Genetic Improvement and Challenges for Cultivation of Microalgae for Biodiesel: A Review

Author(s): Nor-Anis N. Bt Md Nasir, A. K. M. Aminul Islam*, Nurina Anuar, Zahira Yaakob

Journal Name: Mini-Reviews in Organic Chemistry

Volume 16 , Issue 3 , 2019


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Microalgae are a viable alternative for biofuel production to replace the world dependency on fossil fuel. It has a wide range of application for the sustainable production of biomaterials. Microalgae can convert solar energy into important natural components by utilizing marginal nutrients, wastewater and exhaust CO2 without sharing expensive crop field. Microalgae also have the potentiality to generate several promising components such as Polyunsaturated Fatty Acids (PUFAs), organic pigments and pharmaceutically important hydrocarbons. Cultivation and production of microalgae biomass have multifaceted challenges due to the requirement of large volume of water for the algae growth, high processing cost and contamination by pathogens. Genetic improvement and modifications are essential to construct superior microalgae for manufacturing industries using various methods such as selection of novel strain, stress tolerance, resistance to pathogens, product development and metabolic pathways and cellular contents. In addition, technologies related to cultivation, harvesting, extraction and processing are essential to develop for the growth of novel microalgae strains.

Keywords: Microalgae, genetic manipulation, productivity, cultivation condition, biodiesel, bio-energy.

[1]
Tredici, M.R.; Bassi, N.; Prussi, M.; Biondi, N.; Rodolfi, L.; Zittelli, G.C.; Sampietro, G. Energy balance of algal biomass production in a 1-ha “Green Wall Panel” plant: How to produce algal biomass in a closed reactor achieving a high net energy ratio. Appl. Energy, 2015, 154, 1103-1111.
[2]
Hossain, S.; Salleh, A. Biodiesel fuel production from algae as renewable energy. Am. J. Biochem. Biotechnol., 2008, 4, 250-254.
[3]
Fu, J.; Yang, C.; Wu, J.; Zhuang, J.; Hou, Z.; Lu, X. Direct production of aviation fuels from microalgae lipids in water. Fuel, 2015, 139, 678-683.
[4]
Guo, F.; Wang, X.; Yang, X. Potential pyrolysis pathway assessment for microalgae-based aviation fuel based on energy conversion efficiency and life cycle. Energy Convers. Manage., 2017, 132, 272-280.
[5]
Bwapwa, J.K.; Anandraj, A.; Trois, C. Possibilities for conversion of microalgae oil into aviation fuel: A review. Renew. Sustain. Energy Rev., 2017, 80, 1345-1354.
[6]
Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev., 2010, 14, 217-232.
[7]
Tandeau-de-Marsac, N.; Houmard, J. Adaptation of cyanobacteria to environmental stimuli: New steps towards molecular mechanism. FEMS Microbiol. Rev., 1993, 104, 119-190.
[8]
Larkum, A.W.D.; Ross, I.L.; Kruse, O.; Hankamer, B. Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends Biotechnol., 2011, 30, 198-205.
[9]
Amaro, H.M.; Macedo, A.C.; Malcata, F.X. Microalgae: An alternative as sustainable source of biofuels? Energy, 2012, 44, 158-166.
[10]
Menetrez, M.Y. An overview of algae biofuel production and potential environmental impact. Environ. Sci. Technol., 2012, 46, 7073-7085.
[11]
Mondal, M.; Goswami, S.; Ghosh, A.; Oinam, G.; Tiwari, O.N.; Das, P.; Gayen, K.; Mandal, M.K.; Halder, G.N. Production of biodiesel from microalgae through biological carbon capture: A review. Biotech, 2017, 7(2), 99.
[12]
Hu, C.; Li, D.; Chen, C.; Ge, J.; Muller-Karger, F.E.; Liu, J.; Yu, F.; He, M.X. On the recurrent Ulva prolifera blooms in the Yellow Sea and East China Sea. J. Geophys. Res., 2010, 115, C05017.
