Lead Molecule Prediction and Characterization for Designing MERS-CoV 3C-like Protease Inhibitors: An In silico Approach

Author(s): Md. Mostafijur Rahman, Md. Bayejid Hosen, M. Zakir Hossain Howlader, Yearul Kabir*

Journal Name: Current Computer-Aided Drug Design

Volume 15 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: 3C-like protease also called the main protease is an essential enzyme for the completion of the life cycle of Middle East Respiratory Syndrome Coronavirus. In our study we predicted compounds which are capable of inhibiting 3C-like protease, and thus inhibit the lifecycle of Middle East Respiratory Syndrome Coronavirus using in silico methods.

Methods: Lead like compounds and drug molecules which are capable of inhibiting 3C-like protease was identified by structure-based virtual screening and ligand-based virtual screening method. Further, the compounds were validated through absorption, distribution, metabolism and excretion filtering.

Results: Based on binding energy, ADME properties, and toxicology analysis, we finally selected 3 compounds from structure-based virtual screening (ZINC ID: 75121653, 41131653, and 67266079) having binding energy -7.12, -7.1 and -7.08 Kcal/mol, respectively and 5 compounds from ligandbased virtual screening (ZINC ID: 05576502, 47654332, 04829153, 86434515 and 25626324) having binding energy -49.8, -54.9, -65.6, -61.1 and -66.7 Kcal/mol respectively. All these compounds have good ADME profile and reduced toxicity. Among eight compounds, one is soluble in water and remaining 7 compounds are highly soluble in water. All compounds have bioavailability 0.55 on the scale of 0 to 1. Among the 5 compounds from structure-based virtual screening, 2 compounds showed leadlikeness. All the compounds showed no inhibition of cytochrome P450 enzymes, no blood-brain barrier permeability and no toxic structure in medicinal chemistry profile. All the compounds are not a substrate of P-glycoprotein.

Conclusion: Our predicted compounds may be capable of inhibiting 3C-like protease but need some further validation in wet lab.

Keywords: 3C-like protease, MERS-CoV, structure-based virtual screening, ligand-based virtual screening, molecular docking, ADME.

