Chromatographic and Surfactant Based Potentiometric Determination of Aqueous Dissociation Constant of Mupirocin

Author(s): Natalija Nakov*, Katerina Brezovska, Vasil Karchev, Jelena Acevska, Aneta Dimitrovska

Journal Name: Current Analytical Chemistry

Volume 16 , Issue 2 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: The available data concerning aqueous dissociation constant of mupirocin (sparingly soluble drug) are scarce. In this study, chromatographic, surfactant based potentiometric concept and spectrophotometric method were used for determination of the aqueous pKa value of mupirocin.

Methods: Different approaches were used for estimation of the aqueous pKa value from the apparent pKa values obtained at four ACN concentrations, ranging from 22% to 30%. The potentiometric determination of the pKa value of mupirocin was performed using different concentration of Tween 80 as a surfactant.

Results: The aqueous pKa value of mupirocin, determined for the first time by reverse-phase liquid chromatography method, was found to be 4.76. The obtained value was confirmed by potentiometric method (4.85). It was found that Tween 80 increases the pKa values. The linear relationship between the apparent pKa values and the surfactant concentrations was used as an approach for estimation of the aqueous pKa value. Both methods gave similar values for aqueous pKa which correspond with the theoretically obtained pKa value (4.88) using Pallas computer program. It was found that mupirocin gives pH-indipendent spectra, thus spectrophotometric method is not applicable for determination of pKa of this compound.

Conclusion: This comprehensive approach used for the pKa determination enable us to obtained reliable results for the aqueous pKa value of mupirocin. The linear relationship between the pKa values and the nonionic surfactant concentrations could be used as a reliable and simple approach for determination of aqueous pKa value of sparingly soluble drugs.

Keywords: Chromatographic determination, dissociation constant, mupirocin, potentiometric determination, surfactant, spectrophotometric method.