[13]
Pienkos, P.T. Potential for biofuels from algae. NREL/PR-510-42414. National Renewable Energy Laboratory; NREL: Golden, CO, 2007.
[14]
Udaiyappan, A.F.M.; Hasan, H.A.; Takriff, M.S.; Abdullah, S.R.S. A review of the potential, challenges and current status of microalgae biomass application in industrial wastewater treatment. J. Water Process Eng., 2017, 20, 8-21.
[15]
Cheah, W.Y.; Show, P.L.; Juan, J.C.; Chang, J.S.; Ling, T.C. Enhancing biomass and lipid prodcutions of microalgae in palm oil mill effluent using carbon and nutrient supplementation. Energy Convers. Managament, 2018, 164, 188-197.
[16]
Kamyab, H.; Chelliapan, S.; Din, M.F.M.; Yassar, R.S.; Rezania, S.; Khademi, T.; Kumar, A.; Azimi, M. Evaluation of Lemna minor and Chlamydomonas to treat palm oil effluent and fertilizer production. J. Water Process Eng., 2017, 17, 229-236.
[17]
Mohammadi, M.; Man, H.C.; Hassan, M.A.; Yee, P.L. Treatment of wastewater from rubber industry in Malaysia. Afr. J. Biotechnol., 2013, 9, 6233-6243.
[18]
Phang, S.M.; Miah, M.S.; Yeoh, B.G.; Hashim, M.A. Spirulina cultivation in digested sago starch factory wastewater. J. Appl. Phycol., 2000, 12, 395-400.
[19]
Lim, S.L.; Chu, W.L.; Phang, S.M. Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour. Technol., 2010, 101, 7314-7322.
[20]
Paran, G.; Norshuhaila, M.S.; Hazel, M.; Ab Aziz, A.L.; Umi Kalthsom, P. deleke, Abdul Rahman, O. Green Approach in the Bio-removal of Heavy Metals from wastewaters. MATEC Web Conf., 2017, 103, 06007.
[21]
Kumar, R.; Goyal, D. Waste water treatment and metal (Pb2+, Zn2+) removal by microalgal based stabilization pond system. Indian J. Microbiol., 2010, 50(1), 34-40.
[22]
Kouhia, M.; Holmberg, H.; Ahtila, P. Microalgae-utilizing biorefinery concept for pulp and paper industry: Converting secondary streams into value-added products. Algal Res., 2015, 10, 41-47.
[23]
Hill, A.; Kurki, A.; Morris, M. Biodiesel: The Sustainability Dimensions., ATTRA Publication: Butte, 2010, pp. 4-5.
[24]
Beer, L.L.; Boyd, E.S.; Peters, J.W.; Posewitz, M.C. Engineering algae for biohydrogen and biofuel production. Curr. Opin. Biotechnol., 2009, 20, 264-271.
[25]
Banerjee, C.; Dubey, K.K.; Shukla, P. Metabolic engineering of microalgal based biofuel production: Prospects and challenges. Front. Microbiol., 2016, 7, 432.
[26]
Wu, C.; Xiong, W.; Dai, J.; Wu, Q. Genome-based metabolic mapping and 13C flux analysis reveal systematic properties of an oleaginous microalga Chlorella protothecoides. Plant Physiol., 2015, 167(2), 586-599.
[27]
Flassig, R.J.; Fachet, M.; Höffner, K.; Barton, P.I.; Sundmacher, K. Dynamic flux balance modeling to increase the production of high-value compounds in green microalgae. Biotechnol. Biofuels, 2016, 9(1), 165.
[28]
Levitan, O.; Dinamarca, J.; Zelzion, E.; Lun, D.S.; Guerra, L.T.; Kim, M.K.; Kim, J.; Van Mooy, B.A.S.; Bhattacharya, D.; Falkowski, P.G. Remodeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress. Proc. Natl. Acad. Sci., 2015, 112(2), 412-417.
