Latest Updates in Dengue Fever Therapeutics: Natural, Marine and Synthetic Drugs

Author(s): Samira Hosseini*, Rodrigo B. Muñoz-Soto, Jacqueline Oliva-Ramírez, Patricia Vázquez-Villegas, Nasrin Aghamohammadi, Aida Rodriguez-Garcia*, Sergio O. Martinez-Chapa

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 5 , 2020


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Abstract:

In this paper, we review the history of Dengue, the mechanism of infection, the molecular characteristics and components of Dengue, the mechanism of entry to the target cells, cyclization of the genome and replication process, as well as translation of the proteins for virus assembly. The major emphasis of this work is on natural products and plant extracts, which were used for as palliative or adjuvant treatment of Dengue. This review article also summarizes the latest findings in regards to the marine products as effective drugs to target different symptoms of Dengue. Furthermore, an update on synthetic drugs for treating Dengue is provided in this review. As a novel alternative, we describe monoclonal antibody therapy for Dengue management and treatment.

Keywords: Natural plant extracts, dengue treatment, marine products, synthetic agents for treatment of dengue, drugs, monoclonal antibody therapy.

[1]
WHO. Dengue Control: Epidemiology. Available at:. www.who.int/denguecontrol/epidemiology/en/ (Accessed: November 30, 2017).
[2]
Gubler, D.J. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol., 2002, 10(2), 100-103.
[http://dx.doi.org/10.1016/S0966-842X(01)02288-0] [PMID: 11827812]
[3]
Bock, G.; Goode, J. New treatment strategies for dengue and other flaviviral diseases, 2006.
[4]
Bleijs, D.A. History of Dengue., Available at:. http://denguevirusnet.com/history-of-dengue.html (Accessed: December 20, 2017).
[5]
Gubler, D.J. Dengue/dengue haemorrhagic fever: history and current status. In: New treatment strategies for dengue and other flaviviral diseases; , 2006; 277, pp. 3-16.
[http://dx.doi.org/10.1002/0470058005.ch2]
[6]
Hotta, S.; Kimura, R. Experimental studies on dengue. I. Isolation, identification and modification of the virus. J. Infect. Dis., 1952, 90(1), 1-9.
[http://dx.doi.org/10.1093/infdis/90.1.1] [PMID: 14888958]
[7]
Sabin, A.B.; Schlesinger, R.W. Production of immunity to dengue with virus modified by propagation in mice. Science, 1945, 101(2634), 640-642.
[http://dx.doi.org/10.1126/science.101.2634.640] [PMID: 17844088]
[8]
Messina, J.P.; Brady, O.J.; Scott, T.W.; Zou, C.; Pigott, D.M.; Duda, K.A.; Bhatt, S.; Katzelnick, L.; Howes, R.E.; Battle, K.E.; Simmons, C.P.; Hay, S.I. Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol., 2014, 22(3), 138-146.
[http://dx.doi.org/10.1016/j.tim.2013.12.011] [PMID: 24468533]
[9]
Mustafa, M.S.; Rasotgi, V.; Jain, S.; Gupta, V. Discovery of fifth serotype of dengue virus (DENV-5): a new public health dilemma in dengue control. Med. J. Armed Forces India, 2015, 71(1), 67-70.
[http://dx.doi.org/10.1016/j.mjafi.2014.09.011] [PMID: 25609867]
[10]
Weaver, S.C.; Vasilakis, N. Molecular evolution of dengue viruses: contributions of phylogenetics to understanding the history and epidemiology of the preeminent arboviral disease. Infect. Genet. Evol., 2009, 9(4), 523-540.
[http://dx.doi.org/10.1016/j.meegid.2009.02.003] [PMID: 19460319]
[11]
Vasilakis, N.; Weaver, S.C. The history and evolution of human dengue emergence. Adv. Virus Res., 2008, 72, 1-76.
[http://dx.doi.org/10.1016/S0065-3527(08)00401-6] [PMID: 19081488]
[12]
Calisher, C.H.; Gould, E.A. Taxonomy of the virus family Flaviviridae. Adv. Virus Res., 2003, 59, 1-19.
[http://dx.doi.org/10.1016/S0065-3527(03)59001-7] [PMID: 14696325]
[13]
Kuhn, R.J.; Zhang, W.; Rossmann, M.G.; Pletnev, S.V.; Corver, J.; Lenches, E.; Jones, C.T.; Mukhopadhyay, S.; Chipman, P.R.; Strauss, E.G.; Baker, T.S.; Strauss, J.H. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell, 2002, 108(5), 717-725.
[http://dx.doi.org/10.1016/S0092-8674(02)00660-8] [PMID: 11893341]
[14]
Gebhard, L.G.; Filomatori, C.V.; Gamarnik, A.V. Functional RNA elements in the dengue virus genome. Viruses, 2011, 3(9), 1739-1756.
[http://dx.doi.org/10.3390/v3091739] [PMID: 21994804]
[15]
Iglesias, N.G.; Gamarnik, A.V. Dynamic RNA structures in the dengue virus genome. RNA Biol., 2011, 8(2), 249-257.
[http://dx.doi.org/10.4161/rna.8.2.14992] [PMID: 21593583]
[16]
Fibriansah, G.; Ng, T.S.; Kostyuchenko, V.A.; Lee, J.; Lee, S.; Wang, J.; Lok, S.M.M. Structural changes in dengue virus when exposed to a temperature of 37°C. J. Virol., 2013, 87(13), 7585-7592.
[http://dx.doi.org/10.1128/JVI.00757-13] [PMID: 23637405]
[17]
Ng, W.C.; Soto-Acosta, R.; Bradrick, S.S.; Garcia-Blanco, M.A.; Ooi, E.E. The 5′and 3′untranslated regions of the flaviviral genome. Viruses, 2017, 9(6), 137.
[http://dx.doi.org/10.3390/v9060137] [PMID: 28587300]
[18]
Shurtleff, A.C.; Beasley, D.W.; Chen, J.J.; Ni, H.; Suderman, M.T.; Wang, H.; Xu, R.; Wang, E.; Weaver, S.C.; Watts, D.M.; Russell, K.L.; Barrett, A.D. Genetic variation in the 3′ non-coding region of dengue viruses. Virology, 2001, 281(1), 75-87.
[http://dx.doi.org/10.1006/viro.2000.0748] [PMID: 11222098]
[19]
Hahn, C.S.; Hahn, Y.S.; Rice, C.M.; Lee, E.; Dalgarno, L.; Strauss, E.G.; Strauss, J.H. Conserved elements in the 3′untranslated region of flavivirus RNAs and potential cyclization sequences. J. Mol. Biol., 1987, 198(1), 33-41.
