Sensitive Detection of Human Hemoglobin by MWCNTs-ionic Liquid: Anthraquinone Modified Electrode

Author(s): Aghdas Banaei, Mostafa Shourian, Fariba Dashtestani, Khadijeh Eskandari*

Journal Name: Nanoscience & Nanotechnology-Asia

Volume 9 , Issue 4 , 2019

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Introduction: Today, nano-composite gels based on multi-walled carbon nanotubes in room temperature ionic liquid (MWCNTs-IL-Gel) are an interesting subject.

Materials and Methods: The nano-composite gels showed convenient electrochemical properties against redox activities of electroactive biomolecules. Also, the evaluation of hemoglobin concentration is a critical point in the clinical sample. So, the kind of nano-composite gel which is composed of NH2 functionalized MWCNTs and [amim] Br IL and anthraquinone 2-carboxilic acid (AQ) was fabricated and applied in electrochemical detection of hemoglobin. Cyclic voltammograms of NH2.MWCNTs-IL-AQ modified electrode exhibited redox peak sat -0.5 V (vs. Ag/AgCl) in 0.1 M phosphate buffer solution ((pH 7.0).

Results: As the hemoglobin added into the measured solution, the redox current decreased.

Conclusion: It can be concluded that the increment in the concentration of hemoglobin caused the decrease in the redox currents in cyclic voltammetry. The NH2.MWCNTs-IL-AQ would detect the concentration of hemoglobin from 1.64 x10−8 to 4.89x10−7 M.

Keywords: Anthraquinone 2-carboxilic acid, electron transferring, hemoglobin, ionic liquid, amine functionalized multi-walled carbon nanotubes.