[1]
de Wit, E.; van Doremalen, N.; Falzarano, D.; Munster, V.J. SARS and MERS: Recent Insights into emerging coronaviruses. Nat. Rev. Microbiol., 2016, 14, 523-534.
[2]
Needle, D.; Lountos, G.T.; Waugh, D.S. Structures of the middle east respiratory syndrome coronavirus 3C-like protease reveal insights into substrate specificity. Acta Crystallogr. Sect D Biol. Crystallogr., 2015, 71, 1102-1111.
[3]
Kilianski, A.; Mielech, A.M.; Deng, X.; Baker, S.C. Assessing activity and inhibition of middle east respiratory syndrome coronavirus papain-like and 3c-like proteases using luciferase-based biosensors. J. Virol., 2013, 87, 11955-11962.
[4]
Stobart, C.C.; Sexton, N.R.; Munjal, H.; Lu, X.; Molland, K.L.; Tomar, S.; Mesecar, A.D.; Denison, M.R. Chimeric exchange of coronavirus nsp5 proteases (3CLpro) identifies common and divergent regulatory determinants of protease activity. J. Virol., 2013, 87, 12611-12618.
[5]
Anand, K.; Palm, G.J.; Mesters, J.R.; Siddell, S.G.; Ziebuhr, J.; Hilgenfeld, R. Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain. EMBO J., 2002, 21, 3213-3224.
[6]
Chen, H.; Wei, P.; Huang, C.; Tan, L.; Liu, Y.; Lai, L. Only one protomer is active in the dimer of SARS 3C-like proteinase. J. Biol. Chem., 2006, 281, 13894-13898.
[7]
Ren, Z.; Yan, L.; Zhang, N.; Guo, Y.; Yang, C.; Lou, Z.; Rao, Z. The Newly emerged SARS-Like coronavirus HCoV-EMC also Has an “Achilles’ Heel”: Current effective inhibitor targeting a 3C-like protease. Protein Cell, 2013, 4, 248-250.
[8]
Tomar, S.; Johnston, M.L.; St. John, S.E.; Osswald, H.L.; Nyalapatla, P.R.; Paul, L.N.; Ghosh, A.K.; Denison, M.R.; Mesecar, A.D. Ligand-Induced dimerization of middle east respiratory syndrome (MERS) coronavirus Nsp5 protease (3CL Pro). J. Biol. Chem., 2015, 290, 19403-19422.
[9]
Deng, X.; StJohn, S.E.; Osswald, H.L.; O’Brien, A.; Banach, B.S.; Sleeman, K.; Ghosh, A.K.; Mesecar, A.D.; Baker, S.C. Coronaviruses resistant to a 3C-like protease inhibitor are attenuated for replication and pathogenesis, revealing a low genetic barrier but high fitness cost of resistance. J. Virol., 2014, 88, 11886-11898.
[10]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30, 2785-2791.
[11]
Li, H.; Leung, K.S.; Wong, M.H. Idock: A Multithreaded virtual screening tool for flexible ligand docking.In 2012 IEEE Symposium on Computational Intelligence and Computational Biology, CIBCB 2012, 2012, pp. 77-84.
[12]
Ballester, P.J.; Richards, W.G. Ultrafast Shape recognition to search compound databases for similar molecular shapes. J. Comput. Chem., 2007, 28, 1711-1723.
[13]
Irwin, J.J.; Sterling, T.; Mysinger, M.M.; Bolstad, E.S.; Coleman, R.G. ZINC: A free tool to discover chemistry for biology. J. Chem. Inf. Model., 2012, 52, 1757-1768.
[14]
Yang, J.M.; Chen, C.C. GEMDOCK: A generic evolutionary method for molecular docking. Proteins Struct. Funct. Genet , 2004, 55, 288-304.
[15]
Page, R.D. TreeView: An Application to display phylogenetic trees on personal computers. Comput. Appl. Biosci., 1996, 12, 357-358.
[16]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx.In Methods in molecular biology (Clifton, N.J.); 2015; Vol. 1263, pp. 243-250.
[17]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[18]
Daina, A.; Michielin, O.; Zoete, V. ILOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J. Chem. Inf. Model., 2014, 54, 3284-3301.
[19]
Daina, A.; Zoete, V. A BOILED-Egg To predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 2016, 1117-1121.
[20]
O’Boyle, N.M.; Morley, C.; Hutchison, G.R. Pybel: A python wrapper for the openbabel cheminformatics toolkit. Chem. Cent. J., 2008, 2, 5.
[21]
Zumla, A.; Chan, J.F.W.; Azhar, E.I.; Hui, D.S.C.; Yuen, K-Y. Coronaviruses - Drug discovery and therapeutic options. Nat. Rev. Drug Discov., 2016, 15, 327-347.
[22]
Falzarano, D.; de Wit, E.; Rasmussen, A.L.; Feldmann, F.; Okumura, A.; Scott, D.P.; Brining, D.; Bushmaker, T.; Martellaro, C.; Baseler, L.; Benecke, A.G.; Katze, M.G.; Munster, V.J.; Feldmann, H. Treatment with interferon-α2b and ribavirin improves outcome in mers-cov–infected rhesus macaques. Nat. Med., 2013, 19, 1313-1317.
[23]
Cheng, K.W.; Cheng, S.C.; Chen, W.Y.; Lin, M.H.; Chuang, S.J.; Cheng, I.H.; Sun, C.Y.; Chou, C.Y. Thiopurine analogs and mycophenolic acid synergistically inhibit the papain-like protease of middle east respiratory syndrome coronavirus. Antiviral Res., 2015, 115, 9-16.
[24]
Wu, C.Y.; Jan, J.T.; Ma, S.H.; Kuo, C.J.; Juan, H.F.; Cheng, Y.S.; Hsu, H.H.; Huang, H.C.; Wu, D.; Brik, A.; Liang, F.S.; Liu, R.S.; Fang, J.M.; Chen, S.T.; Liang, P.H.; Wong, C.H. Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc. Natl. Acad. Sci. USA, 2004, 101, 10012-10017.
[25]
Sydnes, M.O.; Hayashi, Y.; Sharma, V.K.; Hamada, T.; Bacha, U.; Barrila, J.; Freire, E.; Kiso, Y. Synthesis of glutamic acid and glutamine peptides possessing a trifluoromethyl ketone group as SARS-CoV 3CL Protease inhibitors. Tetrahedron, 2006, 62, 8601-8609.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 1
Year: 2019
Published on: 14 December, 2018
Page: [82 - 88]
Pages: 7
DOI: 10.2174/1573409914666180629151906
Price: $65

Article Metrics

PDF: 45
HTML: 3
PRC: 1