[29]
Bashir, K.M.I.; Kim, M.S.; Stahl, U.; Cho, M.G. Microalgae engineering toolbox: Selectable and screenable markers. Biotechnol. Bioprocess Eng.;, 2016, 21(2), 224-235.
[30]
Gee, C.W.; Niyogi, K.K. The carbonic anhydrase CAH1 is an essential component of the Carbon-Concentrating Mechanism (CCM) of the marine alga in Nannochloropsis oceanic. Proc. Natl. Acad. Sci. USA, 2017, 114(17), 4537-4542.
[31]
Cerutti, H.; Ma, X.; Msanne, J.; Repas, T. RNA-mediated silencing in Algae: Biological roles and tools for analysis of gene function. Eukaryot. Cell, 2011, 10(9), 1164-1172.
[32]
Trentacoste, E.M.; Shrestha, R.P.; Smith, S.R.; Gle, C.; Hartmann, A.C.; Hildebrand, M.; Gerwick, W.H. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc. Natl. Acad. Sci., 2013, 110(49), 19748-19753.
[33]
Wang, C.; Chen, X.; Li, H.; Wang, J.; Hu, Z. Artificial miRNA inhibition of phosphoenolpyruvate carboxylase increases fatty acid production in a green microalga Chlamydomonas reinhardtii. Biotechnol. Biofuels, 2017, 10(1), 91.
[34]
Kang, S.; Kim, K.H.; Kim, Y.C. A novel electroporation system for efficient molecular delivery into Chlamydomonas reinhardtii with a 3-dimensional microelectrode. Sci. Rep., 2015, 5 Article number: 15835
[35]
Oey, M.; Ross, I.L.; Hankamer, B. Gateway-assisted vector construction to facilitate expression of foreign proteins in the chloroplast of single celled algae. PLoS One, 2014, 9(2), 3-6.
[36]
Prasad, B.; Vadakedath, N.; Jeong, H.J.; General, T.; Cho, M.G.; Lein, W. Agrobacterium tumefaciens mediated genetic transformation of haptophytes (Isochrysisspecies). Appl. Microbiol. Biotechnol., 2014, 98(20), 8629-8639.
[37]
Srinivasan, R.; Gothandam, K.M. Synergistic action of D-glucose and acetosyringone on agrobacterium strains for efficient dunaliella transformation. PLoS One, 2016, 11(6), 1-13.
[38]
Postma, P.R.; Suarez-Garcia, E.; Safi, C.; Olivieri, G.; Olivieri, G.; Wijffels, R.H.; Wijffels, R.H. Energy efficient bead milling of micro algae: Effect of bead size on disintegration and release of proteins and carbohydrates. Bioresour. Technol., 2017, 224, 670-679.
[39]
Nagarajan, D.; Lee, D.J.; Kondo, A.; Chang, J.S. Recent insights into biohydrogen production by microalgae-from biophotolysis to dark fermentation. Bioresour. Technol., 2017, 227, 373-387.
[40]
Klaitong, P.; Faaroonsawat, S.; Chungjatupornchai, W. Accelerated triacylglycerol production and altered fatty acid composition in Oleaginous microalga Neochloris oleoabundans by overexpression of diacylglycerol acyltransferase 2. Microb. Cell Fact., 2017, 16(1), 61.
[41]
Scranton, M.A.; Ostrand, J.T.; Fields, F.J.; Mayfield, S.P. Chlamydomonas as a model for biofuels and bio-products production. Plant J., 2015, 82(3), 523-531.
[42]
Nobusawa, T.; Hori, K.; Mori, H.; Kurokawa, K.; Ohta, H. Differently localized lysophosphatidic acid acyltransferases crucial for triacylglycerol biosynthesis in the Oleaginous alga Nannochloropsis. Plant J., 2017, 90(3), 547-559.