Zhu, Z.; Li, N.Q. 9,10‐Anthraquinone modified glassy carbon electrode and its application for hemoglobin determination. Electroanalysis, 1998, 10(9), 643.
Shie, J.W.; Yogeswaran, U.; Chen, S.M. Haemoglobin immobilized on nafion modified multi-walled carbon nanotubes for O2, H2O2 and CCl3COOH sensors. Talanta, 2009, 78, 896.
Zhu, Y.; Dong, S. Rapid redox reaction of hemoglobin at methylene green modified platinum electrode. Electrochim. Acta, 1990, 35, 1139.
Liu, H.; Wang, L.; Hu, N. Direct electrochemistry of hemoglobin in biomembrane-like DHP–PDDA polyion-surfactant composite films. Electrochim. Acta, 2002, 47, 2515.
He, P.; Hu, N.; Zhou, G. Assembly of electroactive layer-by-layer films of hemoglobin and polycationic poly(diallyldimethylammonium). Biomacromolecules, 2002, 3, 139.
Lu, Z.; Huang, Q.; Rusling, J.F. Films of hemoglobin and didodecyldimethylammonium bromide with enhanced electron transfer rates. J. Electroanal. Chem., 1997, 423, 59.
Han, X.; Cheng, W.; Zhang, Z.; Dong, S.; Wang, E. Direct electron transfer between hemoglobin and a glassy carbon electrode facilitated by lipid-protected gold nanoparticles. Biochim. Biophys. Acta, 2002, 1556, 273.
Yang, J.; Hu, N.; Rusling, J.F. Enhanced electron transfer for hemoglobin in poly(ester sulfonic acid) films on pyrolytic electrodes. J. Electroanal. Chem., 1999, 463, 53.
Yang, J.; Hu, N. Direct electron transfer for hemoglobin in biomembrane-like dimyristoyl phosphatidylcholine films on pyrolytic graphite electrodes. Bioelectrochem. Bioenerg., 1999, 48, 117.
Zhou, Y.; Hu, N.; Zeng, Y.; Rusling, J.F. Heme protein− clay films: Direct electrochemistry and electrochemical catalysis. Langmuir, 2002, 18, 211.
Zhou, Y.; Li, Z.; Hu, N.; Zeng, Y.; Rusling, J.F. Layer-by-layer assembly of ultrathin films of hemoglobin and clay nanoparticles with electrochemical and catalytic activity. Langmuir, 2002, 18, 8573.
Blankman, J.I.; Shahzad, N.; Miller, C.J.; Guiles, R.D. Direct voltammetric investigation of the electrochemical properties of human hemoglobin: relevance to physiological redox chemistry. Biochemistry, 2000, 39, 14806.
Fan, C.; Wang, H.; Sun, S.; Zhu, D.; Wagner, G.; Li, G. Electron-transfer reactivity and enzymatic activity of hemoglobin in a SP Sephadex membrane. Anal. Chem., 2001, 73, 2850.
Huang, H.; Hu, N.; Zeng, Y.; Zhou, G. Electrochemistry and electrocatalysis with heme proteins in chitosan biopolymer films. Anal. Biochem., 2002, 308, 141.
Liu, H.; Hu, N. Heme protein-gluten films: Voltammetric studies and their electrocatalytic properties. Anal. Chim. Acta, 2003, 481, 91.
Wang, H.; Guan, R.; Fan, C.; Zhu, D.; Li, G. A hydrogen peroxide biosensor based on the bioelectrocatalysis of hemoglobin incorporated in a kieselgubr film. Sens. Actuators B Chem., 2002, 84, 214.
Mogharrab, N.; Ghourchian, H. Anthraquinone 2-carboxylic acid as an electron shuttling mediator and attached electron relay for horseradish peroxidase. Electrochem. Commun., 2005, 7, 466.
Vaik, K.; M¨aeorg, U.; Maschion, F.C.; Maia, G.; Schiffrin, D.J.; Tammeveski, K. Electrocatalytic oxygen reduction on glassy carbon grafted with anthraquinone by anodic oxidation of a carboxylate substituent. Electrochim. Acta, 2005, 50, 5126.
Sun, W.; Li, X.; Wang, Y.; Zhao, R.; Jiao, K. Electrochemistry and electrocatalysis of hemoglobin on multi-walled carbon nanotubes modified carbon ionic liquid electrode with hydrophilic EMIMBF4 as modifier. Electrochim. Acta, 2009, 54, 4141.
Kruusenberg, I.; Alexeyeva, N.; Tammeveski, K. The pH-dependence of oxygen reduction on multi-walled carbon nanotube modified glassy carbon electrodes. Carbon, 2009, 47, 651.
Fukushima, T.; Aida, T. Ionic liquids for soft functional materials with carbon nanotubes. Chem. Eur. J., 2007, i, 5048.
Wong, E.L.S.; Compton, R.G. Chemical reaction of reagents covalently confined to a nanotube surface: Nanotube-mediated redox chemistry. J. Phys. Chem. C, 2008, 112(22), 8122.
Heald, C.G.R.; Wildgoose, G.G.; Jiang, L.; Jones, T.G.J.; Compton, R.G. Chemical derivatisation of multiwalled carbon nanotubes using diazonium salts. Chem.Phys.Chem, 2004, 5, 1794.
Liu, X.; Ding, Z.; He, Y.; Xue, Z.; Zhao, X.; Lu, X. Electrochemical behavior of hydroquinone at multi-walled carbon nanotubes and ionic liquid composite film modified electrode. Colloids Surf. B Biointerfaces, 2010, 79, 27.
Jeong, J.S.; Jeon, S.Y.; Lee, T.Y.; Park, J.H.; Shin, J.H.; Alegaonkar, P.S.; Berdinsky, A.S.; Yoo, J.B. Fabrication of MWNTs/nylon conductive composite nanofibers by electrospinning. Diamond Relat. Mater., 2006, 15, 1839.
Du, P.; Liu, S.; Wu, P.; Cai, C. Preparation and characterization of room temperature ionic liquid/single-walled carbon nanotube nanocomposites and their application to the direct electrochemistry of heme-containing proteins/enzymes. Electrochim. Acta, 2007, 52, 6534.
Lee, T.Y.; Yoo, J.B. Adsorption characteristics of Ru (II) dye on carbon nanotubes for organic solar cell. Diamond Relat. Mater., 2005, 14, 1888.
Zhao, Q.; Zhan, D.; Ma, H.; Zhang, M.; Zhao, Y.; Jing, P.; Zhu, Z.; Wan, X.; Shao, Y.; Zhuang, Q. Direct proteins electrochemistry based on ionic liquid mediated carbon nanotube modified glassy carbon electrode. Front. Biosci., 2005, 10, 326.
Wei, W.; Jin, H.H.; Zhao, G.C. A reagentless nitrite biosensor based on direct electron transfer of hemoglobin on a room temperature ionic liquid/carbon nanotube-modified electrode. Microchim. Acta, 2009, 164, 167.
Marcus, R.A.; Sutin, N. Electron transfers in chemistry and biology. Biochim. Biophys. Acta, 1985, 811, 265.
Sadeghi, S.J.; Gilardi, G.; Cass, A.E.G. Mediated electrochemistry of peroxidases—effects of variations in protein and mediator structures. Biosens. Bioelectron., 1998, 12, 1191.
Mogharrab, N.; Ghourchian, H. Anthraquinone 2-carboxylic acid as an electron shuttling mediator and attached electron relay for horseradish peroxidase. Electrochem. Commun., 2005, 7, 466.
Susan, M.A.B.; Begum, M.; Takeoka, Y.; Watanabe, M. Effect of pH and the extent of micellization on the redox behavior of non-ionic surfactants containing an anthraquinone group. J. Electroanal. Chem., 2000, 481, 192.
Bard, A.J.; Faulkner, L.R. Fundamentals and applications.Electrochem. Methods; Wiley: New York, 2001.
Laviron, E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem., 1979, 101, 19.
Huang, Q.; Lu, Z.; Rusling, J.F. Composite films of surfactants, Nafion, and proteins with electrochemical and enzyme activity. Langmuir, 1996, 12, 5472.
Ma, H.; Hu, N.; Rusling, J. Electroactive myoglobin films grown layer-by-layer with poly (styrenesulfonate) on pyrolytic graphite electrodes. Langmuir, 2000, 16, 4969.
Leitch, F.A.; Moore, G.R.; Pettigrew, G.W. Structural basis for the variation of pH-dependent redox potentials of Pseudomonas cytochromes c-551. Biochemistry, 1984, 23, 1831.
Schmidt, A.; Schumacher, J.T.; Reichelt, J.; Hecht, H.J.; Bilitewski, U. Mechanistic and molecular investigations on stabilization of horseradish peroxidase C. Anal. Chem., 2002, 74, 3037.
Eskandari, K.; Zarei, H.; Ghourchian, H.; Amoozadeh, M. The electrochemical study of glucose oxidase on gold-coated magnetic iron oxide nanoparticles. J. Anal. Chem., 2015, 70, 1254.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 25 November, 2019
Page: [479 - 485]
Pages: 7
DOI: 10.2174/2210681208666180626161341
Price: $25

Article Metrics

PDF: 15
PRC: 1