[http://dx.doi.org/10.1016/0022-2836(87)90455-4] [PMID: 2828633]
[20]
Manzano, M.; Reichert, E.D.; Polo, S.; Falgout, B.; Kasprzak, W.; Shapiro, B.A.; Padmanabhan, R. Identification of cis-acting elements in the 3′-untranslated region of the dengue virus type 2 RNA that modulate translation and replication. J. Biol. Chem., 2011, 286(25), 22521-22534.
[http://dx.doi.org/10.1074/jbc.M111.234302] [PMID: 21515677]
[21]
Villordo, S.M.; Alvarez, D.E.; Gamarnik, A.V. A balance between circular and linear forms of the dengue virus genome is crucial for viral replication. RNA, 2010, 16(12), 2325-2335.
[http://dx.doi.org/10.1261/rna.2120410] [PMID: 20980673]
[22]
Villordo, S.M.; Gamarnik, A.V. Genome cyclization as strategy for flavivirus RNA replication. Virus Res., 2009, 139(2), 230-239.
[http://dx.doi.org/10.1016/j.virusres.2008.07.016] [PMID: 18703097]
[23]
Byk, L.A.; Gamarnik, A.V. Properties and functions of the dengue virus capsid protein. Annu. Rev. Virol., 2016, 3(1), 263-281.
[http://dx.doi.org/10.1146/annurev-virology-110615-042334] [PMID: 27501261]
[24]
Che, P.; Tang, H.; Li, Q. The interaction between claudin-1 and dengue viral prM/M protein for its entry. Virology, 2013, 446(1-2), 303-313.
[http://dx.doi.org/10.1016/j.virol.2013.08.009] [PMID: 24074594]
[25]
Metz, S.W.; Gallichotte, E.N.; Brackbill, A.; Premkumar, L.; Miley, M.J.; Baric, R.; de Silva, A.M. In vitro assembly and stabilization of dengue and Zika virus envelope protein homo-dimers. Sci. Rep., 2017, 7(1), 4524.
[http://dx.doi.org/10.1038/s41598-017-04767-6] [PMID: 28674411]
[26]
Yap, S.S.L.; Nguyen-Khuong, T.; Rudd, P.M.; Alonso, S. Dengue virus glycosylation: what do we know? Front. Microbiol., 2017, 8, 1415.
[http://dx.doi.org/10.3389/fmicb.2017.01415] [PMID: 28791003]
[27]
Tassaneetrithep, B.; Burgess, T.H.; Granelli-Piperno, A.; Trumpfheller, C.; Finke, J.; Sun, W.; Eller, M.A.; Pattanapanyasat, K.; Sarasombath, S.; Birx, D.L.; Steinman, R.M.; Schlesinger, S.; Marovich, M.A. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J. Exp. Med., 2003, 197(7), 823-829.
[http://dx.doi.org/10.1084/jem.20021840] [PMID: 12682107]
[28]
Zhang, Y.; Zhang, W.; Ogata, S.; Clements, D.; Strauss, J.H.; Baker, T.S.; Kuhn, R.J.; Rossmann, M.G. Conformational changes of the flavivirus E glycoprotein. Structure, 2004, 12(9), 1607-1618.
[http://dx.doi.org/10.1016/j.str.2004.06.019] [PMID: 15341726]
[29]
Chen, S.; Wu, Z.; Wang, M.; Cheng, A. Innate immune evasion mediated by flaviviridae non-structural proteins. Viruses, 2017, 9(10), 291.
[http://dx.doi.org/10.3390/v9100291] [PMID: 28991176 ]
[30]
Wasik, D.; Mulchandani, A.; Yates, M.V. Point-of-use nanobiosensor for detection of dengue virus NS1 antigen in adult Aedes aegypti: a potential tool for improved dengue surveillance. Anal. Chem., 2018, 90(1), 679-684.
[http://dx.doi.org/10.1021/acs.analchem.7b03407] [PMID: 29182305]
[31]
Ambrose, J.H.; Sekaran, S.D.; Azizan, A. Dengue virus NS1 protein as a diagnostic marker: commercially available ELISA and comparison to qRT-PCR and serological diagnostic assays currently used by the state of florida. J. Trop. Med., 2017, 2017 8072491
[PMID: 28740517]
[32]
Pal, S.; Dauner, A.L.; Mitra, I.; Forshey, B.M.; Garcia, P.; Morrison, A.C.; Halsey, E.S.; Kochel, T.J.; Wu, S.J.L. Evaluation of dengue NS1 antigen rapid tests and ELISA kits using clinical samples. PLoS One, 2014, 9(11) e113411
[http://dx.doi.org/10.1371/journal.pone.0113411] [PMID: 25412170]
[33]
Akey, D.L.; Brown, W.C.; Dutta, S.; Konwerski, J.; Jose, J.; Jurkiw, T.J.; DelProposto, J.; Ogata, C.M.; Skiniotis, G.; Kuhn, R.J.; Smith, J.L. Flavivirus NS1 structures reveal surfaces for associations with membranes and the immune system. Science, 2014, 343(6173), 881-885.
[http://dx.doi.org/10.1126/science.1247749] [PMID: 24505133]
[34]
Xie, X.; Gayen, S.; Kang, C.; Yuan, Z.; Shi, P.Y. Membrane topology and function of dengue virus NS2A protein. J. Virol., 2013, 87(8), 4609-4622.
[http://dx.doi.org/10.1128/JVI.02424-12] [PMID: 23408612]
[35]
Wu, R.H.; Tsai, M.H.; Tsai, K.N.; Tian, J.N.; Wu, J.S.; Wu, S.Y.; Chern, J.H.; Chen, C.H.; Yueh, A. Mutagenesis of dengue virus protein NS2A revealed a novel domain responsible for virus-induced cytopathic effect and interactions between NS2A and NS2B transmembrane segments. J. Virol., 2017, 91(12), e01836-e16.
[http://dx.doi.org/10.1128/JVI.01836-16] [PMID: 28381578]
[36]
Xie, X.; Zou, J.; Puttikhunt, C.; Yuan, Z.; Shi, P.Y. Two distinct sets of NS2A molecules are responsible for dengue virus RNA synthesis and virion assembly. J. Virol., 2015, 89(2), 1298-1313.
[http://dx.doi.org/10.1128/JVI.02882-14] [PMID: 25392211]
[37]
Li, Y.; Li, Q.; Wong, Y.L.; Liew, L.S.Y.; Kang, C. Membrane topology of NS2B of dengue virus revealed by NMR spectroscopy. Biochim. Biophys. Acta., 2015, 1848(10, Part dA), 2244-2252.