[43]
Zhao, T.; Li, G.; Mi, S.; Hannon, G.J.; Wang, X.J.; Qi, Y. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhartii. Genes Dev., 2007, 21, 1190-1203.
[44]
Liu, Q.; Chen, Y.Q. A new mechanism in plant engineering: The potential roles of microRNAs in molecular breeding for crop improvement. Biotechnol. Adv., 2010, 28, 301-307.
[45]
Perez-Quintero, A.L.; Lopez, C. Artificial microRNAs and their applications in plant molecular biology. Agron. Colomb., 2010, 28, 373-381.
[46]
Schwab, R.; Ossowski, S.; Riester, M.; Warthmann, N.; Weigel, D. Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell, 2006, 18, 1121-1133.
[47]
Warthmann, N.; Chen, H.; Ossowski, S.; Weigel, D.; Herve, P. Highly specific gene silencing by artificial miRNAs in rice. PLoS One, 2008, 3, e1829.
[48]
Molnar, A.; Bassett, A.; Thuenemann, E.; Schwach, F.; Karkare, S.; Ossowski, S.; Weigel, D.; Baulcombe, D. Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J., 2009, 58, 165-174.
[49]
Schwab, R.; Ossowski, S.; Warthman, N.; Weigel, D. Directed gene silencing with artificial microRNAs. In: Plant microRNAs, Methods in Molecular Biology. Meyers, B.C.; Green, P.J. eds., Humana Press: Clifton, 2010, 592, pp. 71-89.
[50]
Zhao, T.; Wang, W.; Bai, X.; Qi, Y. Gene silencing by artificial microRNAs in Chlamydomonas. Plant J., 2009, 58, 157-164.
[51]
Kang, N.K.; Jeon, S.; Kwon, S.; Koh, H.G.; Shin, S.E.; Lee, B.; Choi, G.G.; Yang, J.W.; Jeong, B.R.; Chang, Y.K. Effects of overexpression of a bHLH transcription factor on biomass and lipid production in Nannochloropsis salina. Biotechnol. Biofuels, 2015, 8, 200.
[52]
Chungjatupornchai, W.; Kitraksa, P.; Faaroonsawat, S. Stable nuclear transformation of the oleaginous microalga Neochloris oleoabundans by electroporation. J. Appl. Phycol., 2016, 28(1), 191-199.
[53]
Srivastava, G.; Nishchal, G.V.V. Salinity induced lipid production in microalgae and cluster analysis (ICCB 16-BR_047). Bioresour. Technol., 2017, pii: S0960-8524(17)30457-1.
[54]
Cha, T.S.; Yee, W.; Aziz, A. Asessment of factors affecting Agrobacterium-mediated genetic transformation of the unicellular green alga, Chlorella vulgaris. World J. Microbiol. Biotechnol., 2012, 28, 1771-1779.
[55]
Kindle, K.L. High-frequency nuclear transformation of Chlamydomonas reinhardtii. Methods Enzymol., 1998, 297, 27-38.
[56]
Liu, X.; Curtiss, R., III Nickel-inducible lysis system in Synechocystis sp. PCC 6803. Proc. Natl. Acad. Sci. USA, 2009, 106, 21550-21554.
[57]
Rosenberg, J.N.; Oyler, G.; Wilkinson, L.; Betenbaugh, M.J. A green light for engineered algae: Redirecting metabolism to fuel a biotechnology revolution. Curr. Opin. Biotechnol., 2008, 19(5), 430-436.
[58]
Song, D.; Fu, J.; Shi, D. Exploitation of oil- bearing microalgae for biodiesel. Chin. J. Biotechnol., 2008, 24, 341-348.
[59]
Gimpel, J.A.; Specht, E.A.; Georgianna, D.R.; Mayfield, S.P. Advances in microalgae engineering and synthetic biology applications for biofuel production. Curr. Opin. Chem. Biol., 2013, 17(3), 489-495.