Sutherland, R.; Boon, R.J.; Griffin, K.E.; Masters, P.J.; Slocombe, B.; White, A.R. Antibacterial activity of mupirocin (pseudomonic acid), a new antibiotic for topical use. Antimicrob. Agents Chemother., 1985, 27(4), 495-498.
[] [PMID: 3923922]
Ward, A.; Campoli-Richards, D.M. Mupirocin. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs, 1986, 32(5), 425-444.
[] [PMID: 3098541]
Eltringham, I. Mupirocin resistance and methicillin-resistant Staphylococcus aureus (MRSA). J. Hosp. Infect., 1997, 35(1), 1-8.
[] [PMID: 9032630]
Hatanaka, T.; Morigaki, S.; Aiba, T.; Katayama, K.; Koizumi, T. Effect of pH on the skin permeability of a zwitterionic drug, cephalexin. Int. J. Pharm., 1995, 1, 195-203.
Avdeef, A. Physicochemical profiling (solubility, permeability and charge state). Curr. Top. Med. Chem., 2001, 1(4), 277-351.
[] [PMID: 11899112]
Kerns, E.H.; Di, L. Physicochemical profiling: Overview of the screens. Drug Discov. Today. Technol., 2004, 1(4), 343-348.
[] [PMID: 24981613]
Manallack, D.T. The pK(a) Distribution of drugs: Application to drug discovery. Perspect. Medicin. Chem., 2007, 1, 25-38.
[] [PMID: 19812734]
Yeloglu, I.; Anilanmert, B.; Narin, I. pKa Constant of mupirocin. Int. J. Pharm. Pharm. Sci., 2010, 2, 116-117.
Némcova, I.; Rychlovský, P.; Pudilová, D. Effect of surfactants and ionic strength on dissociation constant of hydrochlorides of phenothiazine derivates. Anal. Lett., 2009, 42, 646-658.
Fritz, E.; Fekete, A.; Lintelmann, J.; Schmitt-Kopplin, P.; Meckenstock, R.U. Isolation of two Pseudomonas strains producing pseudomonic acid A. Syst. Appl. Microbiol., 2009, 32(1), 56-64.
[] [PMID: 19070447]
Reijenga, J.; van Hoof, A.; van Loon, A.; Teunissen, B. Development of methods for determination of pKa values. Anal. Chem. Insights, 2013, 8, 53-71.
[] [PMID: 23997574]
Babic, A.; Horvat, A.; Pavlovic, M.D.; Kastelan-Macan, M. Determination of pKa values of active ingridients. Trends Analyt. Chem., 2007, 26, 1043-1061.
Erdemgil, F.Z.; Ş anli, S.; Şanli, N.; Özkan, G.; Barbosa, J.; Guiteras, J.; Beltrán, J.L. Determination of pK(a) values of some hydroxylated benzoic acids in methanol-water binary mixtures by LC methodology and potentiometry. Talanta, 2007, 72(2), 489-496.
[] [PMID: 19071645]
Völgyi, G.; Ruiz, R.; Box, K.; Comer, J.; Bosch, E.; Takács-Novák, K. Potentiometric and spectrophotometric pKa determination of water-insoluble compounds: validation study in a new cosolvent system. Anal. Chim. Acta, 2007, 583(2), 418-428.
[] [PMID: 17386575]
Narasimham, L.; Barhate, V.D. Physico-chemical characterizationof some beta blockers and anti-diabetic drugs-potentiometric and spectrophotometric pKa determination in different co-solvents. Eur. J. Chem., 2011, 2, 36-46.
Ruiz, R.; Ràfols, C.; Rosés, M.; Bosch, E. A potentially simpler approach to measure aqueous pKa of insoluble basic drugs containing amino groups. J. Pharm. Sci., 2003, 92(7), 1473-1481.
[] [PMID: 12820151]
Ravichandiran, V.; Devarajan, V.; Masilamani, K. Determination of ionization constant (pKa) for poorly soluble drugs by using surfactants: A novel approach. Pharm. Lett., 2011, 3, 183-192.
Demiralay, E.Ç.; Koç, D.; Daldal, Y.D.; Çakir, C. Determination of chromatographic and spectrophotometric dissociation constants of some beta lactam antibiotics. J. Pharm. Biomed. Anal., 2012, 71, 139-143.
[] [PMID: 22901760]
Pandey, M.M.; Jaipal, A.; Kumar, A.; Malik, R.; Charde, S.Y. Determination of pK(a) of felodipine using UV-Visible spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 115, 887-890.
[] [PMID: 23906645]
Uhrova, M.; Miksik, I.; Deyl, Z.; Bellini, S. Determination of dissociation constants by separation methods (HPLC and CE). Theoretical background and guidelines for application. Process Contr. Qual., 1997, 10, 151-167.
Manderscheid, M.; Eichinger, T. Determination of pKa values by liquid chromatography. J. Chromatogr. Sci., 2003, 41(6), 323-326.
[] [PMID: 12935305]
Wiczling, P.; Markuszewski, M.J.; Kaliszan, R. Determination of pKa by pH gradient reversed-phase HPLC. Anal. Chem., 2004, 76(11), 3069-3077.
[] [PMID: 15167784]
Gumustas, M.; Şanli, S.; Şanli, N.; Ozkan, S.A. Determination of pK(a) values of some antihypertensive drugs by liquid chromatography and simultaneous assay of lercanidipine and enalapril in their binary mixtures. Talanta, 2010, 82(4), 1528-1537.
[] [PMID: 20801368]
[24] by MyAssays Ltd,
Angelov, T.; Vlasenko, A.; Tashkov, W. HPLC determination of pKa of parabens and investigation on their lipophilicity poarameters. J. Liq. Chromatogr. Relat. Technol., 2008, 31, 188-197.
Huo, H.; Li, T.; Zhang, L. pKa determination of oxysophocarpine by reversed - phase high performance liquid chromatography. Springerplus, 2013, 2(1), 270.
[] [PMID: 23853749]
Kazakevich, Y.; Lobrutto, R. HPLC for pharmaceutical scientists, 4th ed; John Willey & Sons, Inc.: Hoboken, New Jersey, 2007.
European Pharmacopeia 9. Consil of Europe, Strasbourg, France, 2017.
Merck KGaA, Darmstadt, Germany, Properties of mupirocin lithium. lang=en&region=MK (Accessed September 25, 2017).
Yuanqin, Z.; Fan, L.; Xiaoyan, L.; Jing, L. The effect of surfactant micelles on the dissociation constants and transition points and transition intervals of acid-base indicators. Talanta, 2002, 56(4), 705-710.
[] [PMID: 18968546]
Jaiswal, P.V.; Ijeri, V.S.; Srivastava, A.K. Effect of surfactants on the dissociation constants of ascorbic and maleic acids. Colloids Surf. B Biointerfaces, 2005, 46(1), 45-51.
[] [PMID: 16214308]
Aldeef, A. Absorption and Drug Development; Wiley-Interscience: Hoboken, NJ, 2003.
Kraft, A. The determination of the pKa of multiprotic, weak acids by analyzing potentiometric acid-base titration data with difference plots. J. Chem. Educ., 2003, 80, 554-559.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 11 February, 2020
Page: [158 - 165]
Pages: 8
DOI: 10.2174/1573411014666180704125016
Price: $65

Article Metrics

PDF: 22
PRC: 2