[http://dx.doi.org/10.1016/j.bbamem.2015.06.010] [PMID: 26072288]
[38]
Pan, A.; Saw, W.G.; Subramanian Manimekalai, M.S.; Grüber, A.; Joon, S.; Matsui, T.; Weiss, T.M.; Grüber, G. Structural features of NS3 of Dengue virus serotypes 2 and 4 in solution and insight into RNA binding and the inhibitory role of quercetin. Acta Crystallogr. D Struct. Biol., 2017, 73(Pt 5), 402-419.
[http://dx.doi.org/10.1107/S2059798317003849] [PMID: 28471365]
[39]
Erbel, P.; Schiering, N.; D’Arcy, A.; Renatus, M.; Kroemer, M.; Lim, S.P.; Yin, Z.; Keller, T.H.; Vasudevan, S.G.; Hommel, U. Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nat. Struct. Mol. Biol., 2006, 13(4), 372-373.
[http://dx.doi.org/10.1038/nsmb1073] [PMID: 16532006]
[40]
Tay, M.Y.F.; Saw, W.G.; Zhao, Y.; Chan, K.W.K.; Singh, D.; Chong, Y.; Forwood, J.K.; Ooi, E.E.; Grüber, G.; Lescar, J.; Luo, D.; Vasudevan, S.G. The C-terminal 50 amino acid residues of dengue NS3 protein are important for NS3-NS5 interaction and viral replication. J. Biol. Chem., 2015, 290(4), 2379-2394.
[http://dx.doi.org/10.1074/jbc.M114.607341] [PMID: 25488659]
[41]
Palanisamy, N.; Akaberi, D.; Lennerstrand, J. Protein backbone flexibility pattern is evolutionarily conserved in the Flaviviridae family: A case of NS3 protease in Flavivirus and Hepacivirus. Mol. Phylogenet. Evol., 2018, 118, 58-63.
[http://dx.doi.org/10.1016/j.ympev.2017.09.015] [PMID: 28951254]
[42]
Lee, C.M.; Xie, X.; Zou, J.; Li, S.H.; Lee, M.Y.Q.; Dong, H.; Qin, C.F.; Kang, C.; Shi, P.Y. Determinants of dengue virus NS4A protein oligomerization. J. Virol., 2015, 89(12), 6171-6183.
[http://dx.doi.org/10.1128/JVI.00546-15] [PMID: 25833044]
[43]
Zou, J.; Xie, X.; Lee, T.; Chandrasekaran, R.; Reynaud, A.; Yap, L.; Wang, Q.Y.; Dong, H.; Kang, C.; Yuan, Z.; Lescar, J.; Shi, P.Y. Dimerization of flavivirus NS4B protein. J. Virol., 2014, 88(6), 3379-3391.
[http://dx.doi.org/10.1128/JVI.02782-13] [PMID: 24390334]
[44]
Zou, J.; Xie, X.; Wang, Q.Y.; Dong, H.; Lee, M.Y.; Kang, C.; Yuan, Z.; Shi, P.Y. Characterization of dengue virus NS4A and NS4B protein interaction. J. Virol., 2015, 89(7), 3455-3470.
[http://dx.doi.org/10.1128/JVI.03453-14] [PMID: 25568208]
[45]
Naik, N.G.; Wu, H.N. Mutation of putative N-Glycosylation sites on dengue virus NS4B decreases RNA replication. J. Virol., 2015, 89(13), 6746-6760.
[http://dx.doi.org/10.1128/JVI.00423-15] [PMID: 25878113]
[46]
Falgout, B.; Pethel, M.; Zhang, Y.M.; Lai, C.J. Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. J. Virol., 1991, 65(5), 2467-2475.
[PMID: 2016768]
[47]
El Sahili, A.; Lescar, J. Dengue virus non-structural protein 5. Viruses, 2017, 9(4), 91.
[http://dx.doi.org/10.3390/v9040091] [PMID: 28441781]
[48]
Egloff, M.P.; Benarroch, D.; Selisko, B.; Romette, J.L.; Canard, B. An RNA cap (nucleoside-2′-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J., 2002, 21(11), 2757-2768.
[http://dx.doi.org/10.1093/emboj/21.11.2757] [PMID: 12032088]
[49]
Dalrymple, N.; Mackow, E.R. Productive dengue virus infection of human endothelial cells is directed by heparan sulfate-containing proteoglycan receptors. J. Virol., 2011, 85(18), 9478-9485.
[http://dx.doi.org/10.1128/JVI.05008-11] [PMID: 21734047]
[50]
Avirutnan, P.; Zhang, L.; Punyadee, N.; Manuyakorn, A.; Puttikhunt, C.; Kasinrerk, W.; Malasit, P.; Atkinson, J.P.; Diamond, M.S. Secreted NS1 of dengue virus attaches to the surface of cells via interactions with heparan sulfate and chondroitin sulfate E. PLoS Pathog., 2007, 3(11) e183
[http://dx.doi.org/10.1371/journal.ppat.0030183] [PMID: 18052531]
[51]
Alvarez, D.E.; De Lella Ezcurra, A.L.; Fucito, S.; Gamarnik, A.V. Role of RNA structures present at the 3'UTR of dengue virus on translation, RNA synthesis, and viral replication. Virology, 2005, 339(2), 200-212.
[http://dx.doi.org/10.1016/j.virol.2005.06.009] [PMID: 16002117]
[52]
Alvarez, D.E.; Lodeiro, M.F.; Ludueña, S.J.; Pietrasanta, L.I.; Gamarnik, A.V. Long-range RNA-RNA interactions circularize the dengue virus genome. J. Virol., 2005, 79(11), 6631-6643.
[http://dx.doi.org/10.1128/JVI.79.11.6631-6643.2005] [PMID: 15890901]
[53]
Miller, S.; Sparacio, S.; Bartenschlager, R. Subcellular localization and membrane topology of the dengue virus type 2 Non-structural protein 4B. J. Biol. Chem., 2006, 281(13), 8854-8863.
[http://dx.doi.org/10.1074/jbc.M512697200] [PMID: 16436383]
[54]
Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev., 1999, 12(4), 564-582.
[http://dx.doi.org/10.1128/CMR.12.4.564] [PMID: 10515903]
[55]
Abd Kadir, S.L.; Yaakob, H.; Mohamed Zulkifli, R. Potential anti-dengue medicinal plants: a review. J. Nat. Med., 2013, 67(4), 677-689.
[http://dx.doi.org/10.1007/s11418-013-0767-y] [PMID: 23591999]
[56]
World Health Organization, Special Programme for Re-search, Training in Tropical Diseases. Dengue: guidelines for diagnosis, treatment, prevention and control; World Health Organization: Switzerland, 2009.
[57]
Tang, L.I.; Ling, A.P.; Koh, R.Y.; Chye, S.M.; Voon, K.G. Screening of anti-dengue activity in methanolic extracts of medicinal plants. BMC Complement. Altern. Med., 2012, 12(1), 3.