[60]
Radakovits, R.; Jinkerson, R.E.; Darzins, A.; Posewitz, M.C. Genetic engineering of algae for enhanced biofuel production. Eukaryot. Cell, 2010, 9(4), 486-501.
[61]
Amaro, H.M.; Guedes, A.C.; Malcata, F.X. Advances and perspectives in using microalgae to produce biodiesel. Appl. Energy, 2011, 88, 3402-3410.
[62]
Brennan, L.; Owende, P. Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev., 2010, 14(2), 557-577.
[63]
Hu, Q.; Sommerfeld, M.; Jarvis, E.; Ghirardi, M.; Posewitz, M.; Seibert, M.; Darzins, A. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J., 2008, 54(4), 621-639.
[64]
Huang, G.; Chen, F.; Wei, D.; Zhang, X.; Chen, G. Biodiesel production by microalgal biotechnology. Appl. Energy, 2010, 87, 38-46.
[65]
Peralta-Yahya, P.; Ouellet, M.; Chan, R.; Mukhopadhyay, A.; Keasling, J.D.; Lee, T.S. Identification and microbial production of a terpene-based advanced biofuel. Nat. Commun., 2011, 2, 483.
[66]
Cho, H.S.; Oh, Y.K.; Park, S.C.; Lee, J.W.; Park, J.Y. Effects of enzymatic hydrolysis on lipid extraction from Chlorella vulgaris. Renew. Energy, 2013, 54, 156-160.
[67]
Isleten-Hosoglu, M.; Ayyildic-Tanis, D.; Zengin, G.; Elibol, M. Enhanced growth and lipid accumulation by a new Ettlia texensis isolate under optimized photoheterotrophic conditions. Bioresour. Technol., 2013, 131, 258-265.
[68]
Valdes, J.R.B.; Aguilar, C.; Esquivel, J.C.C.; Zavala, A.M.; Montanez, J. Strategies to enhance the production of photosynthetic pigments and lipids in chlorophycae species. Biotechnol. Rep., 2016, 10, 117-125.
[69]
Dinamarca, J.; Levitan, O.; Kumaraswamy, G.K.; Lun, D.S.; Falkowski, P.G. Overexpression of a diacylglycerol acyltransferase gene in Phaeodactylum tricornutum directs carbon towards lipid biosynthesis. J. Phycol., 2017, 53, 405-414.
[70]
Dhup, S.; Kannan, D.C.; Dhawan, V. Growth, lipid productivity and cellular mechanism of lipid accumulation in microalgae Monoraphidium sp. following different phosphorous concentrations for biofuel production. Curr. Sci., 2017, 112(3), 539-548.
[71]
Leite, G.B.; Abdelaziz, A.E.M.; Hallenbeck, P.C. Algal biofuels: Challenges and opportunities. Bioresour. Technol., 2013, 145, 134-141.
[72]
Deng, X.; Li, Y.; Fei, X. Microalgae: A promising feedstock for biodiesel. Afr. J. Microbiol. Res., 2009, 3, 1008-1014.
[73]
Becker, E.W.; Baddiley, J.; Higgins, I.J.; Potter, W.G. Microalgae: Biotechnology and Microbiology; Cambridge University Press: Cambridge, 1994.
[74]
Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv., 2007, 25, 294-306.
[75]
Andruleviciute, V.; Makareviciene, V.; Skorupskaite, V.; Gumbyte, M. Biomass and oil content of Chlorella sp., Haematococcus sp., Nannochloris sp. and Scenedesmus sp. under mixotrophic growth conditions in the presence of technical glycerol. J. Appl. Phycol., 2014, 26, 83-90.
[76]
Couto, R.M.; Simoes, P.C.; Reis, A.; Da Silva, T.L.; Martins, V.H.; Sanchez-Vicente, Y. Supercritical fluid extraction of lipids from the heterotrophic microalgae Crypthecodinium cohnii. Eng. Life Sci., 2010, 10, 158-164.
