohamed, A.G.F.; Maawad, A.M.R.; Elnagdi, M.H. Nitriles in heterocyclic synthesis. Novel synthesis of pyridazine derivatives. Bull. Chem. Soc. Jpn., 1987, 60, 4486-4488.
[74]
Elnagdi, M.H.; Ibrahim, N.S.; Sadek, K.U.; Mohamed, M.H. Studies with heteroaromatic Aza compounds: A novel synthesis of phthalazines. Liebigs Ann. Chem., 1988, 1988, 1005-1006.
[75]
Al-Mousawi, S.; Elassar, A.Z.; El-Apasery, M.A. A microwave assisted diazo coupling reaction: The synthesis of alkylazines and thienopyridazines. Phosphorus Sulfur Silicon Relat. Elem., 2006, 181, 1755-177.
[76]
Hameed, A.A.; Ahmed, E.K.; Fattah, A.A.A.; Andrade, C.K.Z.; Sadek, K.U. Green and efficient synthesis of polyfunctionally substituted cinnolines under controlled microwave irradiation. Res. Chem. Intermed., 2017, 43, 5523-5533.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 6
Year: 2019
Published on: 12 July, 2018
Page: [578 - 588]
Pages: 11
DOI: 10.2174/1570193X15666180712124148
Price: $65

Article Metrics

PDF: 33
HTML: 6
PRC: 1