[http://dx.doi.org/10.1186/1472-6882-12-3] [PMID: 22244370]
[58]
García, C.C.; Talarico, L.; Almeida, N.; Colombres, S.; Duschatzky, C.; Damonte, E.B. Virucidal activity of essential oils from aromatic plants of San Luis, Argentina. Phytother. Res., 2003, 17(9), 1073-1075.
[http://dx.doi.org/10.1002/ptr.1305] [PMID: 14595590]
[59]
Betancur-Galvis, L.; Saez, J.; Granados, H.; Salazar, A.; Ossa, J. Antitumor and antiviral activity of Colombian medicinal plant extracts. Mem. Inst. Oswaldo Cruz, 1999, 94(4), 531-535.
[http://dx.doi.org/10.1590/S0074-02761999000400019] [PMID: 10446015]
[60]
Ukani, M.D.; Mehta, N.K.; Nanavati, D.D. Aconitum heterophyllum (ativisha) in ayurveda. Anc. Sci. Life, 1996, 16(2), 166-171.
[PMID: 22556788]
[61]
Jiang, W.; Luo, X.; Kuang, S. Effects of Alternanthera philoxeroides Griseb against dengue virus in vitro. Di 1 JunYi Da Xue Xue Bao, 2005, 25(4), 454-456.
[PMID: 15837655]
[62]
Chao, W.W.; Lin, B.F. Isolation and identification of bioactive compounds in Andrographis paniculata (Chuanxinlian). Chin. Med., 2010, 5(1), 17.
[http://dx.doi.org/10.1186/1749-8546-5-17] [PMID: 20465823]
[63]
Panraksa, P.; Ramphan, S.; Khongwichit, S.; Smith, D.R. Activity of andrographolide against dengue virus. Antiviral Res., 2017, 139, 69-78.
[http://dx.doi.org/10.1016/j.antiviral.2016.12.014] [PMID: 28034742]
[64]
Qaddir, I.; Rasool, N.; Hussain, W.; Mahmood, S. Computer-aided analysis of phytochemicals as potential dengue virus inhibitors based on molecular docking, ADMET and DFT studies. J. Vector Borne Dis., 2017, 54(3), 255-262.
[http://dx.doi.org/10.4103/0972-9062.217617] [PMID: 29097641]
[65]
Bourjot, M.; Leyssen, P.; Eydoux, C.; Guillemot, J.C.; Canard, B.; Rasoanaivo, P.; Guéritte, F.; Litaudon, M.; Flacourtosides, A.F. Phenolic glycosides isolated from Flacourtia ramontchi. J. Nat. Prod., 2012, 75(4), 752-758.
[http://dx.doi.org/10.1021/np300059n] [PMID: 22439591]
[66]
Parida, M.M.; Upadhyay, C.; Pandya, G.; Jana, A.M. Inhibitory potential of neem (Azadirachta indica Juss) leaves on dengue virus type-2 replication. J. Ethnopharmacol., 2002, 79(2), 273-278.
[http://dx.doi.org/10.1016/S0378-8741(01)00395-6] [PMID: 11801392]
[67]
Dwivedi, V.D.; Tripathi, I.P.; Mishra, S.K. In silico evaluation of inhibitory potential of triterpenoids from Azadirachta indica against therapeutic target of dengue virus, NS2B-NS3 protease. J. Vector Borne Dis., 2016, 53(2), 156-161.
[PMID: 27353586]
[68]
Kiat, T.S.; Pippen, R.; Yusof, R.; Ibrahim, H.; Khalid, N.; Rahman, N.A. Inhibitory activity of cyclohexenyl chalcone derivatives and flavonoids of fingerroot, Boesenbergia rotunda (L.), towards dengue-2 virus NS3 protease. Bioorg. Med. Chem. Lett., 2006, 16(12), 3337-3340.
[http://dx.doi.org/10.1016/j.bmcl.2005.12.075] [PMID: 16621533]
[69]
Ahmad, N.; Fazal, H.; Ayaz, M.; Abbasi, B.H.; Mohammad, I.; Fazal, L. Dengue fever treatment with Carica papaya leaves extracts. Asian Pac. J. Trop. Biomed., 2011, 1(4), 330-333.
[http://dx.doi.org/10.1016/S2221-1691(11)60055-5] [PMID: 23569787]
[70]
Subenthiran, S.; Choon, T.C.; Cheong, K.C.; Thayan, R.; Teck, M.B.; Muniandy, P.K.; Afzan, A.; Abdullah, N.R.; Ismail, Z. Carica papaya leaves juice significantly accelerates the rate of increase in platelet count among patients with dengue fever and dengue haemorrhagic fever. J. Evid. Based Complementary Altern. Med., 2013, 2013 616737
[http://dx.doi.org/10.1155/2013/616737] [PMID: 23662145]
[71]
Rothan, H.A.; Zulqarnain, M.; Ammar, Y.A.; Tan, E.C.; Rahman, N.A.; Yusof, R. Screening of antiviral activities in medicinal plants extracts against dengue virus using dengue NS2B-NS3 protease assay. Trop. Biomed., 2014, 31(2), 286-296.
[PMID: 25134897]
[72]
Whitby, K.; Pierson, T.C.; Geiss, B.; Lane, K.; Engle, M.; Zhou, Y.; Doms, R.W.; Diamond, M.S. Castanospermine, a potent inhibitor of dengue virus infection in vitro and in vivo. J. Virol., 2005, 79(14), 8698-8706.
[http://dx.doi.org/10.1128/JVI.79.14.8698-8706.2005] [PMID: 15994763]
[73]
Sood, R.; Raut, R.; Tyagi, P.; Pareek, P.K.; Barman, T.K.; Singhal, S.; Shirumalla, R.K.; Kanoje, V.; Subbarayan, R.; Rajerethinam, R.; Sharma, N.; Kanaujia, A.; Shukla, G.; Gupta, Y.K.; Katiyar, C.K.; Bhatnagar, P.K.; Upadhyay, D.J.; Swaminathan, S.; Khanna, N. Cissampelos pareira Linn: natural source of potent antiviral activity against all four dengue virus serotypes. PLoS Negl. Trop. Dis., 2015, 9(12) e0004255
[http://dx.doi.org/10.1371/journal.pntd.0004255] [PMID: 26709822]
[74]
Fuster, M. Citrus Flavonoids, 1997.
[75]
Klawikkan, N.; Nukoolkarn, V.; Jirakanjanakit, N.; Yoksan, S.; Wiwat, C. Thirapanmethee, K. Effect of Thai medicinal plant extracts against dengue virus in vitro. J. Pharm. Sci., 2011, 38(1-2), 13-18.