[77]
Guiheneuf, F.; Mimouni, V.; Ulmann, L.; Tremblin, G. Environmental factors affecting growth and omega 3 fatty acid composition in Skeletonema costatum. The influences of irradiance and carbon source. Diatom Res., 2008, 23, 93-103.
[78]
Gouveia, L.; Oliveira, A.C. Microalgae as raw material for biofuels production. J. Ind. Microbiol. Biotechnol., 2009, 36, 269-274.
[79]
Pratoomyot, J.; Srivilas, P.; Noiraksar, T. Fatty acids composition of 10 microalgal species. Songklanakarin J. Sci. Technol., 2005, 27, 1179-1187.
[80]
Pruvost, J.; Van Vooren, G.; Cogne, G.; Legrand, J. Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. Bioresour. Technol., 2009, 100, 5988-5995.
[81]
Budge, S.M.; Parrish, C.C. Lipid class and fatty acid composition of Pseudonitzschia multiseries and Pseudonitzschia pungens and effects of lipolytic enzyme deactivation. Phytochemistry, 1999, 52, 561-566.
[82]
Ratledge, C.; Cohen, Z. Microbial and algal oils: Do they have a future for biodiesel or as commodity oils? Lipid Technol., 2008, 20, 155-160.
[83]
Meng, X.; Yang, J.; Xu, X.; Zhang, L.; Nie, Q.; Xian, M. Biodiesel production from oleaginous microorganisms. Renew. Energy, 2009, 34, 1-5.
[84]
Fajardo, A.F.; Cerdan, L.E.; Medina, A.R.; Fernandaz, F.G.A.; Moreno, P.A.G.; Grima, E.M. Lipid extraction from the microalga Phaeodactylum tricornutum. Eur. J. Lipid Sci. Technol., 2007, 109, 120-126.
[85]
Song, M.; Pei, H.; Hu, W.; Ma, G. Evaluation of the potential of 10 microalgal strains for biodiesel production. Bioresour. Technol., 2013, 141, 245-251.
[86]
Slade, R.; Bauen, A. Micro-algae cultivation for biofuels: Cost, energy balance, environment impacts and future prospects. Biomass Bioenergy, 2013, 53, 29-38.
[87]
Medipally, S.R.; Yusoff, F.M.; Banerjee, S.; Shariff, M. Microalgae as sustainable renewable energy feedstock for biofuel production. BioMed Res. Int., 2015, 2015, Article ID: 519513.
[88]
Sakthivel, R.; Elumalai, S.; Arif, M.M. Microalgae lipid research, past, present: A critical review for biodiesel production in the future. J. Exp. Sci., 2011, 2, 29-49.
[89]
Griffiths, M.J.; Dicks, R.G.; Richardson, C.; Harrison, S.T.L. Advantages and challenges of microalgae as a source of oil for biodiesel, biodiesel-feedstocks and processing technologies; InTech Europe, 2011. DOI: 10.5772/30085.
[90]
Cheirsilp, B.; Torpee, S. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: Effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour. Technol., 2012, 110, 510-516.
[91]
Lavens, P.; Sorgeloos, P. Manual on the production and use of live food for aquaculture. FAO Fisheries, Technical Paper. No. 361, 1996.
[92]
Wahidin, S.; Idris, A.; Shaleh, S.R.M. The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresour. Technol., 2013, 129, 7-11.
[93]
Cordero, J.; Guevara, M.; Morales, E.; Lodeiros, C. Effect of heavy metals on the growth of tropical microalga Tetrasermis chuii (Prasinophyceae). Rev. Biol. Trop., 2005, 53, 325-330.
[94]
Salih, F.M. Microalgae tolerance to high concentrations of carbon dioxide: A review. J. Environ. Prot., 2011, 2, 648-654.
[95]
Schenk, P.M.; Thomas-Hall, S.R.; Stephens, E.; Marx, U.C.; Mussgnug, J.H.; Posten, C.; Kruse, O.; Hankamer, B. Second generation biofuels: High-Efficiency microalgae for biodiesel production. Bioenergy Resour., 2008, 1, 20-43.
[96]
Dassey, A.J.; Theegala, C.S. Harvesting economics and strategies using centrifugation for cost effective separation of microalgae cells for biodiesel applications. Bioresour. Technol., 2013, 128, 241-245.
[97]
Rashid, N.; Rehman, S.U.; Han, J. Rapid harvesting of freshwater microalgae using chitosan. Process Biochem., 2013, 48(7), 1107-1110.
[98]
Cravotto, G.; Boffa, L.; Mantegna, S.; Perego, P.; Avogadro, M.; Cintas, P. Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrason. Sonochem., 2008, 15(5), 898-902.
[99]
Xiong, W.; Li, X.; Xiang, J.; Wu, Q. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl. Microbiol. Biotechnol., 2008, 78, 29-36.
[100]
Parmar, A.; Singh, N.K.; Pandey, A.; Gnansounou, M. Cyanobacteria and microalgae: A positive prospect for biofuels. Bioresour. Technol., 2011, 102, 10163-10172.
[101]
Borchord, J.A.; Omelia, C.R. Sand filteration of algal suspensions. J. Am. Water Works Assoc., 1961, 53, 1493-1502.
[102]
Zhang, X.; Hu, Q.; Sommerfeld, M.; Puruhito, E.; Chen, Y. Harvesting algal biomass for biofuels using ultrafiltration membranes. Bioresour. Technol., 2010, 101, 5297-5304.
[103]
Zhang, W.; Zhang, W.; Zhang, X.; Amendola, P.; Hu, Q.; Chen, Y. Characterization of dissolved organic matters responsible for ultrafiltration membrane fouling in algal harvesting. Algal Res., 2013, 2, 223-229.
[104]
Coward, T.; Lee, J.G.M.; Caldwell, G.S. Development of a foam floatation system for harvesting microalgae biomass. Algal Res., 2013, 2, 135-144.
[105]
Grima, E.M.; Belarbi, E.H.; Fernandez, A.; Medina, A.R.; Chisti, Y. Recovery of microalgal biomass and metabolites: Process option and economics. Biotechnol. Adv., 2003, 20, 491-516.
[106]
Pragya, N.; Pandey, K.K.; Sahoo, P.K. A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renew. Sustain. Energy Rev., 2013, 24, 159-171.
[107]
Mollah, M.Y.A.; Morkovsky, P.; Gomes, J.A.G.; Kesmez, M.; Parga, J.; Cocke, D.L. Fundamentals, present and future perspectives of electrocoagulation. J. Hazard. Mater. B, 2004, 114, 199-210.
[108]
Matos, C.T.; Santos, M.; Nobre, B.P.; Gouveia, L. Nannochloropsis sp. Biomass recovery by electro-coagulation for biodiesel and pigment production. Bioresour. Technol., 2013, 134, 219-226.
[109]
Golueke, C.G.; Oswald, W.J. Harvesting and processing sewage grown algae. J. Water Pollut. Control Fed., 1965, 37(4), 471-498.
[110]
Halim, R.; Danquah, M.K.; Webley, P.A. Extraction of oil from microalgae for biodiesel production: A review. Biotechnol. Adv., 2012, 30, 709-732.
[111]
Beatrice, G.T.; Chandra, S.T. Investigating the interdependence between cell density, biomass productivity, and lipid productivity to maximize biofuel feedstock production from outdoor microalgal cultures. Renew. Energy, 2014, 64, 238-243.
[112]
Farooq, W.; Lee, Y.C.; Ryu, B.G.; Kim, B.H.; Kim, H.S.; Choi, Y.E.; Yang, J.W. Two-stage cultivation of two Chorella sp. Strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Bioresour. Technol., 2013, 132, 230-238.