[76]
Frederico, É.H.F.F.; Cardoso, A.L.B.D.; Moreira-Marconi, E.; de Sá-Caputo, D.D.C.; Guimarães, C.A.S.; Dionello, C.D.F.; Morel, D.S.; Paineiras-Domingos, L.L.; de Souza, P.L.; Brandão-Sobrinho-Neto, S.; Carvalho-Lima, R.P.; Guedes-Aguiar, E.O.; Costa-Cavalcanti, R.G.; Kutter, C.R.; Bernardo-Filho, M.O.; Costa-Cavalcanti, R.G.; Kutter, C.R.; Bernardo-Fiho, M. Anti-viral effects of medicinal plants in the management of dengue: a systematic review. Afr. J. Tradit. Complement. Altern. Med., 2017, 14(4)(Suppl.), 33-40.
[http://dx.doi.org/10.21010/ajtcam.v14i4S.5] [PMID: 28740942]
[77]
Abdullah, W.; Elsayed, W.M.; Abdelshafeek, K.A.; Nazif, N.M.; Singab, N. Chemical constituents and biological activities of cleome genus: a brief review. IJPPR, 2016, 8(5), 777-787.
[78]
Allard, P.M.; Dau, E.T.H.; Eydoux, C.; Guillemot, J.C.; Dumontet, V.; Poullain, C.; Canard, B.; Guéritte, F.; Litaudon, M. Alkylated flavanones from the bark of Cryptocarya chartacea as dengue virus NS5 polymerase inhibitors. J. Nat. Prod., 2011, 74(11), 2446-2453.
[http://dx.doi.org/10.1021/np200715v] [PMID: 22050318]
[79]
Negrelle, R.; Gomes, E. Cymbopogon citratus (DC.) Stapf: chemical composition and biological activities. Rev. Bras. Pl. Med., 2007, 9(1), 80-92.
[80]
Miean, K.H.; Mohamed, S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J. Agric. Food Chem., 2001, 49(6), 3106-3112.
[http://dx.doi.org/10.1021/jf000892m] [PMID: 11410016]
[81]
García, C.C.; Acosta, E.G.; Carro, A.C.; Fernández Belmonte, M.C.; Bomben, R.; Duschatzky, C.B.; Perotti, M.; Schuff, C.; Damonte, E.B. Virucidal activity and chemical composition of essential oils from aromatic plants of central west Argentina. Nat. Prod. Commun., 2010, 5(8), 1307-1310.
[http://dx.doi.org/10.1177/1934578X1000500834] [PMID: 20839642]
[82]
de Souza Nunes, L.A. Contribution of homeopathy to the control of an outbreak of dengue in Macaé, Rio de Janeiro. IJHDR, 2008, 7(25), 186-192.
[83]
Jain, M.; Ganju, L.; Katiyal, A.; Padwad, Y.; Mishra, K.P.; Chanda, S.; Karan, D.; Yogendra, K.M.; Sawhney, R.C. Effect of Hippophae rhamnoides leaf extract against dengue virus infection in human blood-derived macrophages. Phytomedicine, 2008, 15(10), 793-799.
[http://dx.doi.org/10.1016/j.phymed.2008.04.017] [PMID: 18586478]
[84]
Singh, P.K.; Rawat, P. Evolving herbal formulations in management of dengue fever. J. Ayurveda Integr. Med., 2017, 8(3), 207-210.
[http://dx.doi.org/10.1016/j.jaim.2017.06.005] [PMID: 28823790]
[85]
Leardkamolkarn, V.; Sirigulpanit, W.; Phurimsak, C.; Kumkate, S.; Himakoun, L.; Sripanidkulchai, B. The inhibitory actions of Houttuynia cordata aqueous extract on dengue virus and dengue‐infected cells. J. Food Biochem., 2012, 36(1), 86-92.
[http://dx.doi.org/10.1111/j.1745-4514.2010.00514.x]
[86]
Ono, L.; Wollinger, W.; Rocco, I.M.; Coimbra, T.L.; Gorin, P.A.; Sierakowski, M.R. In vitro and in vivo antiviral properties of sulfated galactomannans against yellow fever virus (BeH111 strain) and dengue 1 virus (Hawaii strain). Antiviral Res., 2003, 60(3), 201-208.
[http://dx.doi.org/10.1016/S0166-3542(03)00175-X] [PMID: 14638396]
[87]
Srivastava, M.; Kapoor, V.P. Seed galactomannans: an overview. Chem. Biodivers., 2005, 2(3), 295-317.
[http://dx.doi.org/10.1002/cbdv.200590013] [PMID: 17191982]
[88]
Ocazionez, R.E.; Meneses, R.; Torres, F.Á.; Stashenko, E. Virucidal activity of Colombian Lippia essential oils on dengue virus replication in vitro. Mem. Inst. Oswaldo Cruz, 2010, 105(3), 304-309.
[http://dx.doi.org/10.1590/S0074-02762010000300010] [PMID: 20512244]
[89]
Meneses, R.; Ocazionez, R.E.; Martínez, J.R.; Stashenko, E.E. Inhibitory effect of essential oils obtained from plants grown in Colombia on yellow fever virus replication in vitro. Ann. Clin. Microbiol. Antimicrob., 2009, 8(1), 8.
[http://dx.doi.org/10.1186/1476-0711-8-8] [PMID: 19267922]
[90]
Ching, S.; Ramachandran, V.; Gew, L.T.; Lim, S.M.S.; Sulaiman, W.A.W.; Foo, Y.L.; Zakaria, Z.A.; Samsudin, N.H.; Lau, P.C.M.C.; Veettil, S.K.; Hoo, F. Complementary alternative medicine use among patients with dengue fever in the hospital setting: a cross-sectional study in Malaysia. BMC Complement. Altern. Med., 2016, 16(1), 37.
[http://dx.doi.org/10.1186/s12906-016-1017-0] [PMID: 26825057]
[91]
Pigili, R.; Runja, C. Medicinal plants used in dengue treatment: an overview. Int. J. Chem. Nat. Sci., 2014, 2(1), 70-76.
[92]
Abdul Ahmad, S.A.; Palanisamy, U.D.; Tejo, B.A.; Chew, M.F.; Tham, H.W.; Syed Hassan, S. Geraniin extracted from the rind of Nephelium lappaceum binds to dengue virus type-2 envelope protein and inhibits early stage of virus replication. Virol. J., 2017, 14(1), 229.
[http://dx.doi.org/10.1186/s12985-017-0895-1] [PMID: 29162124]
[93]
Chiang, L.C.; Ng, L.T.; Cheng, P.W.; Chiang, W.; Lin, C.C. Antiviral activities of extracts and selected pure constituents of Ocimum basilicum. Clin. Exp. Pharmacol. Physiol., 2005, 32(10), 811-816.
[http://dx.doi.org/10.1111/j.1440-1681.2005.04270.x] [PMID: 16173941]
[94]
Mohan, L.; Amberkar, M.; Kumari, M. Ocimum sanctum Linn (Tulsi) - an overview. Int. J. Pharm. Sci. Rev. Res., 2011, 7(1), 51-53.
[95]
Devi, P.U.; Bisht, K.S.; Vinitha, M. A comparative study of radioprotection by Ocimum flavonoids and synthetic aminothiol protectors in the mouse. Br. J. Radiol., 1998, 71(847), 782-784.
[http://dx.doi.org/10.1259/bjr.71.847.9771390] [PMID: 9771390]
[96]
Anandjiwala, S.; Kalola, J.; Rajani, M. Quantification of eugenol, luteolin, ursolic acid, and oleanolic acid in black (Krishna Tulasi) and green (Sri Tulasi) varieties of Ocimum sanctum Linn. using high-performance thin-layer chromatography. J. AOAC Int., 2006, 89(6), 1467-1474.
[PMID: 17225591]
[97]
Patel, J.R.; Tripathi, P.; Sharma, V.; Chauhan, N.S.; Dixit, V.K. Phyllanthus amarus: ethnomedicinal uses, phytochemistry and pharmacology: a review. J. Ethnopharmacol., 2011, 138(2), 286-313.
[http://dx.doi.org/10.1016/j.jep.2011.09.040] [PMID: 21982793]
[98]
Chansang, U.; Zahiri, N.S.; Bansiddhi, J.; Boonruad, T.; Thongsrirak, P.; Mingmuang, J.; Benjapong, N.; Mulla, M.S. Mosquito larvicidal activity of aqueous extracts of long pepper (Piper retrofractum vahl) from Thailand. J. Vector Ecol., 2005, 30(2), 195-200.
[PMID: 16599152]
[99]
Rahman, N.A.; Muliawan, S.; Rashid, N.N.; Muhamad, M.; Yusof, R. Studies on Quercus Iusitanica Extracts on DENV-2 Replication. Dengue Bull., 2006, 30, 260.
[100]
Muliawan, S.Y.; Kit, L.S.; Devi, S.; Hashim, O.; Yusof, R. Inhibitory potential of Quercus lusitanica extract on dengue virus type 2 replication. Southeast Asian J. Trop. Med. Public Health, 2006, 37(Suppl. 3), 132-135.
[PMID: 17547068]
[101]
Pareek, A.; Suthar, M.; Rathore, G.S.; Bansal, V. Feverfew (Tanacetum parthenium L.): A systematic review. Pharmacogn. Rev., 2011, 5(9), 103-110.
[http://dx.doi.org/10.4103/0973-7847.79105] [PMID: 22096324]
[102]
Sánchez, I.; Gómez-Garibay, F.; Taboada, J.; Ruiz, B.H. Antiviral effect of flavonoids on the dengue virus. Phytother. Res., 2000, 14(2), 89-92.
[http://dx.doi.org/10.1002/(SICI)1099-1573(200003)14:2<89:AID-PTR569>3.0.CO;2-C] [PMID: 10685103]
[103]
Allard, P.M.; Leyssen, P.; Martin, M.T.; Bourjot, M.; Dumontet, V.; Eydoux, C.; Guillemot, J.C.; Canard, B.; Poullain, C.; Guéritte, F.; Litaudon, M. Antiviral chlorinated daphnane diterpenoid orthoesters from the bark and wood of Trigonostemon cherrieri. Phytochemistry, 2012, 84, 160-168.
[http://dx.doi.org/10.1016/j.phytochem.2012.07.023] [PMID: 22938995]
[104]
Yu, J.S.; Tseng, C.K.; Lin, C.K.; Hsu, Y.C.; Wu, Y.H.; Hsieh, C.L.; Lee, J.C. Celastrol inhibits dengue virus replication via up-regulating type I interferon and downstream interferon-stimulated responses. Antiviral Res., 2017, 137, 49-57.
[http://dx.doi.org/10.1016/j.antiviral.2016.11.010] [PMID: 27847245]
[105]
Reis, S.R.I.; Valente, L.M.; Sampaio, A.L.; Siani, A.C.; Gandini, M.; Azeredo, E.L.; D’avila, L.A.; Mazzei, J.L. Maria das Graças, M. H.; Kubelka, C. F. Immunomodulating and antiviral activities of Uncaria tomentosa on human monocytes infected with dengue virus-2. Int. Immunopharmacol., 2008, 8(3), 468-476.
[http://dx.doi.org/10.1016/j.intimp.2007.11.010] [PMID: 18279801]
[106]
Goel, A.; Patel, D.N.; Lakhani, K.K.; Agarwal, S.; Agarwal, A.; Singla, S.; Agarwal, R. Dengue fever - a dangerous foe. J. Indian Acad. Clin. Med., 2004, 5(3), 247-258.
[107]
Zandi, K.; Teoh, B-T.; Sam, S-S.; Wong, P-F.; Mustafa, M.R.; Abubakar, S. Novel antiviral activity of baicalein against dengue virus. BMC Complement. Altern. Med., 2012, 12(1), 214.
[http://dx.doi.org/10.1186/1472-6882-12-214] [PMID: 23140177]
[108]
Gogineni, V.; Schinazi, R.F.; Hamann, M.T. Role of marine natural products in the genesis of antiviral agents. Chem. Rev., 2015, 115(18), 9655-9706.
[http://dx.doi.org/10.1021/cr4006318] [PMID: 26317854]
[109]
Talarico, L.B.; Pujol, C.A.; Zibetti, R.G.; Faría, P.C.; Noseda, M.D.; Duarte, M.E.; Damonte, E.B. The antiviral activity of sulfated polysaccharides against dengue virus is dependent on virus serotype and host cell. Antiviral Res., 2005, 66(2-3), 103-110.
[http://dx.doi.org/10.1016/j.antiviral.2005.02.001] [PMID: 15911027]
[110]
Pujol, C.A.; Estevez, J.M.; Carlucci, M.J.; Ciancia, M.; Cerezo, A.S.; Damonte, E.B. Novel DL-galactan hybrids from the red seaweed Gymnogongrus torulosus are potent inhibitors of herpes simplex virus and dengue virus. Antivir. Chem. Chemother., 2002, 13(2), 83-89.
[http://dx.doi.org/10.1177/095632020201300202] [PMID: 12238532]
[111]
Hidari, K.I.; Takahashi, N.; Arihara, M.; Nagaoka, M.; Morita, K.; Suzuki, T. Structure and anti-dengue virus activity of sulfated polysaccharide from a marine alga. Biochem. Biophys. Res. Commun., 2008, 376(1), 91-95.
[http://dx.doi.org/10.1016/j.bbrc.2008.08.100] [PMID: 18762172]
[112]
Lee, J.C.; Chang, F.R.; Chen, S.R.; Wu, Y.H.; Hu, H.C.; Wu, Y.C.; Backlund, A.; Cheng, Y.B. Anti-Dengue Virus Constituents from Formosan Zoanthid Palythoa mutuki. Mar. Drugs, 2016, 14(8), 151.