[113]
Yoo, C.; Jun, S.Y.; Lee, J.Y.; Ahn, C.Y.; Oh, H.M. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour. Technol., 2010, 101, S71-S74.
[114]
Rodolfi, L.; Zittelli, G.C.; Bassi, N.; Padovani, G.; Biondi, N.; Bonini, G.; Tredici, M.R. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng., 2009, 102, 100-112.
[115]
Zhu, L.D.; Takala, J.; Hiltunen, E.; Wang, Z.M. Recycling harvest water to cultivate Chlorella zonfingiensis under nutrient limitation for biodiesel production. Bioresour. Technol., 2013, 144, 14-20.
[116]
Kelly, M.; Dworjanyn, S. The Potential of Marine Biomass for Anaerobic Biogas Production: A Feasibility Study with Recommendations for Further Research; The Crown Estate, 2008.
[117]
Liu, J.; Mukherjee, J.; Hawkes, J.J.; Wilkinson, S.J. Optimization of lipid production for algal biodiesel in nitrogen stressed cells of Dunaliella salina using FTIR analysis. J. Chem. Technol. Biotechnol., 2013, 88, 1807-1814.
[118]
Bondioli, P.; Bella, L.D.; Rivolta, G.; Zittelli, G.C.; Bassi, N.; Rodolfi, L.; Casini, D.; Prussi, M.; Chiaramonti, D.; Tredici, M.R. Oil production by the marine microalgae Nannochloropsis sp. F&M-M24 and Tetraselmis suecica F&M-M33. Bioresour. Technol., 2012, 114, 567-572.
[119]
Wen, X.; Du, K.; Wang, Z.; Peng, X.; Luo, L.; Tao, H.; Li, Y. Effective cultivation of microalgae for biofuel production: A pilot-scale evaluation of a novel oleaginous microalga Graesiella sp. WBG-1. Biotechnol. Biofuels, 2016, 9(1), 123.
[120]
Prabakaran, P.; Ravindran, A.D. A comparative study on effective cell disruption methods for lipid extraction from microalgae. Lett. Appl. Microbiol., 2011, 53, 15-154.
[121]
Rawat, I.; Kumar, R.R.; Mutanda, T.; Bux, F. Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl. Energy, 2011, 88, 3411-3424.
[122]
Lee, O.K.; Kim, A.L.; Seong, D.H.; Lee, C.G.; Jung, Y.T.; Lee, J.W.; Lee, E.Y. Chemo-enzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga, Dunaliella tertiolecta. Bioresour. Technol., 2013, 132, 197-201.
[123]
Suarli, E.; Sarbatly, R. Conversion of microalgae to biofuel. Renew. Sustain. Energy Rev., 2012, 16, 4316-4342.
[124]
Amin, S. Review on biofuel oil and gas production processes from microalgae. Energy Convers. Manage., 2009, 50, 1834-1840.
[125]
Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial applications of microalgae. J. Biosci. Bioenergy, 2006, 101, 87-96.
[126]
Tamagnini, P.; Leitao, E.; Oliveira, P.; Ferreira, D.; Pinto, F.; Harris, D.J.; Heidorn, T.; Lindblad, P. Cyanobacterial hydrogenases: Diversity, regulation and applications. FEMS Microbiol. Rev., 2007, 31, 692-720.
[127]
Sellner, K.G.; Doucette, G.J.; Kirkpatrick, G.J. Harmful algal bloom: Causes, impacts and detection. J. Ind. Microbiol. Biotechnol., 2003, 30, 383-406.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 3
Year: 2019
Published on: 25 January, 2019
Page: [277 - 289]
Pages: 13
DOI: 10.2174/1570193X15666180627115502
Price: $65

Article Metrics

PDF: 36
HTML: 2
EPUB: 1