[http://dx.doi.org/10.3390/md14080151] [PMID: 27517937]
[113]
de SF-Tischer, P. C.; Talarico, L. B.; Noseda, M. D.; Guimarães, S. M. P. B.; Damonte, E. B.; Duarte, M. E. R. Chemical structure and antiviral activity of carrageenans from Meristiella gelidium against herpes simplex and dengue virus. Carbohydr. Polym., 2006, 63(4), 459-465.
[http://dx.doi.org/10.1016/j.carbpol.2005.09.020]
[114]
Koishi, A.C.; Zanello, P.R.; Bianco, É.M.; Bordignon, J.; Nunes Duarte dos Santos, C. Screening of Dengue virus antiviral activity of marine seaweeds by an in situ enzyme-linked immunosorbent assay. PLoS One, 2012, 7(12) e51089
[http://dx.doi.org/10.1371/journal.pone.0051089] [PMID: 23227238]
[115]
Cheng, Y.B.; Lan, C.C.; Liu, W.C.; Lai, W.C.; Tsai, Y.C.; Chiang, M.Y.; Wu, Y.C.; Chang, F.R. Kuroshines A and B, new alkaloids from Zoanthus kuroshio. Tetrahedron Lett., 2014, 55(39), 5369-5372.
[http://dx.doi.org/10.1016/j.tetlet.2014.07.101]
[116]
Laille, M.; Gerald, F.; Debitus, C. In vitro antiviral activity on dengue virus of marine natural products. Cell. Mol. Life Sci., 1998, 54(2), 167-170.
[http://dx.doi.org/10.1007/s000180050138] [PMID: 9539959]
[117]
Cheng, Y.B.; Lee, J.C.; Lo, I.W.; Chen, S.R.; Hu, H.C.; Wu, Y.H.; Wu, Y.C.; Chang, F-R. Ecdysones from Zoanthus spp. with inhibitory activity against dengue virus 2. Bioorg. Med. Chem. Lett., 2016, 26(9), 2344-2348.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.029] [PMID: 26988299]
[118]
Smith, S.A.; de Alwis, A.R.; Kose, N.; Jadi, R.S.; de Silva, A.M.; Crowe, J.E., Jr Isolation of dengue virus-specific memory B cells with live virus antigen from human subjects following natural infection reveals the presence of diverse novel functional groups of antibody clones. J. Virol., 2014, 88(21), 12233-12241.
[http://dx.doi.org/10.1128/JVI.00247-14] [PMID: 25100837]
[119]
Fibriansah, G.; Ibarra, K.D.; Ng, T.S.; Smith, S.A.; Tan, J.L.; Lim, X.N.; Ooi, J.S.; Kostyuchenko, V.A.; Wang, J.; de Silva, A.M.; Harris, E.; Crowe, J.E., Jr; Lok, S.M. DENGUE VIRUS. Cryo-EM structure of an antibody that neutralizes dengue virus type 2 by locking E protein dimers. Science, 2015, 349(6243), 88-91.
[http://dx.doi.org/10.1126/science.aaa8651] [PMID: 26138979]
[120]
Hosseini, S.; Fatimah, I. Novel Polymeric Biochips for Enhanced Detection of Infectious Diseases; Springer Singapore, 2016.
[http://dx.doi.org/10.1007/978-981-10-0107-9]
[121]
Wills, B.A.; Nguyen, M.D.; Ha, T.L.; Dong, T.H.; Tran, T.N.; Le, T.T.; Tran, V.D.; Nguyen, T.H.; Nguyen, V.C.; Stepniewska, K.; White, N.J.; Farrar, J.J. Comparison of three fluid solutions for resuscitation in dengue shock syndrome. N. Engl. J. Med., 2005, 353(9), 877-889.
[http://dx.doi.org/10.1056/NEJMoa044057] [PMID: 16135832]
[122]
Chan, C.Y.; Ooi, E.E. Dengue: an update on treatment options. Future Microbiol., 2015, 10(12), 2017-2031.
[http://dx.doi.org/10.2217/fmb.15.105] [PMID: 26594048]
[123]
Chawla, P.; Yadav, A.; Chawla, V. Clinical implications and treatment of dengue. Asian Pac. J. Trop. Med., 2014, 7(3), 169-178.
[http://dx.doi.org/10.1016/S1995-7645(14)60016-X] [PMID: 24507635]
[124]
Rajapakse, S.; Rodrigo, C.; Maduranga, S.; Rajapakse, A.C. Corticosteroids in the treatment of dengue shock syndrome. Infect. Drug Resist., 2014, 7, 137-143.
[http://dx.doi.org/10.2147/IDR.S55380] [PMID: 24899817]
[125]
Kumar, P.; Charaniya, R.; Ghosh, A.; Sahoo, R. Intravenous immunoglobulin responsive persistent thrombocytopenia after dengue haemorrhagic Fever. J. Clin. Diagn. Res., 2016, 10(4), OD10-OD11.
[http://dx.doi.org/10.7860/JCDR/2016/17770.7605] [PMID: 27190868]
[126]
Dimaano, E.M.; Saito, M.; Honda, S.; Miranda, E.A.; Alonzo, M.T.; Valerio, M.D.; Mapua, C.A.; Inoue, S.; Kumaori, A.; Matias, R.; Natividad, F.F.; Oishi, K. Lack of efficacy of high-dose intravenous immunoglobulin treatment of severe thrombocytopenia in patients with secondary dengue virus infection. Am. J. Trop. Med. Hyg., 2007, 77(6), 1135-1138.
[http://dx.doi.org/10.4269/ajtmh.2007.77.1135] [PMID: 18165536]
[127]
Nitsche, C.; Behnam, M.A.; Steuer, C.; Klein, C.D. Retro peptide-hybrids as selective inhibitors of the Dengue virus NS2B-NS3 protease. Antiviral Res., 2012, 94(1), 72-79.
[http://dx.doi.org/10.1016/j.antiviral.2012.02.008] [PMID: 22391061]
[128]
Zou, G.; Puig-Basagoiti, F.; Zhang, B.; Qing, M.; Chen, L.; Pankiewicz, K.W.; Felczak, K.; Yuan, Z.; Shi, P.Y. A single-amino acid substitution in West Nile virus 2K peptide between NS4A and NS4B confers resistance to lycorine, a flavivirus inhibitor. Virology, 2009, 384(1), 242-252.
[http://dx.doi.org/10.1016/j.virol.2008.11.003] [PMID: 19062063]
[129]
van Cleef, K.W.; Overheul, G.J.; Thomassen, M.C.; Kaptein, S.J.; Davidson, A.D.; Jacobs, M.; Neyts, J.; van Kuppeveld, F.J.; van Rij, R.P. Identification of a new dengue virus inhibitor that targets the viral NS4B protein and restricts genomic RNA replication. Antiviral Res., 2013, 99(2), 165-171.
[http://dx.doi.org/10.1016/j.antiviral.2013.05.011] [PMID: 23735301]
[130]
Lim, S.P.; Noble, C.G.; Shi, P.Y. The dengue virus NS5 protein as a target for drug discovery. Antiviral Res., 2015, 119, 57-67.
[http://dx.doi.org/10.1016/j.antiviral.2015.04.010] [PMID: 25912817]
[131]
Yin, Z.; Chen, Y.L.; Schul, W.; Wang, Q.Y.; Gu, F.; Duraiswamy, J.; Kondreddi, R.R.; Niyomrattanakit, P.; Lakshminarayana, S.B.; Goh, A.; Xu, H.Y.; Liu, W.; Liu, B.; Lim, J.Y.; Ng, C.Y.; Qing, M.; Lim, C.C.; Yip, A.; Wang, G.; Chan, W.L.; Tan, H.P.; Lin, K.; Zhang, B.; Zou, G.; Bernard, K.A.; Garrett, C.; Beltz, K.; Dong, M.; Weaver, M.; He, H.; Pichota, A.; Dartois, V.; Keller, T.H.; Shi, P.Y. An adenosine nucleoside inhibitor of dengue virus. Proc. Natl. Acad. Sci. USA, 2009, 106(48), 20435-20439.
[http://dx.doi.org/10.1073/pnas.0907010106] [PMID: 19918064]
[132]
McDowell, M.; Gonzales, S.R.; Kumarapperuma, S.C.; Jeselnik, M.; Arterburn, J.B.; Hanley, K.A. A novel nucleoside analog, 1-beta-d-ribofuranosyl-3-ethynyl-[1,2,4]triazole (ETAR), exhibits efficacy against a broad range of flaviviruses in vitro. Antiviral Res., 2010, 87(1), 78-80.
[http://dx.doi.org/10.1016/j.antiviral.2010.04.007] [PMID: 20416341]
[133]
Tricou, V.; Minh, N.N.; Van, T.P.; Lee, S.J.; Farrar, J.; Wills, B.; Tran, H.T.; Simmons, C.P. A randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese adults. PLoS Negl. Trop. Dis., 2010, 4(8) e785
[http://dx.doi.org/10.1371/journal.pntd.0000785] [PMID: 20706626]
[134]
Modis, Y.; Ogata, S.; Clements, D.; Harrison, S.C. Structure of the dengue virus envelope protein after membrane fusion. Nature, 2004, 427(6972), 313-319.
[http://dx.doi.org/10.1038/nature02165] [PMID: 14737159]
[135]
Saudi, M.; Zmurko, J.; Kaptein, S.; Rozenski, J.; Gadakh, B.; Chaltin, P.; Marchand, A.; Neyts, J.; Van Aerschot, A. Synthetic strategy and antiviral evaluation of diamide containing heterocycles targeting dengue and yellow fever virus. Eur. J. Med. Chem., 2016, 121, 158-168.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.043] [PMID: 27240271]
[136]
Halstead, S.B.; Cohen, S.N. Dengue hemorrhagic fever at 60 years: early evolution of concepts of causation and treat-ment. Microbiol. Mol. Biol. Rev., 2015, 79(3), 281-291.
[http://dx.doi.org/10.1128/MMBR.00009-15] [PMID: 26085471]
[137]
Beigel, J.H.; Nordstrom, J.L.; Pillemer, S.R.; Roncal, C.; Goldwater, D.R.; Li, H.; Holland, P.C.; Johnson, S.; Stein, K.; Koenig, S. Safety and pharmacokinetics of single intravenous dose of MGAWN1, a novel monoclonal antibody to West Nile virus. Antimicrob. Agents Chemother., 2010, 54(6), 2431-2436.
[http://dx.doi.org/10.1128/AAC.01178-09] [PMID: 20350945]
[138]
Tsai, W.Y.; Lai, C.Y.; Wu, Y.C.; Lin, H.E.; Edwards, C.; Jumnainsong, A.; Kliks, S.; Halstead, S.; Mongkolsapaya, J.; Screaton, G.R.; Wang, W.K. High-avidity and potently neutralizing cross-reactive human monoclonal antibodies derived from secondary dengue virus infection. J. Virol., 2013, 87(23), 12562-12575.
[http://dx.doi.org/10.1128/JVI.00871-13] [PMID: 24027331]
[139]
Saokaew, N.; Poungpair, O.; Panya, A.; Tarasuk, M.; Sawasdee, N.; Limjindaporn, T.; Chaicumpa, W.; Yenchitsomanus, P. Human monoclonal single-chain antibodies specific to dengue virus envelope protein. Lett. Appl. Microbiol., 2014, 58(3), 270-277.
[http://dx.doi.org/10.1111/lam.12186] [PMID: 24266517]
[140]
Robinson, L.N.; Tharakaraman, K.; Rowley, K.J.; Costa, V.V.; Chan, K.R.; Wong, Y.H.; Ong, L.C.; Tan, H.C.; Koch, T.; Cain, D.; Kirloskar, R.; Viswanathan, K.; Liew, C.W.; Tissire, H.; Ramakrishnan, B.; Myette, J.R.; Babcock, G.J.; Sasisekharan, V.; Alonso, S.; Chen, J.; Lescar, J.; Shriver, Z.; Ooi, E.E.; Sasisekharan, R. Structure-guided design of an anti-dengue antibody directed to a non-immunodominant epitope. Cell, 2015, 162(3), 493-504.
[http://dx.doi.org/10.1016/j.cell.2015.06.057] [PMID: 26189681]
[141]
Sasaki, T.; Setthapramote, C.; Kurosu, T.; Nishimura, M.; Asai, A.; Omokoko, M.D.; Pipattanaboon, C.; Pitaksajjakul, P.; Limkittikul, K.; Subchareon, A.; Chaichana, P.; Okabayashi, T.; Hirai, I.; Leaungwutiwong, P.; Misaki, R.; Fujiyama, K.; Ono, K.; Okuno, Y.; Ramasoota, P.; Ikuta, K. Dengue virus neutralization and antibody-dependent enhancement activities of human monoclonal antibodies derived from dengue patients at acute phase of secondary infection. Antiviral Res., 2013, 98(3), 423-431.
[http://dx.doi.org/10.1016/j.antiviral.2013.03.018] [PMID: 23545366]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 5
Year: 2020
Published on: 15 March, 2020
Page: [719 - 744]
Pages: 26
DOI: 10.2174/0929867325666180629124709
Price: $65

Article Metrics

PDF: 44
HTML: 5